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Anderson transition in three-dimensional systems with non-Hermitian disorder
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We study the Anderson transition for three-dimensional (3D) N × N × N tightly bound cubic lattices where
both real and imaginary parts of on-site energies are independent random variables distributed uniformly between
−W/2 and W/2. Such a non-Hermitian analog of the Anderson model is used to describe random-laser medium
with local loss and amplification. We employ eigenvalue statistics to search for the Anderson transition. For
25% smallest-modulus complex eigenvalues we find the average ratio r of distances to the first and the second
nearest neighbor as a function of W . For a given N the function r(W ) crosses from 0.72 to 2/3 with a growing
W demonstrating a transition from delocalized to localized states. When plotted at different N all r(W ) cross at
Wc = 6.0 ± 0.1 (in units of nearest-neighbor overlap integral) clearly demonstrating the 3D Anderson transition.
We find that in the non-Hermitian 2D Anderson model, the transition is replaced by a crossover.
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I. INTRODUCTION

Anderson localization has been the central concept of
solid-state physics for more than 60 years [1–3]. It determines
electron conductivity of doped crystalline and amorphous
semiconductors and many other disordered systems and is
observed in experiments [4,5].

In recent years the problem of localization attracted re-
newed interest as research moved to formerly unexplored
areas of non-Hermitian systems. Random lasers [6–9] with
random dissipation and amplification regions are such pro-
totypical non-Hermitian systems. The other parts of non-
Hermitian disorder physics are related to Hatano-Nelson ma-
trices [10], their biological applications [11,12], or to spin
chains [13–15]. All these works focus on one-dimensional
systems.

A simple and elegant extension of the two-dimensional
(2D) Anderson localization problem was proposed in a recent
paper by Tzortzakakis, Makris, and Economou (TME) [16].
They studied 50 × 50 tight-binding square lattices with real
overlap energy Ii j = I , and random complex on-site energies
Ei whose real and imaginary parts are independent random
variables distributed uniformly between −W/2 and W/2. The
Hamiltonian reads

H =
∑

i

Eia
†
i ai −

∑

i, j

(Ii ja
†
i a j + H.c.), (1)

where i, j in the second term are nearest neighbors, and the
hard-wall boundary is employed (no bonds extended out the
boundary). Below we call this non-Hermitian Hamiltonian
the TME model. By calculating the participation ratio of
eigenfunctions of such a non-Hermitian Hamiltonian, TME
noticed that they become progressively more localized when
W (in units of I) grows from 1 to 5. Simultaneously the distri-
bution function P(s) of nearest-neighbor distances s between
eigenvalues in the complex plane widens, which shows that
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the repulsion of eigenvalues weakens due to the progressive
localization of eigenfunctions. This behavior is similar to what
happens in the Anderson model [17]. TME, however, did not
raise a question of whether there is an Anderson transition or
a crossover in the limit of a large system.

In this paper, we focus on the question of the existence
of the Anderson transition in the TME model for 3D cubic
and 2D square lattices. We show that in the TME model, the
Anderson transition exists in three dimensions, but is missing
in two dimensions, as in the conventional Anderson model
[2,17].

II. FINITE SIZE SCALING AND ANDERSON TRANSITION

To identify the Anderson transition in three dimensions we
follow Ref. [17] and use statistics of complex eigenvalues
obtained by diagonalization of the TME model on many
realizations of N × N × N cubic lattices. The diagonalization
is done using LAPACK [18]. We do this for N = 8, 10, 12,
16, and 20 at W = 4, 5, 5.5, 6, 6.5, 7, and 8. For analysis
of the spectrum we need a parameter uniquely characterizing
the statistics of eigenvalues at a given W and N . For the
Anderson model originally this parameter was an area of
the large s tail of the nearest-neighbor distribution function
P(s) [17], but later Ref. [19] suggested a better measure,
r = 〈min(si−1/si, si/si−1)〉, where si is the spacing between
ith and (i + 1)st energy levels, and 〈. . .〉 stands for the average
over the studied part of the spectrum and over realizations. For
the TME model, where eigenvalues are points in the complex
plane (see, for example, Ref. [16]) we have chosen the pa-
rameter r(W ) = 〈s1/s2〉, where s1 and s2 are distances from
a given eigenvalue to its first- and second-nearest eigenvalues
[20]. Our parameter r(W ) is the modulus of the more infor-
mative complex parameter introduced in Ref. [13]. Similar
to Ref. [16] we found that eigenvalues near the rectangular
border of the complex spectrum correspond to more localized
states. Therefore, to deal with eigenvalues with similar local-
ization properties we calculated r of 25% smallest-modulus
eigenvalues selected by a rectangular window whose sides are
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FIG. 1. The ratio r(W ) in the 3D cubic lattice at different N .
The crossing in the middle indicates the Anderson transition at
Wc = 6.0 ± 0.1.

roughly twice smaller than the whole spectrum. The number
of random realizations varied with N in such a way that the
number of studied eigenvalues at each combination of W and
N was kept around 2 × 105.

Figure 1 shows our results for r(W ) plotted as a func-
tion of W at different N . We see that all curves r(W ) with
growing W cross over from the “Wigner surmise value”
0.72 to the Poisson value 2/3 calculated for random points
in a plane in Ref. [13]. Remarkably, all curves r(W ) cross
each other near Wc = 6. This means that in the limit of
large N there is an Anderson transition at Wc = 6.0 ± 0.1
for TME model. This transition point is much smaller than
Wc = 16 of the conventional Anderson model [21]. Appar-
ently, non-Hermitian disorder is more effective for the lo-
calization of wave functions. We believe this effectiveness
results from larger absolute values of locator expansion en-
ergy denominators [3], particularly for small-modulus energy
eigenvalues.

As we mentioned above, our statistical analysis used a win-
dow located around the origin in the complex plane containing
1/4 of all eigenvalues. We checked at N = 12 that, when we
shrink this window to the fraction 1/16 (and compensate for
the loss of statistical samples by increasing of the number of
realizations correspondingly), the r(W ) curve near W = Wc

shifts to larger W by 0.15. Further window shrinking to 1/64
does not change r(W ). Thus, our estimate for Wc in the limit
of the shrinking window is 6.15 ± 0.15.

From Fig. 1, we also analyze the critical scaling behavior
of r(W, N ) near Wc as a function of (W − Wc)N1/ν , and find
the critical exponent ν = 1.5 ± 0.2 similar to Ref. [17].

To emphasize the nontrivial nature of the 3D Anderson
transition seen in Fig. 1 we present in Fig. 2 our results of
the similar study for 2D square lattices. We see that while all
curves r(W ) still cross over from 0.72 to 0.67, they obviously
avoid intersections with each other. This means that in the
2D TME model there is no Anderson transition (like in
the conventional 2D Anderson model). Qualitatively similar
behavior of the eigenvalue statistics with increasing disorder
was studied in 1D non-Hermitian systems [12].
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FIG. 2. The ratio r(W ) in the 2D square lattice at different
N . These curves do not cross, showing that there is no Anderson
transition.

III. TRANSITION POINT LEVEL STATISTICS

Now we return to the 3D TME model. Figure 3 presents the
probability density P(s) of spacing s to the nearest-neighbor
eigenvalue in the complex energy plane for two different
N and three values of W . The black curves correspond to
critical point W = 6 of the found above TME model Anderson
transition and two other values of W are chosen to be far
from the transition on both sides of it. To eliminate the role
of changing density of states (unfolding the spectrum) we
evaluate the level spacing s in units of local average level
spacing 〈s〉 calculated in a 100 × 100 mesh.

The most important result seen in Fig. 3 is that black curves
for substantially different N = 8 and N = 16 are identical.
This confirms that at W = 6 the size effect is absent and
that W = 6 is indeed the Anderson transition point. This also
confirms the validity of our method using a single parameter
r(W ) to characterize P(s). Thus, the black line P(s) represents
the new universal transition point statistics in a complex plane
similar to the one discovered earlier for the Anderson model
for energy-level spacing [17]. The red curves are also very
close to each other and to the asymptotic at large N 2D
Poisson distribution P(s) = (πs/2)e−(π/4)s2

[22]. The blue

FIG. 3. The probability density P(s) as a function of (unfolded)
spacing between complex eigenvalues s. Dashed and continuous
curves correspond to 3D TME model with N = 8 and 16 respec-
tively. Disorder width W is shown by numbers next to each color
pair of curves.
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curves are very close to each other and to the asymptotic
at large N “Wigner-Dyson” distribution for the TME model,
which belongs to the universality class AI† with transposition
symmetry H = HT [15]. (Both asymptotics are not shown
here.) This happens because we intentionally have chosen W
for red and blue curves to be far from the transition. Closer to
transition size effects are more obvious as seen from Fig. 1.
Thus, Fig. 3 practically shows all three universal statistics of
the 3D TME model.

We also explored another non-Hermitian model different
from TME trying to see how general the 3D Anderson tran-
sition is. For this model, the diagonal matrix elements are
the same as in the TME model, while the overlap energy is
Ii j = −I ji, and Ii j is a random variable with 50% probability

to be ±1. We find the 3D Anderson transition at Wc =
6.15 ± 0.15 with critical exponent ν = 1.5 ± 0.2, the same as
for TME.
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