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system through Loschmidt echo
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Unlike the edge state of a topological insulator where its energy level lives in the bulk energy gap, the edge
state of a topological semimetal hides in the bulk spectrum and is difficult to be identified by the energy.
We investigate the sensitivity of bulk and edge states of the gapless phase for a topological semimetal to the
disordered perturbation via a concrete two-dimensional chiral symmetric lattice model. The topological gapless
phase is characterized by two opposite vortices in the momentum space and nonzero winding numbers, which
correspond to the edge flatband when the open boundary condition is applied. For this system, numerical results
reveal that a distinguishing feature is that the robustness of the edge states against weak disorder and the flatband
edge modes remain locked at zero energy in the presence of weak chiral-symmetry-preserving disorder. We
employ the Loschmidt echo (LE) for both bulk and edge states to study the dynamic effect of disordered
perturbation. We show that, for an initial bulk state, the LE decays exponentially, whereas it converges to a
constant for an initial edge state in the presence of weak disorder. Furthermore, the convergent LE can be utilized
to identify the positions of vortices as well as the phase diagram. We discuss the realization of such dynamic
investigations in a topological photonic system.
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I. INTRODUCTION

Topological states of matter [1–4] have become the focus
of intense research in many branches of physics and provide a
fertile ground for demonstrating the concepts in high-energy
physics, including Majorana [5–10], Dirac [11–17], and Weyl
fermions [18–26]. These concepts relate to topological gap-
less phases and corresponding edge modes not only exhibiting
new physical phenomena with potential technological appli-
cations, but also deepening our understanding on state of
matters. The system in the topological gapless phase exhibits
band structures with band-touching points in the momentum
space where these kinds of nodal points appear as topological
defects of the Bloch vector field. On the other hand, a gapped
phase can be topologically nontrivial, commonly referred to
as topological insulators and superconductors. Such a phase
is associated, at least, with two isolated bulk energy bands
where the band structure of each is characterized by non-
trivial topological index. A particularly important concept is
the bulk-boundary correspondence, which links the nontrivial
topological invariant in the bulk to the localized edge modes.
In general, edge states are the eigenstates of Hamiltonian that
are exponentially localized at the boundary of the system. A
gapped topological phase is always associated with a bulk
energy gap, whereas a topological gapless phase, commonly
referred to as topological semimetals and nodal superconduc-
tors, can exhibit topological protected Fermi points or nodal
points (we refer to the bulk energy gap as the energy gap of
the system with translational symmetry and without disorder
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throughout this paper). Accordingly, unlike the edge state of a
topological insulator where its energy level lives in the bulk
energy gap, the edge state of a topological gapless phase
hides in the bulk spectrum, and is hard to be identified by the
energy. These edge states can form a partial flatband in a rib-
bon geometry [27–29], which also exhibit robustness against
disorder [30]. Recently, it has been pointed that Majorana zero
modes are not only attributed to topological superconductors.
A two-dimensional (2D) topologically trivial superconductors
without chiral edge modes can host robust Majorana zero
modes in topological defects [31–33]. In an experimental
aspect, photonic systems provide a convenient and versatile
platform to design various topological lattice models and
study different topological states [34,35].

In this paper, we investigate the sensitivity of bulk and
edge states of the gapless phase for a topological semimetal
to the disordered perturbation via a concrete two-dimensional
chiral symmetric lattice model. We employ the Loschmidt
echo (LE) for both bulk and edge states to study the dynamic
effect of disordered perturbation. The LE is a measure of the
revival occurring when an imperfect time-reversal procedure
is applied to a complex quantum system. It allows to quantify
the sensitivity of quantum evolution to perturbations. This
paper aims to shed light on the nature of topological edge
modes associated with the gapless phase for a topological
semimetal with chiral symmetry rather than gapped topo-
logical materials. We show that, for a initial bulk state, LE
decays exponentially, whereas it converges to a constant for
an initial edge state in the presence of weak chiral-symmetry-
preserving disorder. Our results provide a dynamic way to
identify topological edge states arising from the topological
gapless phase in a 2D chiral symmetric system. The reason
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is that unlike the edge states in a topological insulator, here,
the edge flatband hides in a continuous spectrum. There is
no bulk energy gap to protect the channel of the edge states.
Thanks to the photonic system where the Pauli exclusion is not
obeyed, a single-particle state can be amplified by the large
population of photons. The phase diagram can be detected by
using edge-state photon dynamics.

This paper is organized as follows. In Sec. II, we present
the introduction of the Loschmidt echo and the idea about
applying it to the bulk and edge states in gapless systems.
In Sec. III, we introduce a square lattice without disorder to
illustrate our method. Section IV focuses on the dynamics
of the system in the presence of disorder and demonstrates
the dynamics method for detecting edge modes. Finally, our
conclusion and discussion are given in Sec. V.

II. EDGE STATES AND LOSCHMIDT ECHO

Anderson localization is a basic condensed-matter physics
phenomenon, which describes the absence of diffusion of
waves in a disordered medium [36]. It turns out that particle
localization is possible in a lattice potential, provided that
the strength of disorder in the lattice is sufficiently large.
The confinement of waves in a disordered medium has been
observed for electromagnetic [37,38] and acoustic [39] waves
in disordered dielectric structures and for electron waves in
condensed matter. On the other hand, to capture the effect of
disorder on the dynamics, one can employ a concept of the LE
or fidelity. The LE is a measure of reversibility and sensitivity
to perturbations of quantum evolutions. An initial quantum
state |ψ (0)〉 evolves during a time T under a Hamiltonian H0

reaching state |ψ (t )〉. Aiming to recover initial-state |ψ (0)〉,
a new Hamiltonian H is applied between T and 2T . Quantity
|〈ψ (0)|e−iHt e−iH0t |ψ (0)〉|2 is induced to measure the fidelity
of this recovery. Perfect recovery of |ψ (0)〉 would be achieved
by choosing H = −H0. In the context of the present paper, the
LE is defined as

M(t ) = |〈ψ (0)|eiHDt e−iH0t |ψ (0)〉|2, (1)

where |ψ (0)〉 is the state of the system at time t = 0, H0 is
the Hamiltonian of a uniform system, HD is the Hamiltonian
H0 under disordered perturbation. For certain topological non-
trivial systems, edge states are robust under a weak symmetry-
preserving disorder, still being the localized state [34,40,41].
Particularly, we numerically observe that the corresponding
eigenenergy is locked at zero as it is shown through a concrete
model in Sec. IV. Therefore, considering such a topological
system, it is expected that: (i) When an initial quantum state
|ψ (0)〉 is a local state at bulk, M(t ) could decay to zero due
to the fact that e−iH0t |ψ (0)〉 and e−iHDt |ψ (0)〉 diffuse in 2D
space in different ways, (ii) when |ψ (0)〉 is an edge state of
H0, M(t ) could be the constant 1.

Here, we consider the LE for a local state |ψ (0)〉 at the
edges. We note that |ψ (0)〉 is almost written as the superpo-
sition of the flatband edge modes of H0 or HD, respectively,
which result in

H0|ψ (0)〉 ≈ 0, HD|ψ (0)〉 ≈ 0 (2)

for weak disordered perturbation HD − H0 � H0. Then, we
always have

M(t ) = |〈ψ (0)|eiHDt e−iH0t |ψ (0)〉|2
≈ |〈ψ (0)|ψ (0)〉|2
= 1. (3)

In the following, we will demonstrate this analysis through a
concrete example.

III. MODEL WITHOUT DISORDER

We focus on a concrete 2D chiral symmetric model to
demonstrate the main idea. In the previous works [42,43], we
have demonstrated that a topologically trivial superconductor
emerges as a topological gapless state, which support Majo-
rana flatband edge modes. The quantum state is characterized
by two band-degeneracy points with opposite chirality. In the
present paper, we directly consider a tight-binding model with
the same structure as the Majorana lattice. In the following:
(i) We present the Hamiltonian and the phase diagram for the
topological gapless phase; (ii) we investigate the topological
edge states with nonzero winding numbers.

A. Model and topological gapless phase

We consider a tight-binding model on a bipartite M × N
lattice with the Hamiltonian,

H =
∑

r

(μa†
rbr + a†

rbr+x̂ + a†
rbr+ŷ ) + H.c., (4)

where r = ( j, l ) is the coordinate of the lattice sites and ar
and br are the fermion or boson annihilation operators at site
r in the sublattice of A and B, respectively. Vectors x̂, ŷ are
the unitary lattice vectors in the x and y directions. The hop-
ping between neighboring sites is described by the hopping
amplitudes μ and 1. The schematic for the honeycomb lattice
is shown in Fig. 1(a). This simple model can be regarded as a
strained graphene lattice [44–48] which is uniaxially strained
along the y direction.

We introduce the Fourier transformations,

(ak, bk ) = 1√
MN

∑
r

(ar, br )e−ik·r. (5)

Then, the Hamiltonian with periodic boundary conditions in
both directions can be block diagonalized as

H =
∑

k

(a†
k b†

k )h(k)

(
ak

bk

)
, (6)

with the core matrix,

h(k) =
(

0 g(k)

g∗(k) 0

)
, (7)

and g(k) = μ + (eikx + eiky ). We note that the system respects
time reversal, chiral, and particle-hole symmetry, i.e.,
for the Bloch Hamiltonian h(k), we have T h(k)T −1 =
h(−k), Sh(k)S−1 = −h(k), and Ch(k)C−1 = −h(−k)
with T = K as the complex-conjugation operator, and
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FIG. 1. (a) Schematic of the 2D tight-binding model with Hamil-
tonian Eq. (4), which is essentially a bipartite M × N honeycomb
lattice. The solid lines and dashed lines represent hopping terms
with strengths μ and 1, respectively. (b) Phase diagram of the
lattice system with parameter μ. The orange lines indicate the phase
boundary, which separate the topologically trivial gapped phases
(gray) and topological gapless phases (blue). The system with the
parameter at the boundary (orange lines) is a topologically trivial
gapless phase. Points (a)–(f) represent the systems in each phase,
which are extensively investigated in Fig. 3.

S = σz, C = σzK. The core matrix can be written as

h(k) = B(k) · σ, (8)

where the components of the Bloch vector B(k) =
(Bx, By, Bz ) are

Bx = μ + (cos kx + cos ky),

By = −(sin kx + sin ky), (9)

Bz = 0,

and σ = (σx, σy, σz ) are the Pauli matrices. The spectrum is

E±
k = ±

√
(μ + cos kx + cos ky)2 + (sin kx + sin ky)2.

(10)

We focus on the gapless phase arising from the band-
degenerate points of the spectrum. The band-degenerate point
k0 = (k0x, k0y) fulfills the equations,

sin k0x + sin k0y = 0,
(11)

μ + cos k0x + cos k0y = 0.

As shown in Figs. 3(a1)–3(f1), there are three types of band-
touching configurations: Single point, double points, and lines

on the kx-ky plane, determined by the parameter μ. We are
interested in the nontrivial case (double points) with nonzero
μ. Then, from Eq. (11), we have

k0x = −k0y = ± arccos
(
−μ

2

)
, (12)

in the condition of |μ| � 2. It indicates that there are two
degenerate points for μ �= 0 and |μ| �= 2. When μ’s vary, the
two points move along the line: k0x = −k0y and merge at k0 =
(±π,∓π ) or k0 = (0, 0) when μ = 2 or μ = −2. In the case
of μ = 0, the degenerate points become two degenerate lines:
k0y = ±π + k0x. The phase diagram is shown in Fig. 1(b),
and the bulk spectra for several typical cases are illustrated
in Figs. 3(a1)–3(f1).

The gapless phase of this model can be protected by a
Z-type invariant according to the classification topological
semimetals [3,49]. For the isolated band-touching point, the
topological nature of the band degeneracy can be considered
as a vortex in the momentum space with integer winding
numbers, which is equivalent to the concept of the Berry flux
[50,51]. The Berry flux is defined as the contour integral of
the Berry connection in the momentum space [50,52]. A band-
degenerate point can be regarded as a topological defect, and
the topological index can be extracted from the expression of
Bloch vector B(k). Actually, in the vicinity of the degenerate
points, the Bloch vector can be expressed as the form

Bx = − sin k0x(qx − qy),

By = − cos k0x(qx + qy), (13)

Bz = 0,

where q = k − k0 is the momentum in another frame and
k0 = (k0x, k0y) satisfies Eq. (12). Around these degenerate
points, the core matrix h(k) can be linearized as

h(q) =
2∑

i, j=1

ci jqiσ j, (14)

which is equivalent to the Hamiltonian for 2D massless
relativistic fermions. Here, (q1, q2) = (qx, qy), (σ1, σ2) =
(σx, σy) and c = (− sin k0x − cos k0x

sin k0x − cos k0x
). The corresponding chiral-

ity for these particles is defined as

w = sgn[det(c)] = sgn[sin (2k0x )], (15)

which leads to w = ±1 for two degenerate points. The
chiral relativistic fermions serve as 2D Dirac points. Two
Dirac points located at two separated degenerate points have
opposite chirality. We note that w = 0 for μ = 0 and |μ| = 2.
When μ = −2 or μ = 2, two Dirac points merge at (0,0)
or (±π,∓π ) and become a single degenerate point. The
topology of the degenerate point becomes trivial, and a pertur-
bation, hence, can open up the bulk energy gap. We illustrate
the Bloch vector fields on the kx-ky plane for several typical
cases in Figs. 3(a2)–3(f2). As shown in the figures, we find
three types of topological configurations: A pair of vortices
with opposite chirality, a single trivial vortex (or degeneracy
lines), and no vortex, corresponding to topological gapless,
trivial gapless, and gapped phases, respectively. According
to the bulk-boundary correspondence [3,49], the nontrivial
bulk topology would lead to the protected surface states and
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FIG. 2. (a) Schematic of the geometry of the system with the
cylindrical boundary condition. The locations of the initial local
states at the edge (blue dot) and bulk (orange dot) of the 2D lattice
system are indicated. (b) Schematic of the modified Su-Schrieffer-
Heeger (SSH) chain Hk represented in Eq. (18). The arrows and
dashed lines represent complex and real hopping terms (μ + eik ) and
1, respectively. The edge modes of a set of modified SSH chains form
the flatband edge modes as bound states located at two edges of the
cylinder when the system is in the blue region of the phase diagram
in Fig. 1(b).

forming the flatband when the open boundary condition is
applied as we can see in the following.

B. Flatband edge modes

Now, we turn to study the feature of the gapless phase
of the square lattice. At first, we revisit the description of
the present model with the cylindrical boundary condition as
shown in Fig. 2(a). Consider the Fourier transformations in
the y direction,

(a j,ky , b j,ky ) = 1√
N

N∑
l=1

e−ikyl (a j,l , b j,l ), (16)

where the wave-vector ky = 2πn/N, n = 1, 2, . . . , N . The
Hamiltonian H can be rewritten as

H =
∑

ky

Hky , (17)

with

Hky =
N∑

j=1

δky a
†
j,ky

b j,ky +
N−1∑
j=1

a†
j,ky

b j+1,ky + H.c., (18)

where δky = (μ + eiky ), and Hky obeys [Hky , Hk′
y
] = 0, i.e., H

has been block diagonalized. We note that each Hky represents
a modified SSH chain with hopping terms δky and 1. The
schematic is shown in Fig. 2(b).

The flatband edge modes of the 2D chiral symmetric
Hamiltonian Eq. (4) with the cylindrical boundary condition
are originated from the zero energy edge states of the modified
SSH in Eq. (18), which can be related to the winding number
[28,53–56] or Zak phase [57]. The winding number for the

bulk Hamiltonian of Eq. (18) is defined as [56]

W (ky) = 1

2π i

∫ π

−π

dkx∂kx ln g(k), (19)

where g(k) is an off-diagonal element of the core matrix h(k)
of the 2D bulk Hamiltonian in Eq. (6). Direct derivation gives

W (ky) =
{

1, μ(μ + 2 cos ky) < 0,

0, μ(μ + 2 cos ky) > 0.
(20)

The winding number is 1 for the parameter region μ(μ +
2 cos ky) < 0 in which the open chain in Eq. (18) is expected
to exist with 1 pair of zero energy edge states [55], respec-
tively, localized at two ends of the chain. These zero energy
edge states for all ky’s in the above parameter region form
the flatband edge modes for the 2D lattice with cylindrical
geometry.

One can always get a diagonalized Hky through the diag-
onalization of the matrix of the corresponding single-particle
SSH chain. Actually, it can be checked that Hky exits two zero
modes in the large-N limit,

|ψR〉 = �

N∑
j=1

( − δ∗
ky

)N− j
a†

j,ky
|vac〉,

(21)

|ψL〉 = �

N∑
j=1

( − δky

) j−1
b†

j,ky
|vac〉,

where � =
√

1 − |δky |2 is the normalization constant and
|δky | < 1 represents the edge modes localizing at the right
or left of the SSH chain. The condition |δky | = |μ + eiky | < 1
leads to μ(μ + 2 cos ky) < 0, and the interval of edge modes
for ky is

ky ∈ I =
{( − π,−kc

y

) ∪ (
kc

y, π
]
, 0 < μ < 2,( − kc

y, kc
y

)
, −2 < μ < 0,

(22)

with kc
y = arccos(−μ/2). The above interval I matches with

the interval with nonzero winding number in Eq. (20). The
zero modes in the plot of the energy band in Figs. 3(c3)
and 3(e3) correspond this flatband of edge modes. For an
arbitrary site-state a†

N, j |vac〉 (or b†
1, j |vac〉) at the edge, the total

probability of the component of edge state |ψR〉 (or |ψL〉) is

p = 1

N

∑
ky∈I

(
1 − ∣∣δky

∣∣2) ≈ 1

2π

∫
I

(
1 − ∣∣δky

∣∣2)
dky, (23)

which is only μ dependent in the large-N limit. We will see
that p can be measured by the LE of the edge site state.

IV. DYNAMIC DETECTION OF EDGE MODES

In this section, we focus on the dynamics of the system
in the presence of disorder. As we know, one of the most
striking features of topologically protected edge states is the
robustness against certain types of disordered perturbation to
the original Hamiltonian. The disorder we discuss here arises
from the hopping integrals in the Hamiltonian H from Eq. (4)
with the cylindrical boundary condition. In the presence of
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FIG. 3. Kaleidoscope of quantum phases. (a1)–(f1) Plots of energy spectra from Eq. (10) at six typical points (a–f) marked in the phase
diagram in Fig. 1(b). There, the band structure exhibits a bulk gap in (a1); a single degeneracy point with parabolic dispersion in (b1) and
(f1); two degeneracy points with linear dispersion in (c1) and (e1); and two degeneracy lines in (d1). (a2)–(f2) Plots of the Bloch vector field
defined in Eq. (9) in the momentum space for six cases corresponding to (a1)–(f1). There are two vortices in (c2) and (e2) with opposite
winding numbers ±1. As μ increases or decreases, two vortices get close and merge into a single point in (b2) or (f2), and disappear in (a2).
(a3)–(f3) Plots of the spectra of a set of modified SSH chains [Eq. (17)] in open boundary condition with N = 40 for six cases corresponding
to (a1)–(f1). It indicates that the existence of pair of vortices links to a flatband of the square lattice. (a4)–(f4) Plots of the LE obtained by
numerical simulations from Eq. (1) at t = 3000J−1 and analytical expressions from Eq. (28) in which the initial state is taken as the site state
at the edge. Here, J is the scale of the Hamiltonian, and we take J = 1. R is the disorder strength, and m denotes the measurement index. The
average value of the LEs are plotted on the right of each panel. The size of the system is M × N = 80 × 80.

disorder, the Hamiltonian reads

HD =
∑

r

(μra†
rbr + νra†

rbr+x̂ + λra†
rbr+ŷ) + H.c., (24)

where parameters {μr, νr, λr} are three sets of position-
dependent numbers. Here, we take

μr = μ + dμ,r,

νr = 1 + dν,r, (25)

λr = 1 + dλ,r,

where dμ,r, dν,r, and dλ,r are uniform random real numbers
within the interval [−R, R], taking the role of the disorder
strength, and r is the site index.

Now, we investigate the influence of nonzero R by
comparing two sets of eigenvalues obtained by numerical

diagonalization of finite-dimensional matrices of H and HD

in single-particle subspace, respectively. The plots in Fig. 4
indicate that the zero modes remain unchanged in the pres-
ence of chiral-symmetry-preserving random perturbations
with not too large R. The chiral symmetry, here, is re-
sponsible for the existence of zero modes, in other words,
under chiral-symmetry-breaking disordered perturbation, the
zero modes no longer survive. Taking the disordered on-
site potential, for example, the Hamiltonian reads H ′ = H +∑

r(da,ra†
rar + db,rb†

rbr ), where da,r and db,r are uniform
random real numbers within the interval [−R, R]. The nu-
merical results in Fig. 4 indicate that, under this kind of
chiral-symmetry-breaking disordered perturbation, the zero
modes do not survive, which may lead to the decay of the
LE in contrast to Eqs. (2) and (3), although the original
edge states remain localized on the edge. Furthermore, we
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FIG. 4. Linear and logarithmic scale plots of eigenenergy around zero for H, HD, and H ′ with the cylindrical boundary condition. n denotes
the sorting index. The parameters are μ = 1 for (a) and (b); μ = 1.8 for (c) and (d); R = 0.1 for (a) and (c); R = 0.3 for (b) and (d). It indicates
that the number of zero modes is dependent on μ, and the zero modes remain unchanged in the presence of the chiral-symmetry-preserving
disordered perturbation whereas they do not survive under the chiral-symmetry-breaking disordered perturbation. The results are obtained by
numerical diagonalization for the system with M × N = 60 × 60.

investigate the IPR for the gapless phase with and without
chiral-symmetry-preserving disorder. The IPR is defined as
IPR(E ) = ∑

r |〈r|ψE〉|4 with E denoting the energy levels
and r denoting the lattice sites. The numerical results of IPR
shown in Fig. 5 indicate that all the states with energy E �= 0

FIG. 5. Numerical results of inverse participation ratio (IPR) for
the gapless phase with μ = 1 corresponding to Fig. 4(a). (a) System
without disorder. (b) System with chiral-symmetry-preserving disor-
der R = 0.1. The size of the system is M × N = 60 × 60.

are extended in the presence or absence of weak disorder, and
the system is gapless in the transport sense.

According to the analysis in Sec. II, the LEs should have
diametrically opposite behaviors for the initial bulk and edge
states, respectively. To verify this point, we compute the LEs
for two initial states: (i) a Gaussian wave packet in the bulk
|ψG〉 and (ii) an edge state |ψR〉 or |ψL〉. In Fig. 6, we plot the
result, which is in agreement with our prediction. We find that,
when |ψ (0)〉 is a bulk state, M(t ) will decay exponentially,
whereas M(t ) remains in the constant 1 when |ψ (0)〉 = |ψR〉
or |ψL〉. Accordingly, when we take the initial state as the
superposition of scattering and bound states, i.e.,

|ψ (0)〉 = cG|ψG〉 + cR|ψR〉 + cL|ψL〉, (26)

with |cG|2 + |cR|2 + |cL|2 = 1, we can have the LE after a
long time,

lim
t→∞ M(t ) = |cR|2 + |cL|2 = 1 − |cG|2. (27)

It indicates that the magnitude of cG can be measured by the
LE. Furthermore, if we take |ψ (0)〉 = a†

N, j |vac〉 (or b†
1, j |vac〉),

the population of survival zero modes is a function of μ, which
also relates to the quantity p, i.e.,

lim
t→∞ M(t ) = lim

t→∞ |〈ψ (0)|eiHDt e−iH0t |ψ (0)〉|2 ≈ p2 (28)

for the very weak disordered system HD. It is presumable
that the size of flatband kc can be obtained by the LE in the
dynamical process.

To demonstrate and verify this scheme, we perform nu-
merical simulations. We choose three different strengths of
chiral-symmetry-preserving disorder R and six typical values
of hopping amplitudes μ. The numerical simulations are per-
formed ten times for each set of the parameter. Figures 3(a4)–
3(f4) plot the convergent LEs, where LE = limt→∞ M(t ) is
obtained by taking a sufficiently large t (t = 3000) for sev-
eral typical μ’s with different strengths of chiral-symmetry-
preserving disorder R = 0.04, 0.1 and 0.15. It indicates that
a single measurement result depends on the setting random
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FIG. 6. (a) Profiles of the initial states of numerical simulations
for the LEs. The edge state (blue) is taken as the eigenstate of the
system in the cylindrical boundary condition without disorder, and
the bulk state (orange) is taken as the 2D Gaussian wave packet.
(b) Plots of numerical simulations for the LEs as the functions of
time. The initial states are taken as the edge state and bulk state
shown in (a). It can be seen that the LEs have diametrically opposite
behaviors for the initial bulk and edge states. The time t is in units of
J−1, where J is the scale of the Hamiltonian, and we take J = 1. The
size of the system is M × N = 60 × 60, and the disorder strength is
R = 0.1.

number. The average of multimeasurement result 〈LE〉 is
very close to the analytical result in the blue dashed lines.
The dependence of 〈LE〉 on μ for a wide range of μ with
the disorder strength R = 0.1 are presented in Fig. 7. The
comparison between analytical and numerical results shows
that the LE method has good accuracy to determine the
positions of vortices as well as the phase diagram. The tran-
sition points occur at μ = ±2, associated with the vanishing
〈LE〉.

FIG. 7. Comparison of the average convergent LEs and analyti-
cal expression from Eq. (28) as the functions of μ. The initial state
is a edge site state, and the final time is t = 1000J−1, where J is the
scale of the Hamiltonian, and we take J = 1. The size of the system
is M × N = 60 × 60, and the disorder strength is R = 0.1. It is found
that the two results agree with each other well. This means that the
measurement of the LE can identify the phase diagram.

The data and codes of the numerical calculations of
Figs. 3–7 are available in the Supplemental Material as well
as in ZENODO [58].

V. DISCUSSION

In this paper, we have proposed a way to detect the
positions of two vortices in 2D momentum space as well
as the phase diagram. The advantage of this scheme is not
limited by the imperfection of the system, but in the aid of the
disorder. The photonic system is a candidate for the realization
of the scheme in experiment, beyond the solid-state electron
systems. The field of topological photonics grows rapidly and
aims to explore the physics of topological phases of matter
in the context of optics. Photonic systems provide a natural
and convenient medium to investigate fundamental quantum
transport properties. Using photons, one can selectively excite
a site state and observe the spatial responses throughout the
material, which are challenging tasks in electronic systems.
Recently, it has been shown that the Loschmidt echo of
photons can be observed in a binary waveguide by exchanging
the two sublattices after some propagation distance [59]. The
dynamic feature of topological edge states and the phase
diagram presented in this paper potentially can be utilized for
developing inherently robust artificial photonic devices.
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