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Slow structural relaxation process facilitates solidification in liquid gallium
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The structural relaxation dynamics in liquid and 20 K undercooled gallium has been studied by neutron
spectroscopy. The intermediate scattering function at the structure factor maximum was measured over a wide
temperature range up to twice the melting temperature. A stretched exponential decay was observed near the
melting point which transforms to an exponential decay above 1.2 Tmelting. The structural relaxation process
beyond 3 ps can be described as a further slow exponential decay. Mode coupling theory is able to calculate
the decay rate of this slow structural relaxation, which agrees well with the measurement. This additional
structural relaxation, observed in the collective particle motions on next-neighbor distances, can be understood
as a slow cage relaxation process, setting in around 370 K and indicating the slowing down of dynamics towards
solidification. This process might be the microscopic origin for observed changes in the collective particle
dynamics of liquid gallium with decreasing temperature. Liquid aluminium, lead, and rubidium demonstrate
a similar behavior, which suggests a universal crossover in dynamics of the equilibrium liquid metal state.
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I. INTRODUCTION

Bulk metallic glasses are important materials for techno-
logical applications [1,2]. A lot of attention was put towards
the understanding of the glass formation process and the abil-
ity to form a bulk metallic glass and hence the main research
interest was devoted to the materials properties near the glass
transition temperature. However, more recently changes in the
dynamics above the liquidus temperature in liquid alloys have
been reported and moved into the focus of alloy research.

MD simulations on CuZr2 demonstrated a violation of
the Stokes-Einstein relation at several hundred degrees above
the melting point [3]. It was suggested that changes in the
collective dynamics are responsible for the variations in the
liquid dynamics. Similar observations have been reported
in a MD simulation of a CuZrAl alloy [4] and ab initio
based simulations on Al-rich alloys described a breakdown
of the Stokes-Einstein relation in the liquid phase [5]. On
the experimental side a recent study indicated an Arrhenius
crossover in the diffusion coefficients for a wide range of
glass forming liquids, including 11 alloys [6]. The crossover
temperature was located above the liquidus temperature for
the alloys. Also in the binary alloy ZrNi a violation of the
Stokes-Einstein relation was observed covering several hun-
dred degrees above the melting temperature [7]. All these
reports from glass forming alloys demonstrated changes in the
dynamics within the liquid state.

For monatomic liquid metals changes with temperature
were found in the structural relaxation dynamics on an atom-
istic length scale for rubidium, lead, and aluminium [8–10].
The amplitude S(Q0, ω = 0) of the collective dynamics at
the structure factor maximum Q0 showed in all three cases
a change in the slope in a similar temperature range above the
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melting temperature [11]. Furthermore, for all three metals an
increase of the generalized longitudinal viscosity was demon-
strated which occurs in a temperature range of 1.3–1.5 Tm

upon cooling, suggesting that the liquid metals become more
viscous around this temperature range. This temperature range
coincides with a slope change of the macroscopic shear vis-
cosity. In liquid rubidium the structural relaxation dynamics
transformed from a stretched exponential lineshape to an
exponential decay in this temperature range [12,13]. A com-
parison with mode coupling theory predictions demonstrated
that the change in relaxation dynamics is directly connected
to a further slow relaxation process, which is believed to be
interrelated with structural freezing. A MD simulation with a
classical potential on liquid aluminium indicated a breakdown
of the Stokes Einstein relation about 200 K above the melting
point [14], which agrees with experimental observations [10].
Whether there is a connection to the observed changes in
dynamics in the above mentioned glass forming alloys is an
open question.

In contrast to the liquid alkali metals, gallium is a low-
temperature melting monatomic metal with complex proper-
ties. Already the solid phase demonstrates some complexity
with a unit cell of eight atoms and pairs of moleculelike
dimers [15]. These dimer units might vanish during melt-
ing, mirrored in a large melting entropy [16]. Also some
pseudopotential implementations show a shoulder, contrasting
the simpler potentials of the alkali metals [17,18]. Further-
more, gallium can be undercooled to about T ≈ 150 K as
a dispersion of small droplets without crystallization [16].
Due to the many curious properties of liquid gallium a large
interest in gallium dynamics exists with several studies on the
inelastic collective dynamics using neutron and inelastic x-ray
scattering [19–23] and also simulations with first-principles
methods [24,25]. The ability to undercool gallium attracted
early on some interest to study the relaxation dynamic towards
solidification with neutron scattering [26,27].
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More recently, we investigated the dynamics of liquid
gallium over a wide temperature range from the undercooled
state to twice the melting point, focusing on the gallium
dynamics above the melting temperature [28]. Changes in
the dynamics at next-neighbor distances were observed in
a temperature range of about 1.3–1.5 Tm. Here we present
a detailed analysis of the intermediate scattering function
F(Q, t) of liquid gallium at the structure factor maximum over
a wide temperature range. The emphasis lies on the evolution
of the long lasting part of the structural relaxation process
with increasing temperature. A quantitative comparison with
predictions from mode coupling theory is achieved.

II. EXPERIMENTAL DETAILS

The coherent dynamic structure factor S(Q, ω) of liquid
gallium was measured by neutron spectroscopy [29]. Here
we provide only a short description of the experimental and
data analysis details. More experimental details can be found
in Ref. [28]. Gallium scatters neutrons mainly coherent with
a coherent cross section of σcoh = 6.675 barn and an inco-
herent neutron scattering cross section of σinc = 0.16 barn
[30]. Therefore the neutrons are mostly sensitive to collective
particle dynamics, in particular at the structure factor max-
imum. Quasielastic neutron scattering measurements were
performed at the OSIRIS spectrometer of the ISIS Facility,
UK. OSIRIS is an indirect time of flight backscattering spec-
trometer [31]. With a final energy of E f = 7.38 meV the
energy resolution was FWHM = 0.1 meV. All analysis steps,
including empty can subtraction, binning to constant energy
and wave-vector bins, have been performed with the Mantid
software framework [32]. Finally, the intermediate scattering
function F(Q, t) has been obtained by Fourier transforma-
tion and dividing through the Fourier transformed resolution
function.

III. RESULTS AND DISCUSSION

Liquid gallium shows a well-defined deGennes narrowing
around the structure factor maximum with a minimum in
the linewidth at about Q0 = 2.45 Å−1 [28]. Figure 1 depicts
the intermediate scattering function F(Q0, t) of liquid gallium
for several temperatures. Included are fits with a stretched
exponential decay function. A useful description of liquid
dynamics can be obtained by applying the memory function
formalism to a generalized Langevin equation [33]. Within
the visco-elastic model liquid dynamics is described by a
single exponentially decaying memory function [34]. At the
structure factor maximum all the relaxation processes are
slowed down, well known as deGennes narrowing [35]. At
that wave vector the intermediate scattering function F(Q, t)
can be approximated by a single exponential decay function
[34]:

F (Q, t ) = S(Q)exp(−γ (Q)t ) (1)

with a decay rate of

γ (Q) = kBT Q2

mS(Q)M(Q, t = 0)τ (Q)
. (2)

FIG. 1. The Fourier transformed intermediate scattering function
F(Q0, t) of liquid gallium is plotted on a logarithmic scale for several
temperatures against a linear time scale. Included as lines are fits with
a stretched exponential function.

Here τ (Q) denotes the relaxation time for the exponentially
decaying memory function M(Q, t ) within the visco-elastic
model. An approximation for the relaxation time, covering
the whole wave-number range, was put forward by Lovesey
[36]: 1

τ (Q) = 2√
(π )

{�2
L(Q) − �2

0(Q)}1/2. The t = 0 value of
the memory function M(Q, t = 0) is given by M(Q, t = 0) =
�2

L(Q) − �2
0(Q), where �2

L denotes the normalized fourth
frequency moment of the dynamic structure factor and �2

0 =
kBT Q2

mS(Q) is the normalized second frequency moment [37]. The
rate decreases considerably when the main structure factor
peak S(Q0) is reached, the deGennes narrowing.

Scattering experiments in the energy domain demonstrated
that a fit with a single Lorentzian is a good description of
the lineshape at the structure factor maximum [28]. How-
ever, measurements with good statistics and a wide dynamic
range indicated deviations from the single Lorentzian model
[12,13]. That the relaxation dynamics beyond the hydrody-
namical regime even in simple liquids is more intricate and
needs more than one relaxation process was realized in the
past. For example, early molecular dynamics simulations on a
Lennard-Jones liquid revealed that a memory function based
on only one relaxation time is not sufficient to describe the
total lineshape properly [38]. Later on, the necessity for at
least two times in the memory function was evidenced in
modeling the whole dynamic structure factor of several liquid
metals [39]. The two time scales in the memory function can
be characterized as a fast one, due to uncorrelated binary col-
lisions and a second slower one which is related to collective
slow modes. The association with two time scales is made on
the memory function level and is not directly linked with the
decay of the density correlation function itself.

An often used generalization of the exponential decay
function is the Kohlrausch-Williams-Watt (KWW) stretched
exponential function:

F (Q, t ) = A exp(−t/τ (Q))β. (3)

Here, A denotes an amplitude, τ defines the relaxation time,
and β is the stretching parameter. For β = 1 one recovers
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FIG. 2. F(Q, t) of undercooled gallium at 283 K is presented on
a double logarithmic scale. The inset focuses on the small amplitude
values. The line depicts the fit with a KWW stretched exponential
and the dashed line denotes the fit with an exponential decay.

the exponential decay and a β < 1 indicates a stretching and
slowing down of the relaxation process.

Figure 2 shows F(Q, t) of undercooled gallium at 283 K on
a double logarithmic scale. Included as a line is the fit with
a stretched exponential function and as a dashed line the fit
with a simple exponential decay. The inset emphasizes the
differences between the two models on the small amplitude
level and long times. The smallness of the deviations from
the exponential fit confirms the general assumption that a
single Lorentzian can describe the lineshape of S(Q0, ω) quite
well. Nevertheless, a β �= 1 from the stretched exponential
model demonstrates deviations from a simple exponential
relaxation. A fit with the KWW function (full line) perfectly
describes the whole line shape at T = 283 K with a β =
0.92 ± 0.007 and τ = 1.54 ± 0.008 ps. In Fig. 3 we plot
the temperature dependence of the line shape parameter β,
which shows that F(Q, t) changes its form with increasing
temperature towards an exponential decay at a temperature
around 370 K.

FIG. 3. The β values from the stretched exponential decay fit to
F(Q, t) are plotted against temperature.

FIG. 4. The relaxation times τ are plotted in an Arrhenius-type
plot against the inverse temperature. The line is a fit through high
temperature points to evidence the changes towards the melting
point.

The obtained β = 0.92 value for liquid gallium is similar
to the one derived for liquid rubidium previously β = 0.88
[13] and might indicate that the same structural relaxation
process is observed. In metallic alloys, which are known bulk
metallic glass formers, stretched relaxation dynamics was also
observed. Zr-based alloys demonstrated a stretched exponen-
tial function with a β = 0.8 [40] and for the Pd-Ni-Cu-P alloy
a β = 0.75 was reported [41]. In NiNb and NiNbSn alloys β

values of up to 0.9 were found [42]. Therefore the stretching
in time for gallium is similar to other metals and alloys.

In Fig. 4 the resulting relaxation times τ are plotted on a
logarithmic scale against the inverse temperature. Through the
high temperature points a straight line was fitted to emphasize
the changes in the dynamics in this Arrhenius-type plot.
Around 340 K the relaxation times deviate to slower times
compared to the expected values from the high-temperature
extrapolation. The deviation to slower dynamics indicates that
a further slow process appears around this temperature. This
change in relaxation times accompanies the changes in the
lineshape, evidenced through the lineshape parameter β. We
conclude from these results and from the previous observa-
tions [28] on the amplitude S(Q0, ω = 0) and the generalized
longitudinal viscosity ηl (Q0) that in the temperature range of
1.2–1.5 Tmelting the collective dynamics of liquid gallium is
altering.

Having demonstrated that the structural relaxation dynam-
ics on a next-neighbor distance changes, we now want to
investigate this additional slowing down of the relaxation
dynamics in more detail. Mode coupling theory (MCT) is the
natural framework to treat such a slow dynamics phenomenon.
The Mori-Zwanzig memory function formalism leaves open
the definition of the memory function, which is implicitly
defined through the fluctuating forces of the surrounding
particles. One approach is to use one or more exponential
decaying memory functions with relaxations times as param-
eters. The parameterized memory function with more than
one exponential decay function has been applied before, see,
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for example, Ref. [39]. However, within MCT the memory
function can be related directly to the dynamic structure factor
in a self-consistent way. With the assumption that the memory
function can be split into a sum of a fast part and a slower
contribution the slower part was described by coupling to
density fluctuations. Balucani and Vallauri applied MCT to
describe the long time decay of F(Q, t) through an exponential
decay [34]. Within some approximations they obtained the
following relaxation rate 
(Q0), applicable for the long-time
part of the relaxation function [34]:


 = γ (Q0) + 0.5(c + 1)γ ′ − 
1. (4)

Here, γ (Q0) is the viscoelastic relaxation rate, which is
modified by two rates γ ′ and 
1. The decay rate γ ′ is
given by γ ′ = γ (Q0)/(1 − α), with α = cγ (Q0)μ and μ =
(πm/kBT )1/2/2Q0. The parameter c = A2Q0S(Q0)/8π2n is
related to the particle density n and the wave vector Q0 =
2.5 Å−1, where S(Q) peaks. A is the area under the main
peak of S(Q) − 1. The second modifying decay rate 
1 is
related to the same parameters in the following way: 
1 =
1
2 {(2γ + (c − 1)γ ′)2 + 4cγ ′2}1/2.

This solution 
 is valid for long times and neglects the
short time evolution, where long times has to be understood
as times beyond the decay of the fast visco-elastic relaxation,
which is for the case of gallium after about 3 ps. The particle
density n can be calculated from the published mass density
data [43]. The area A under the main peak of S(Q) − 1 =
0.52 Å−1 was obtained through integration of the published
323 K S(Q) data [44]. For the hard sphere parameter we used
σ = 2.70 Å. The first peak in the pair correlation function g(r)
occurs at 2.8 Å [45]. However, such a hard sphere diameter
corresponds to a packing fraction of ϕ = π n σ 3/6 = 0.6,
which is beyond the value when a hard sphere solid melts
ϕ = 0.545 [46]. Hence, this σ value can be regarded as an
upper limit in a hard sphere description of liquid gallium.
For a packing fraction of ϕ = 0.545 we obtain σ = 2.70 Å,
which we used as the effective hard sphere diameter of liquid
gallium. For the peak value of the structure factor maximum
S(Q0) = 2.3 from the published S(Q) data is used [44]. The
normalized second frequency moment �2

0 can then be derived.
For the calculation of the normalized fourth moment �2

L we
applied the approximation given by Hubbard and Beeby [47]:

�2
L(Q) = 3

kBT Q2

m
+ ω2

E (1 − 3
sinQσ

Qσ
− 6

cos(Qσ )

(Qσ )2

+ 6
sin(Qσ )

(Qσ )3
). (5)

The important input parameter is here the Einstein frequency
ωE . The Einstein frequency describes the average oscillation
frequency of a particle surrounded by its neighbors. One way
to derive ωE is to calculate the curvature of the potential.
However, a wide range of different potential forms exist (see,
for example, Refs. [18,48]), which creates a large degree of
ambiguity for an estimate of ωE . Therefore, we have chosen
a different route to derive an estimate for ωE . The Einstein
frequency is directly related to the density of states. For
a Debye solid one can show that ωE = 3

4 ωD, because the
Einstein frequency represents an average frequency of the
vibrational frequencies. From the calculated vibrational

FIG. 5. F(Q, t) is shown for long times in the relaxation process.
The line depicts a fit with an exponential decay function and the
dashed line is an exponential fit to the whole relaxation curve, which
underestimates the decay of the density fluctuations.

density of states for liquid gallium of an orbital free
ab initio based simulation [25] we estimate the Einstein
frequency as ωE = 16 ps−1. That value can be compared to
an estimate from the above mentioned recipe with the Debye
frequency ωD. The needed Debye frequency for liquid gallium
can be approximated by the maximum frequency of the
experimentally observed dispersion relation, which is about
27 ps−1 [23]. Then we arrive at an Einstein frequency of ωE ≈
21 ps−1. Therefore we took as an estimate for the averaged
Einstein frequency ωE = 18 ± 2 ps−1, where the error
indicates the uncertainty in the procedure for the estimate.

With all these parameters the slow relaxation rate 
 can
be calculated. For liquid gallium at 283 K we get for the
visco-elastic prediction γ (Q0) = 0.62 ± 0.04 ps−1 and the
MCT-calculation delivers a relaxation rate of 
 = 0.48 ±
0.045 ps−1.

In Fig. 5 we present F(Q, t) of gallium in the undercooled
state at 283 K for relaxation times longer than 3 ps. At these
times the amplitude has already substantially decayed and
we are observing values in the 10% range and smaller. The
dashed line is a fit to the whole time range between 0 and
20 ps with an exponential relaxation function. That is the
expected behavior from the visco-elastic model. The decay
rate from the fit delivers γ (Q0) = 0.647 ± 0.006 ps−1 and
agrees well with the calculated visco-elastic relaxation rate
γ (Q0) = 0.62 ± 0.04 ps−1. At long times this decay rate does
not properly describe the relaxation of the density fluctua-
tions. As a solid line included is a fit with an exponential
decay function for times between 3 and 12 ps, which describes
the data points quite well. The fit provides a decay rate of

 = 0.5 ± 0.045 ps−1 for the slow relaxation. The fit value
and the MCT calculated value agree quite well, taking into
account all the approximations.

This slow relaxation process was previously described as
the process leading to structural freezing [34]. Our analysis
demonstrates that the stretched exponential decay dies away
at a temperature around 370 K. Hence, we suggest that this
slow relaxation process, eventually leading to solidification,
sets in around this temperature upon cooling. This additional

014207-4



SLOW STRUCTURAL RELAXATION PROCESS … PHYSICAL REVIEW B 101, 014207 (2020)

collective motion might be at the origin for the observed
changes in the dynamics towards a more viscous behavior of
the liquid. The increase of the generalized longitudinal vis-
cosity and the changing slope of the amplitude S(Q, ω = 0)
might be enabled by this slow structural relaxation process.
The amplitude is a measure for the decay of density fluc-
tuations on a next-neighbor distance and the changing slope
indicates a more viscous relaxation behavior. We conclude
that the collective dynamics in liquid gallium changes at about
1.2–1.5 Tm from a high temperature more fluid liquid to a
more viscous liquid. The range of temperatures is reasoned
by the specific quantity under consideration. Amplitude, gen-
eralized viscosity, or structural relaxation times are all in
different ways more or less directly related to the underlying
collective particle movements and hence will evidence the
transformation in dynamics in a range of temperatures.

A MD simulation with an embedded atom potential on
liquid gallium indicated a change in the dynamics of the
self-diffusion coefficient in a similar temperature range [49].
Therefore, in liquid gallium the self-dynamics might also mir-
ror the changes in the collective dynamics. Also the eutectic
GaIn alloy demonstrated a crossover of structural and dy-
namic parameters in a temperature range between 400 K and
550 K [50]. Three monatomic liquid metals, rubidium, lead,
and aluminium, showed a very similar evolution of the dy-
namics with temperature [8–10]. The amplitude S(Q0, ω = 0)
and the generalized longitudinal viscosity ηl (Q0) evidenced a
crossover in dynamics in a temperature range of 1.3–1.5 Tm.
MD simulations on liquid rubidium confirmed the changes
for the generalized viscosity [51]. Furthermore, a transition
from a stretched exponential structural relaxation function
to an exponential decay was observed in liquid rubidium
[12,13] and liquid lead [9]. The collective inelastic dynamics
also provided evidence for a change in dynamics around this
temperature range [52]. All these measurements are related to
the collective movements of particles and all together draw a
picture that the collective dynamics of liquid metals transform
to a slower more viscous behavior in a temperature range of
about 1.3–1.5 Tm upon cooling.

The violation of the Stokes-Einstein relation in the exper-
imental study on a ZrNi-alloy [7] was related to a change

in correlated particle movements [53]. MD simulations on a
CuZr melt reported a variation in atomic motions far above
the melting temperature related to changes in dynamic het-
erogeneity [3]. A further MD-simulation study on CuZr melts
concluded that stringlike collective motions might be at the
origin for the observed dynamic heterogeneity and hence for
the transformation in dynamics [54]. All these observations
emphasize changes in the collective dynamics of the alloys
deep in the liquid state. That assessment agrees with the ob-
served transformations in the structural relaxation dynamics
for liquid gallium and other monatomic metals. A thermal
crossover in the dynamics of dense metallic liquids within the
equilibrium liquid state might be a universal behavior.

IV. CONCLUSIONS

In summary, an inelastic neutron scattering experiment on
liquid and slightly undercooled gallium was performed. The
relaxation dynamics at the structure factor maximum was
studied up to twice the melting point in small temperature
steps. The derived intermediate scattering function F(Q, t)
shows a stretched relaxation behavior near the melting point.
With increasing temperature the lineshape transforms to an
exponential decay above 370 K. The stretching in dynamics
can be understood that an additional slow structural relax-
ation process sets in. That slow process can be described
quantitatively through mode coupling theory and might be
the precursor to structural freezing. The temperature range
when this transition occurs coincides with a decrease of the
generalized longitudinal viscosity. Both facts are evidences
that within this temperature range the dense viscous fluid
becomes more liquidlike on a microscopic length scale upon
heating. The similarity of the liquid gallium behavior with
other liquid metals suggests that this transition from a cold-
liquid to a hot-liquid response might be a universal feature in
liquid metals and possibly also for alloys.
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