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Non-Hermitian disorder in two-dimensional optical lattices
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In this paper, we study the properties of two-dimensional lattices in the presence of non-Hermitian disorder.
In the context of coupled mode theory, we consider random gain-loss distributions on every waveguide channel
(on site disorder). Our work provides a systematic study of the interplay between disorder and non-Hermiticity.
In particular, we study the eigenspectrum in the complex frequency plane and we examine the localization
properties of the eigenstates, either by the participation ratio or the level spacing, defined in the complex plane.
A modified level distribution function vs disorder seems to fit our computational results.
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I. INTRODUCTION

The study of crystalline solids is based on Bloch’s theorem
[1,2] which assumes a perfect periodicity in the positions of
the atoms and in the density of electrons. However, in actual
crystalline solids there are always deviations from periodicity,
such as point defects, linear faults (e.g., dislocations), 2D
defects (e.g., interfaces of crystallites); if the concentration
of these deviations becomes high enough Bloch’s theorem
breaks down and a new paradigm emerges featuring novel
properties such as the possibility of localized eigenstates [3,4].
The concept of this so-called Anderson localization, which
claims that an electronic wave can be trapped in a finite
region of a disordered lattice, has been at the center of the
attention of the solid state physics community for more than
sixty years [5–10]. The localization phenomenon appears due
to the interference among multiple scattering processes of
the electronic waves by random variations in the potential
of the crystal lattice. As a result of this interference, the
previously extended eigenmodes of the system, the Bloch
waves, may now become localized decaying exponentially for
large distances. The phenomenon of Anderson localization
has also been studied experimentally, indirectly, by measure-
ments of macroscopic quantities such as the conductance
[11–14] and the transmission [15–18]. In solid state systems
though, the existence of many body interactions and temper-
ature dependent effects, such as inelastic scattering, makes
the interpretation of these experiments rather uncertain. In
order to overcome this difficulty, the topic of localization
was extended to the regime of optics, acoustics, and elastics
where its consequences were not clouded by other effects
producing similar observations [19–26]. Such an extension
is naturally valid, since the concept of localization is based
on nothing else than wave scattering and interference [27,28].
The only difficulty with classical waves, such as EM ones,
is that they usually exhibit very weak scattering not enough
to produce localization. Several ideas were proposed to cir-
cumvent this difficulty, some of which [29,30] led through
different paths to photonic crystals [31–36] and phononic
crystals [37–43].

In recent years the problem of localization attracted re-
newed interest as research moved to two formerly unexplored
areas: (a) Many body localization, meaning Anderson local-
ization in the presence of many body interactions [44–47]
and (b) non-Hermitian systems, such as those obeying parity
and time-reversal (PT) symmetry [48–52]. This recently in-
troduced concept of constructing parity-time (PT) symmetric
systems is more appropriate for photonic rather than solid
state systems since the former can easily incorporate and
realize complex potentials that require physical gain and loss.
Thus PT symmetry in optics [53–58] has been studied exten-
sively over the past few years, leading to the development
of the new field of non-Hermitian photonics [59–75]. The
possibility for the potential (in our case index of refraction)
to possess imaginary part makes the fundamental topic of
localization even more complicated and at the same time
gives rise to a whole lot of unanswered questions about the
properties of non-Hermitian disordered systems.

In particular, non-Hermitian random matrices are a topic of
high research interest in the context of mathematical physics
[76] and disordered photonics [77,78]. More specifically, ran-
dom lasers [79,80] where the decay of the cavity modes and
the gain material leads naturally to dissipation and amplifica-
tion, respectively, are a prototypical system in the framework
of disordered complex media, where non-Hermiticity plays a
crucial role.

Apart from random lasers, most works regarding non-
Hermitian disorder physics are devoted to Hatano-Nelson ma-
trices [81], PT-symmetric random lattices [82], and dissipative
arrays [83]; these works focus mostly on one-dimensional
systems with correlated disorder or special symmetries. In this
work, we will try to answer some of the main questions that
stem from the interplay of disorder and non-Hermiticity in
two-spatial dimensions, while comparing our results with the
corresponding, well known characteristics of the Hermitian
case. In particular, we examine physically realistic Anderson
type of non-Hermitian waveguide lattices with the most gen-
eral uncorrelated disorder that includes gain and/or loss.

In contrast to the Hatano-Nelson Hamiltonian [84], where
the non-Hermiticity arises from the off-diagonal elements,

2469-9950/2020/101(1)/014202(8) 014202-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.014202&domain=pdf&date_stamp=2020-01-06
https://doi.org/10.1103/PhysRevB.101.014202


TZORTZAKAKIS, MAKRIS, AND ECONOMOU PHYSICAL REVIEW B 101, 014202 (2020)

due to the applied imaginary vector potential, in our case
the non-Hermiticity is a consequence of the complex on-site
‘energies.’ Therefore, the corresponding physical systems, as
well as the matrices describing them, are quite different and
exhibit different behavior.

Our paper is organized as follows: In the next section,
Sec. II, we introduce our model possessing diagonal disorder
in the real or imaginary or both parts of the potential term n;
we present also qualitative data concerning the distribution of
eigenfrequencies and the extent of their corresponding eigen-
functions, based on their participation ratio. In Sec. III, we
give more quantitative numerical results regarding the level
spacing/density of states and comment on the comparisons
among the three types of disorder. Finally in Sec. IV, we
present computational results and comments on the extent of
the eigenfunctions in two different ways.

II. NON-HERMITIAN DISORDER IN COUPLED SYSTEMS

We begin our analysis by considering optical wave propa-
gation in a disordered non-Hermitian model, in the context of
coupled mode theory [56]. We consider a 2D square lattice of
N × N waveguides in the xy plane, with a field propagation
constant per waveguide {np,q}, (p, q = 1, ..., N ), which here
plays the role of the optical potential. The light propagation
along the z axis is described by the following normalized
paraxial equation of diffraction:

i
∂ψp,q

∂z
+ V (ψp+1,q + ψp−1,q + ψp,q+1 + ψp,q−1)

+ np,qψp,q = 0 (1)

where p, q = 1, 2, ..., N , with N × N being the total number
of the waveguides, ψp,q the modal amplitudes, V the cou-
pling coefficient between two neighboring channels, and np,q

the complex potential strength (field propagation constant)
at each waveguide channel. Here we have considered only
nearest neighbors interactions and we assume (without loss
of generality) that V = 1. For guided non-Hermitian struc-
tures, np,q is complex and this physically means that each
waveguide is characterized by either gain (Im{np,q} < 0) or
loss (Im{np,q} > 0) and by its real part Re{np,q}.

In order to find the eigenmodes of the system, we substitute
ψp,q = φp,qexp(iω j z) in the evolution equation [Eq. (1)] and
get the eigenvalue problem:

ω jφp,q = (φp+1,q + φp−1,q + φp,q+1 + φp,q−1) + np,qφp,q

(2)
where ω j is the complex eigenvalue of the jth eigenmode,
with j = 1, 2, ..., N2. In a more compact form the above
eigenvalue problem can be expressed in terms of a symmetric
tridiagonal matrix D with zeros in the main diagonal and the
identity matrix I (both matrices have dimension N × N) by
the following relation:

Mi, j = zi · δi, j + (D ⊗ I + I ⊗ D)i, j . (3)

In the above, {zi}N2

i=1 is a set of random, complex in general,
numbers, located along the main diagonal of M. Also, ⊗
denotes the Kronecker tensor product between two matrices
and the matrix M has dimension N2 × N2.

Since M is a non-Hermitian matrix, it is fully described by
a set of biorthogonal right |φR

j 〉 and left |φL
j 〉 eigenmodes. In

other words, we have the following right eigenvalue problem:

M
∣∣φR

j

〉 = ω j

∣∣φR
j

〉
(4)

and the corresponding left eigenvalue problem of the adjoint
matrix:

M†
∣∣φL

j

〉 = ω∗
j

∣∣φL
j

〉
. (5)

The associated biorthogonality condition is 〈φL
j |φR

i 〉 = δi, j . In
general the right and left eigenvectors are different and, since
the dynamics of the problem include both the right and the left
set of eigenfunctions, one needs to study both of them (see
for example [85–87]). In our case though, the left and right
eigenfunctions are complex conjugate pairs since M† = M∗.
This is a direct outcome of the corresponding one-dimensional
matrices’ I, D Hermiticity.

So far the discussion was devoted to the general framework
of the spatial coupled mode theory that describes the evolu-
tion of paraxial waves in two-dimensional optical waveguide
lattices. In this paper though, we are interested to investigate
the main features of disordered non-Hermitian lattices, and
therefore we consider the potential strength np,q to be a ran-
dom variable (on-site disorder). Let’s start by considering the
modal problem. In particular, we are interested in finding how
these eigenmodes and their corresponding eigenvalues change
when the system becomes disordered. More specifically, we
will examine phenomena related to Anderson localization in
three different cases of disorder: (a) Real disorder, where the
potential strength is real: n = nR, and possesses a random
distribution nR ∈ [−W

2 , W
2 ], (b) imaginary disorder, where the

potential strength is imaginary with a distribution of the
form: n = inI , nI ∈ [−W

2 , W
2 ], and finally, (c) both real and

imaginary disorder, where the potential strength is complex,
n = nR + inI with nR ∈ [−W

2 , W
2 ] and nI ∈ [−W

2 , W
2 ]. In the

above expressions, W is defined as the disorder strength; a
uniform distribution within the range [−W

2 , W
2 ] in all the cases

is assumed.
A value indicative to the localization of the eigenmodes is

the participation ratio of each mode (PRj), which is given by
the relation:

PRj =
∣∣∑N2

i=1 |φ j (i)|2
∣∣2

∑N2

i=1 |φ j (i)|4
(6)

where we have used the right eigenvectors and the sum
includes all N2 sites of the system. Generally speaking, the
PR measures the spread of a state |φ〉 over a basis {|i〉}N2

i=1.
For weak disorder strength, PR takes values comparable to the
system’s area, as all lattice sites participate (almost) equally to
the eigenfunction. For higher values of W , the PR decreases,
which means that the eigenmodes tend to become more and
more localized. At this point we have to emphasize that the
participation ratios based on the left eigenvectors are exactly
the same with the above, since (|φL

j 〉)∗ = |φR
j 〉, according to

our previous discussion. We also define the extent length of
each mode, which is an easily measured and convenient in
some cases quantity, by the relation:

λ j =
√

PRj

2
. (7)
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FIG. 1. Eigenvalue spectra of a 50 × 50 waveguide lattice (2500
sites) in the complex frequency plane, for a particular realization
of the random system and for various disorder strengths. In the left
column, disorder is applied only to the imaginary part of the potential
strength, while Re(np,q ) = 0; in the right column, disorder of the
same W is applied in both the real and the imaginary part of np,q.
Note that the color of each eigenvalue is related to the participation
ratio (spatial extension) of the corresponding eigenstate, as seen in
the color bar of the figures.

To begin with, we will illustrate the eigenvalue spectrum of
Eq. (1) in the complex eigenfrequency plane and superimpose
the values of PR (of the corresponding eigenmodes) by denot-
ing them with different colors. We do not present any results
for the case of real n, since they are well known: For weak
disorder the density of states (DOS) follows more or less the
unperturbed DOS (see Ref. [14], p. 92) with the rounding of
the discontinuities at the band edges and the logarithmic sin-
gularity at the band center; states remain essentially extended
except at the extreme tails. For strong disorder, the DOS tends
to follow the distribution of the potential strength and all states
become strongly localized. In Fig. 1, we show the calculated
eigenvalue spectra in the complex frequency plane for various
disorder strengths and relate the color of each eigenvalue
with the logarithm of the corresponding participation ratio, as
seen in the color bar of the graphs. In this figure we restrict
ourselves to the cases of imaginary disorder [case (b), left
column] and the case of disorder in both the real and the

imaginary part of the potential [case (c), right column], and
for three different disorder strengths.

We can observe that, in both cases, the eigenvalue spectrum
forms an approximate ellipse on the complex plane, with a
different ellipticity in each case. Note that the spectrum of
a system with random diagonal and off-diagonal elements
forms a circle on the complex plane. In our case, due to the
lack of randomness in the couplings, the obtained spectrum
is elliptical [88–92]. As expected, the ellipse is widened for
increasing disorder.

Most interestingly, we can also observe that, in general,
the modes around the center of the elliptical pattern are the
most extended ones, while the ones near it’s edges are the
most localized; this seems to be the non-Hermitian extension
of the corresponding well known result from the case of real
disorder, in which the eigenstates tend to become gradually
localized as we move towards the edges of the bands.

III. LEVEL SPACING AND DENSITY OF STATES (DOS)

Figure 1 provides a general semiqualitative picture of the
whole spectrum, as well as information about how extended
(or localized) the corresponding eigenstates are. However,
quantitative information about how dense the spectrum is
in each subregion of the complex frequency plane cannot
be easily inferred from these plots. To remedy this missing
information we consider first the density of states (DOS) in the
complex frequency plane (averaged over realizations of the
random system). To define the DOS we count the number of
states δN with eigenfrequencies located within an elementary
square of area δA = δωR × δωI and centered at the point
ω = ωR + iωI of the complex frequency plane; then we have
by definition:

DOS(ω) ≡ δN

δA
. (8)

Usually, we implicitly assume that the DOS is averaged
over many realizations of the random system. The DOS, as
expected, depends on the disorder strength. For small values
of disorder, all the eigenvalues are concentrated near the real
axis, while their density is higher in the center and decays
as we move towards the edges of the spectrum. On the
other hand, for the case of strong disorder, the eigenvalues
become almost uniformly distributed in the whole spectrum
and tend to follow the same distribution as the diagonal matrix
elements, in the limit W � V , where V is the coupling coeffi-
cient (the DOS at the edges drops to zero not discontinuously
in contrast to the matrix elements). Most interesting is the
case of an intermediate value of disorder, which is shown
in Fig. 2, for W = 3. In this plot we can observe that the
DOS shows four weak peaks located on the real and the
imaginary axis and near the edges of the spectrum. The peaks
are found symmetrically over the center of the complex plane.
In addition, the DOS appears to decay as we further move
away from these two axes.

Regarding the level spacing statistics, there are several
ways to define the level spacing, S, in the complex frequency
plane. One way, termed “1” and for a particular realization of
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FIG. 2. Density of states per unit area in the complex plane
Real(ω)-Imag(ω), for the case of disorder in both the real and the
imaginary part of the diagonal matrix elements and disorder strength
W = 3. We have averaged over 1000 realizations of the disorder.

the disorder, is the following:

S1(ω) ≡
√

δA

δN
(9)

which is directly related with the DOS: S = (DOS)−
1
2 . (This

direct relation between DOS and S acquires an extra nu-
merical coefficient if both quantities are averaged over many
realizations of the random system).

Another way, termed “2,” to define the level spacing, S,
which is one of the most commonly used [47,90,93], at each
eigenfrequency ω j is the minimum distance in the complex
frequency plane between two neighboring eigenfrequencies
averaged over many realizations of the disorder:

S2(ω)|ω=ω j ≡ |ω j − ω j−1|. (10)

In the above expression, ω j−1 is the eigenvalue which is
nearest to the eigenvalue ω j , on the real axis (Hermitian case)
or on the complex plane (non-Hermitian case).

Definition 1 gives the nearest level spacing in the complex
frequency plane averaged essentially over all directions in
this plane; definition 2 gives the nearest level spacing along
only one direction, the direction at which each eigenfrequency
gives the minimum nearest level spacing. It is obvious that
the second definition will result systematically in a smaller
level spacing, as shown in Fig. 3. In Fig. 3(a) we plot the level
spacing S, according to both definitions 1 and 2, for reasons of
comparison, and for W = 3 in both the real and the imaginary
part of the diagonal matrix elements, vs the real frequency
axis (i.e., vs ωR and for ωI = 0), while in Fig. 3(b) along the
imaginary frequency axis (i.e., vs ωI and for ωR = 0).

We have to note that we deal with non-Hermitian matrices
with complex spectra and as a result there is no unique
definition of the level spacing, since the second or the third
nearest neighbor eigenfrequency can be close to the first in
the complex plane. The definition based on Eq. (9) is also
a measure of the level spacing by being the square root of
the area per eigenvalue in the complex plane (essentially
averaging over the level spacings within this area); in contrast,
the definition based on Eq. (10) picks the smaller among
these level spacings, and as such is somehow smaller than but
similar to that of Eq. (9). Thus the two different measures of
level spacing lead to similar, but not identical, conclusions.

FIG. 3. Level spacing S plotted along the real axis (a) and the
imaginary axis (b) of the complex frequency plane Real(ω)-Imag(ω)
and for the case of disorder in both the real and the imaginary part
of the diagonal matrix elements and disorder strength W = 3. The
blue dotted line represents results of calculations using the definition
9 of level spacing (S1), while the black line represents results using
definition 10 (S2). An average over 1000 realization of disorder is
performed in each case.

IV. SPATIAL EXTENT OF THE EIGENFUNCTIONS

In Fig. 4 we present our results concerning the linear
extent, λ, averaged over all the eigenmodes of the system,
as a function of the disorder strength: λ = 〈λ j〉. We consider
the three different cases: (1) disorder only in the real part
of the diagonal matrix elements; (2) same disorder only in
the imaginary, and (3) same disorder in both the real and the
imaginary parts. The comparison of the three cases reveals a
very interesting feature: While case (1), real disorder, exhibits
a monotonic drop of the extent of the eigenfunctions with
increasing disorder, as expected, cases (2) and (3), complex

FIG. 4. Mean extent length λ, averaged over the whole spectrum,
as a function of the disorder strength W, for a lattice of 50 × 50
waveguides; uncorrelated disorder for all the three cases: Disorder
only in the imaginary part of the diagonal matrix elements (blue
dotted line), disorder only in the real part (red dash-dot line), and
disorder of the same amplitude in both the real and the imaginary
part (black dashed line).
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disorder, exhibit a surprising increase of the extent of the
eigenfunctions with increasing disorder (for small disorder)
before they eventually drop even faster than case (1). We
attribute this anomaly for weak disorder to the fact that
an imaginary part in the Hamiltonian breaks time reversal
symmetry (TRS); it is well known that in Hermitian systems
the breaking of TRS (usually by the presence of a static mag-
netic field) favors delocalization (see Ref. [94] pp. 510–513).
In the present case imaginary disorder acts in a dual way: Its
implicit TRS breaking favors more extended states, while its
disorder nature favors more localized states; the first aspect
seems to dominate for only weak disorder, which is not
actually surprising: for weak imaginary disorder the break-
ing of TRS is enough to randomize the phases of closed
paths transversed in opposite directions; beyond this point the
breaking of TRS has nothing to offer while the further increase
of W contributes only to localization.

The distribution of the level spacing averaged over the
whole spectrum provides in the Hermitian case valid informa-
tion [93] about the localization or not of the eigenfunctions.
This distribution of nearest-neighbor level spacing often takes
one of several universal forms, depending only on the disorder
strength and not on the details of the medium [95,96]. More
specifically, when it comes to wave propagation in disordered
media (either classical or quantum), this distribution is related
with the spatial extent of the system’s modes.

In the Hermitian case [96,97], for weak disorder, the nor-
malized eigenvalue spacings obey the Wigner-Dyson distribu-
tion: PW D(S) = aS · exp(−bS2). This is a direct consequence
of the extended character of the modes which implies their
strong overlap and, consequently, the so-called level repulsion
which does not allow two eigenvalues to almost coincide:
PW D(S = 0) = 0.

On the other hand, in the regime of strong disorder, the
eigenvalue spacings obey the Poisson distribution: PP(S) =
exp(−S). Here, due to the strong localization of the eigen-
modes, there is very little spatial overlap and, as a result,
there is no level repulsion and, hence, their eigenvalues can
be arbitrarily close to each other.

When disorder is applied on the imaginary part of the
potential though, the eigenvalue spacings [according to defini-
tion 2, Eq. (10)] appear to obey different probability distribu-
tions than the ones referred above. In Fig. 5 we show the level
spacing distribution for the case of both real and imaginary
disorder and for three different values of disorder strength
(W = 1, W = 3, and W = 5). The results for only imaginary
disorder do not differ significantly from the ones shown in
the figure. We can observe that, for the above cases, the level
spacing distribution can be described from a sub-Wigner (SW )
probability distribution curve fitting:

PSW (S) = aSb · exp(−cS2), b � 1. (11)

For W = 1, the exponent is b 	 3 and as we increase the
strength of disorder this exponent is gradually lowered (for
W = 3, b 	 1.5). For W = 5, b = 1 and the level spacing
distribution obeys the Wigner-Dyson probability distribution
PW D(S). Thus, we find that the level repulsion undergoes a
smooth transition from S3 to S1 with increasing disorder; a
similar behavior to the one found in random matrix theory
papers, such as Ref. [98].

FIG. 5. Probability density P of normalized level spacings S, as
defined by Eq. (10), averaging over the whole spectrum. In this plot,
disorder is applied in both the real and the imaginary part of the
potential. The results for three values of disorder strength are shown:
W = 1 (black dotted line), W = 3 (blue dashed line), and W = 5 (red
dash-dot line). An ensemble of 50 realizations of disorder is used in
each case.

In the strong disorder regime (W = 5) in Fig. 5, we find
that P(S) = PW D(S). Since our level statistics take place in the
2-D complex plane, this distribution expresses the Poissonian
statistics of uncorrelated eigenvalues located in two spatial
dimensions [47,99,100].

On the other hand, in the case of weak disorder (W = 1),
the level spacing distribution is a sub-Wigner one which
exhibits cubic level repulsion [P(S) ∼ S3 as S → 0]. Since
this dependence is similar to the corresponding dependence
of the Ginibre distribution [93,101,102], one may conclude
that our result is nothing more than the Ginibre distribution.
As we show in Fig. 6, that is not true. In order to compare our

FIG. 6. Probability densities P of normalized level spacings S, as
defined in Eq. (10), averaged over the whole spectrum for disorder
strength W = 1 and for the same size. (a) P for a full complex matrix
with random elements (blue) compared with Ginibre (red) and sub-
Wigner (black). (b) P for our model (blue) compared with Ginibre
(red) and sub-Wigner (black). An ensemble of 50 realizations of
disorder is used in each case.
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distribution with the Ginibre we calculate the corresponding
distribution for a full complex matrix and compare with our
result of Fig. 5 (black dotted line). The conclusion of such
comparison, based on Fig. 6, is clear. The level spacing
statistics of our matrix is not properly described by the
Ginibre distribution, as our model’s matrix is a sparse (block
tridiagonal) matrix which possesses the additional symmetry:
M† = M∗. These two features make the level spacing statistics
different from the well known Ginibre distribution, which
coincides with the statistics of the full complex matrix and not
with the sub-Wigner [Fig. 6(a)]; in contrast our distribution
is clearly different from the Ginibre and coincides with the
sub-Wigner [Fig. 6(b)].

V. DISCUSSION

Before concluding, we would like to comment on a crucial
point: Is there an Anderson transition in a 2D non-Hermitian
system, or all states are localized even for very weak dis-
order as in the Hermitian case? As we pointed out in the
previous paragraphs, the presence of weak imaginary disorder,
by breaking the time reversal, reduces the probability of a
quantum particle to remain in the same region and hence it
favors delocalization. This tendency is further supported by
the level spacing exhibiting for weak disorder an S3 depen-
dence as S tends to zero; moreover, the increase of the extent
length shown in Fig. 4 for weak increasing imaginary disorder
provides further support to the tendency for delocalization in
the presence of weak imaginary disorder. At this point we
think that it is difficult to definitely conclude if there is an
Anderson transition in the non-Hermitian 2D case. Neverthe-
less, in a recent preprint based on our work [103], Huang
and Shklovskii reached the conclusion that the localization
properties in our model are qualitatively the same as in the
corresponding Hermitian model, namely that all states are

localized in 2D and that there is an Anderson transition in 3D;
this transition occurs at substantially lower critical disorder
than that of the Hermitian case (W = 6.15 vs W = 16.5).
The authors based their conclusion on the numerical behavior
of the ratio of the second to the first nearest neighbor level
spacing (see [104] for a detailed analysis of the method), both
defined as in Eq. (10).

VI. CONCLUSIONS

In conclusion, we have examined the localization phe-
nomenon of the eigenmodes of two-dimensional random
optical lattices, in the presence of non-Hermitian diagonal
disorder. We have found that the spectrum of such a system
forms an approximate ellipse on the complex plane, with the
eigenvalues located near the middle of the ellipse to corre-
spond to the less localized eigenfunctions. In addition, the
breaking of time reversal symmetry in the non-Hermitian case
favors delocalization for weak disorder, while, as disorder
is increased, the localization induced by the non-Hermitian
disorder appears to be even stronger than in the Hermitian
case. Finally, the level spacing distribution, averaging over the
whole spectrum, seems to obey a sub-Wigner probability dis-
tribution, when non-Hermitian disorder is applied. For greater
values of disorder, the corresponding distribution turns to
obey the Wigner-Dyson distribution, which in fact represents
the Poissonian statistics in the complex plane.
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