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Quadrupole arrangements and the ground state of solid hydrogen
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The electric quadrupole-quadrupole (Eqq) interaction is believed to play an important role in the broken
symmetry transition from phase I to II in solid hydrogen. To evaluate this, we study structures adopted by
purely classical quadrupoles using Markov chain Monte Carlo simulations on face centered cubic (fcc) and
hexagonal close packed (hcp) lattices. Both undergo first-order phase transitions from rotationally ordered to
disordered structures, as indicated by a discontinuity in both quadrupole interaction energy (Eqq) and its heat
capacity. Cooling fcc reliably induced a transition to the Pa3 structure, whereas cooling hcp gave inconsistent,
frustrated, and c/a-ratio-dependent broken symmetry states. Analyzing the lowest-energy hcp states using
simulated annealing, we found P63/m and Pca21 structures found previously as minimum-energy structures
in full electronic-structure calculations. The candidate structures for hydrogen phases III–V were not observed.
This demonstrates that Eqq is the dominant interaction determining the symmetry breaking in phase II. The
disorder transition occurs at significantly lower temperature in hcp than fcc, showing that the Eqq cannot be
responsible for hydrogen phase II being based on hcp.

DOI: 10.1103/PhysRevB.101.014103

I. INTRODUCTION

Hydrogen is the simplest element, yet even in its solid
molecular form it exhibits surprising and complicated behav-
ior. Solid phases occur via induced dipole-dipole (van der
Waals) and quadrupolar attractions. The first of these is phase
I, a molecular solid first created in the laboratory in 1899 by
James Dewar [1]. It is now known to be a quantum molecular
solid, where the hydrogen molecules themselves are free to
rotate, with their centers of mass on hexagonal close packed
(hcp) lattice sites [2]. At higher pressure and low temperature,
the rotation ceases and the system enters the “broken symme-
try” phase II [3–5]. Although the exact structure of hydrogen
phase II is not known, it does have an optical Raman mode
which seems to correspond to the layer-mode in phase I. This,
and x-ray evidence, suggests an hcp-based structure, but the
orientation of the molecules is unknown.

Solid nitrogen has a similar hcp-based molecular solid with
free rotors interacting via a quadrupole moment. At ambient
pressure, it exists below 63 K [6], transforming to a broken
symmetry phase with cubic Pa3 symmetry below 36 K.

A number of structures have been posited for hydrogen
phase II, all of which can be regarded as molecules on
an hcp lattice and differing in the molecular orientation. In
1991, using density-functional theory, Kaxiras and coworkers
predicted metallization in a two-atom cell [7], then showed
that a four-atom Pmc21 supercell is more stable and non-
metallic [8]. In 1992, Nagara and Nakamura [9] proposed an
eight-atom P21/c, then in 1997 Kohanoff [10] found a more
stable eight-atom Pca21, a record twice beaten by Pickard
and Needs (16-atom P63/m [11] and 24-atom P21/c [12]).
The relative stability of these structures is sensitive to details
of the calculation, and the trend toward greater stability with
ever-larger supercells implies that no consensus exists on the
most stable phase.

Under further pressurization, a strong infrared signal her-
alded another noncentrosymetric broken symmetry phase III
[3,4]. Several other molecular solid phases have also been
observed [13–16], yet apart from phase I, none of the crystal
structures are unambiguously known. Numerous possibilities
are advanced by density functional theory (DFT) [11,17–21],
while x-ray measurements have only recently started to probe
such high pressures, indicating an underlying hcp structure
for phases I–IV [22]. At still higher pressures, the situation
is controversial, with claims of conductive molecular and
metallic atomic phases, but these are beyond the scope of the
current paper.

By contrast, the case of low-temperature solid N2 is much
simpler: It adopts the Pa3 structure based on an face centered
cubic (fcc) lattice. A different fcc-based oC4 structure was
reported for Cl2, similar to Br2 and I2 [23,24].

The DFT-predicted structures are sensitive to details of
the approximations and treatment of various physical effects:
nuclear quantum effects, electron exchange and correlation,
van der Waals interactions, etc., and it now seems unlikely
that an unambiguous answer will be found. Here we take
an alternate approach which resolves a fundamental issue
in physics, and illuminates the understanding of hydrogen
phases I and II: We examine a single effect, the quadrupole-
quadrupole interaction, and ask what structures it would
prefer.

Lattice Monte Carlo (MC) is a standard technique for
tackling phase transitions. The lattice removes the degrees
of freedom associated with positions and momenta �ri and �pi

of the molecules, and enables us to focus on just one effect,
molecular orientation on an underlying fcc or hcp lattice. The
aim of this work is twofold, and applies two types of Monte
Carlo runs. First, simulated annealing is used to identify
the ground state. Second, finite-temperature runs are used
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FIG. 1. A selection of favorable and unfavorable orientations of
two-point quadrupoles (with positive quadrupole moment Q) adapted
from Ref. [[25], p. 53]. Numbers correspond to the orientational
factor �.

for gathering statistics and identifying the broken-symmetry
transition.

II. MONTE CARLO METHODS

We consider a linear quadrupole oriented in 3D on each lat-
tice site �σ (θ, φ). Each quadrupole interacts with its neighbors
according to standard electrostatics [[25], p. 51] with angular
dependence:

�(�σi, �σ j, �̂R) = 35(�σi · �̂R)2(�σ j · �̂R)2 − 5(�σi · �̂R)2 − 5(�σ j · �̂R)2

+ 2(�σi · �σ j )
2 − 20(�σi · �̂R)(�σ j · �̂R)(�σi · �σ j ) + 1.

(1)

Examples of this somewhat cumbersome expression are
shown in Fig. 1. The quadrupole-quadrupole energy, denoted
by Eqq, depends on the orientations �σ as well as the separa-
tion vector between molecules. This complication precludes
straightforward analysis.

The total quadrupole-quadrupole energy can be written as

Eqq =
∑

i j

Ei j = J

p5
i j

�(�σi, �σ j, �̂Ri j ), J ≡ 3Q2

4πε0R5
, (2)

where R is a fixed length scale (usually the nearest-
neighbor distance in the lattice), such that the distances be-
tween a pair of quadrupoles can be written as ri j = pi jR. The
energy scale J dedimensionalizes the simulation, depending
on which element is considered, and should not be confused
with Joules. Energies will generally be quoted in units of J ,
temperatures in units of J/kB, and heat capacities in units of
J/k2

B. For clarity, values of dimensionless temperatures will
be denoted by T ∗. This then allows for rescaling values to
any desired volume by evaluating the constant J using the
appropriate value of R to match the required volume. For
H2, the quadrupole moment is taken as Q = 0.26 DÅ [26,27]
where D is the Debye unit.

The total energy of the system includes many other effects,
including covalent bonding, van der Waals interactions, etc.
These are larger than Eqq, but we will assume that they act
between molecules, independent of the molecular orienta-
tion. Thus we presume that the hcp structure of phases I
and II of hydrogen arises from central forces, and the only
orientational-dependent interaction is from Eqq.

Ensemble averages were calculated in a canonical lattice
Monte Carlo simulation using importance sampling via the
Metropolis-Hastings algorithm [28,29] based on single-site
rotations within a cone of tunable size. We devised an algo-
rithm to dynamically tune the size of the random update.

The maximum allowed rotation angle was adjusted during
the equilibration to achieve a Metropolis acceptance ratio of
0.5, then fixed for the longer measurement run.

While effective, this clearly impedes the ability to over-
come energetic barriers at lower temperatures. An additional
algorithm was devised for simulated annealing of hcp specif-
ically. The single rotor Metropolis is exceedingly slow at
reconfiguring layered structures, which is the main feature
at high c/a ratios. Hence, to obtain the hcp ground state, an
additional move is proposed where an entire layer is moved in
the basal plane along a random choice of the six shortest in-
plane translation vectors, with the usual Metropolis-Hastings
acceptance condition. When performing simulated annealing,
the temperature for this Metropolis move does not need to
be equal to that used for the single rotors, so it is tuned to
optimize acceptance ratios.

A. Correlation functions

To determine appropriate measurement intervals, we mon-
itored the quadrupole-quadrupole energy correlation function

Cqq(t ) = 〈Eqq(t ′ + t )Eqq(t ′)〉 − 〈Eqq(t ′)〉2

〈Eqq(t ′)2〉 − 〈Eqq(t ′)〉2
, (3)

where the averages are over MC sweeps t ′. This becomes
zero if the Eqq were fully uncorrelated and 1 if fully correlated.

The integrated autocorrelation time is then given by

τint = 1

2
+

M∑
t=1

Cqq(t ). (4)

Cqq(t ) often decays exponentially, but is dominated by noise at
high t , which means the sum becomes unreliable. Hence, τint

was estimated by limiting the sum to a window. M was tuned
to be the lowest value for which the condition M � 6τint(M )
holds true.

B. Thermal averaging

The Eqq contribution to heat capacity per rotor at constant
volume are calculated from the fluctuations in the sampled
energies [30][[31], p. 141]:

cV = 1

T 2
(
〈
E2

qq

〉 − 〈Eqq〉2). (5)

The sampling error is estimated using [[32], p. 93]

σeqq =
√〈

E2
qq

〉 − 〈Eqq〉2

nτ
2τint, (6)

where τint is the integrated autocorrelation time and the
interval between measurements is τ sweeps. The term 2τint

nτ

can be thought of as the number of effective, statistically
independent measurements.

The uncertainty in the heat capacity is found through
resampling [33]: We recalculate the heat capacity 1000 times,
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θ

FIG. 2. Ideal unit cell arrangement of quadrupole rotors on a
triangular lattice. The main motif consists of a central vertical rotor
surrounded by six planar rotors with no frustration. This structure has
P6 symmetry.

using n measurements sampled from the list of Eqq energies,
with repetition being allowed. This gives 1000 estimates of
heat capacity σ̃ , and our uncertainty is the standard deviation
of these recalculated values.

C. Choice of lattice

Two types of lattice were considered in the Monte Carlo
runs: a hcp lattice, as observed in hydrogen phase I, and the
close packed fcc lattice. In both cases, there is frustration: It
is not possible to minimize Ei j for every pair of molecules
simultaneously. A structure with Pa3 symmetry is believed
to minimize the Eqq energy on an fcc lattice [34] but the
minimum energy for hcp is not known. For the ideal c/a ratio,
hcp and fcc have the same packing fraction and the same
number of nearest and next-nearest neighbors, being 12 and
6, respectively.

Because the quadrupole coupling drops off as ∼r−5, the
interaction can be truncated. In fcc, truncation after second
neighbors already stabilizes Pa3 and further interactions only
cause small shifts to the transition temperature. However, for
hcp it was found that beyond-next-nearest-neighbor interac-
tions were important and to converge the calculations around
140 neighbors (out to four lattice constants a) were required.
The effect of changing the c/a ratio in hcp at constant density
was also investigated.

The choice of lattice constant, and therefore volume, only
affects Eqq up to a constant since Eqq ∼ r−5. All length scales
can therefore be dedimensionalized using the length scale R.
This can be reintroduced later to obtain Eqq at the desired
volume.

III. RESULTS AND DISCUSSION

A. Ground states

1. Triangular lattice

Both fcc and hcp consist of layers of triangular lattices,
differing only in the stacking order, so we start by determin-
ing the stable configuration of a single layer using the MC
procedure quenched to low T . The stable unit cell consists
of four rotors (Fig. 2), one perpendicular to the plane and
three rotors parallel to the plane. If the unit cell is repeated,
a sixfold pattern about the vertical rotor is found, where

FIG. 3. T ∗ ∼ 0 structure upon cooling of disordered fcc in the
conventional unit cell representation. Red dashed lines are a guide to
the eye. The rotors do not lie in the close-packed plane like in the
ground-state triangular lattice.

the most favorable orientation of the plane-parallel rotors is
θ = ± 0.669 rad with respect to the vector connecting itself
with the central plane-perpendicular rotor. The space group
of this layer structure is P6. Attempting to stack these layers
in hcp ABA fashion leads to significant frustration, as will be
discussed.

2. fcc lattice

We locate the fcc stable ground state using simulated an-
nealing by linearly lowering the temperature from T ∗ = 10 to
T ∗ = 0.0001 over the course of 5 × 105 sweeps. All supercell
sizes larger than 4 x 4 x 4 (256 molecules) consistently give
the same structure, Pa3, as shown in Fig. 3.

This Pa3 symmetry structure can be thought of as four
interpenetrating cubic lattices with the rotors pointing towards
the far corner of a neighboring cubic cell [[35], p. 682]. It
has been widely claimed to minimize the lattice Eqq energy
[34], though careful reading of that work proves only that
it is a local minimum—because of frustration it is possible
obtain lower energy for an individual molecule, but only at
the expense of increased energy elsewhere. The absence of
any competing minima in the simulation here provides further
support for the assumption that it is a global minimum.

3. hcp lattice

Compared with fcc, hcp has an additional complication due
to its c/a ratio. In real molecular solids, the c/a ratio is not
the close-packing value

√
8/3. Consequently, a range of c/a

ratios was considered to identify the ground state of the rotors
on an hcp lattice. The unit cell volumes were kept constant
and equal to 1 throughout to allow for rescaling to relevant
units at a later stage.

Changing the c/a ratio also changes the nearest-neighbor
distance. To keep the energy scales comparable for different
c/a values, the coupling constant J uses the nearest-neighbor
distance in the ideal c/a ratio of

√
8/3 at unit volume as a
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FIG. 4. T ∗ ∼ 0 energies per rotor obtained by simulated anneal-
ing of disordered hcp for all three supercells. The lines indicate the
lowest obtained energies for each supercell, from which intersections
distinguish the various phases. The 6 x 6 x 3 data did not produce
any lower energy structures.

common length scale throughout. This is equal to R ≈ 0.891
in the corresponding unit of distance.

A range of c/a values between 1.2 and 2.2 with an interval
of 0.004 was considered. Simulated annealing was performed
by linearly cooling from T ∗ = 5 to T ∗ = 0 over the course
of 2 × 104 sweeps. This was done for four supercells of sizes
2 x 2 x 1, 4 x 4 x 2, 4 x 4 x 3 and 6 x 6 x 3. With two sites
per primitive unit cell, these system sizes range from 8 to 216
rotors. Because of the large number of metastable minima, ten
separate simulations per c/a value were performed.

It was found that many neighbors beyond nearest and next
nearest were necessary to distinguish competing structures.
To ensure convergence, the cutoff was set equivalent to four
lattice spacings a of the ideal c/a, which included over 140
neighbors for each quadrupole.

Finally, to obtain clearer “phase lines,” each final result
of simulated annealing was used as a starting configuration
for runs at other c/a ratios. This procedure gives multiple
continuous lines in Fig. 4 where the simulated annealing did
not obtain the lowest energy structure.

The obtained ground state energies (per rotor) are shown
in Fig. 4. The frustration inherent in hcp is evidenced by the
many closely spaced lines at higher energies than the main
lowest energy line. This can be understood from the fact that
the energy landscape from the orientational factor Eq. (1) has
many local minima and is difficult to minimize for the whole
lattice.

4. Low and near-ideal c/a

At c/a far below the ideal value, the lowest energy struc-
ture has Pbca symmetry with eight rotors in the unit cell. In
this regime, the system forms long chains in which the rotors
are approximately at an angle of π/2 with respect to their
separation vector. This 2 x 4 x 1 unit cell was found to have
the lowest energy up until c/a ∼ 1.5.

As the c/a ratio is increased, beyond c/a ∼ 1.5 a new
stable structure with space group Pca21 appears with a smaller
1x2x1 unit cell. This is also shown in Fig. 5. The ordering is

FIG. 5. Ground states for low to intermediate c/a ratios. Left is
at c/a = 1.47 and space group Pbca, while right is at c/a = 1.55 and
spacegroup Pca21. Note that these structures are not planar: Arrows
indicate the direction of the rotor that points out of the page. Red
arrows correspond to the next layer stacked in the c direction.

somewhat similar to Pbca in that it favors aligning at π/4 with
respect to the separation vectors. Finally, the curves for Pca21

and Pbca in Fig. 4 can be identified as extending beyond their
crossover, showing that these structures remain metastable.

5. High c/a

Only at very high c/a values beyond around c/a = 2.05
are the stacked layers sufficiently decoupled such that the
ground state is a simple ABA hcp stacking of the stable 2D
triangular structure (Fig. 2). This type of stacking is very
similar to that found in one of the DFT candidates for phase II
of hydrogen [11,12], P63/m.

The remaining region between c/a = 1.61 and 2.05 is
more difficult to characterize. The main motif in these struc-
tures is still similar, but with two main differences. First, the
stacking is generally no longer ABA. There are effectively
four choices for stacking successive P6 layers since the unit
cell of the P6 layer is 2 x 2. An example of two such stackings
is given in Fig. 7.

The second difference is that the P6 layers distort such
that the central rotor tilts away from the �c axis and the planar
rotors tilt out of the a − b plane. This can in part be explained
by the vertical rotors two layers apart pointing towards each
other in P63/m, which is the most unfavorable arrangement
(Fig. 1). Stacking these P6-like layers effectively removes all
symmetry of the structure as a whole, so will be labeled P1.

This problem becomes worse as the number of stacked
layers increases. Assuming that the vertical rotor will occupy
one of the four sites of each 2 x 2 layer unit cell, there are
already 47 ∼ 16 000 possible stacking combinations in the
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FIG. 6. Histograms of cos θ and φ for all supercells, where θ and
φ are polar and azimuthal angles, as a function c/a ratio.
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FIG. 7. Two possible stackings of triangular layers observed at
c/a > 1.61. Left is stacking in P63/m, which is only stable at very
high c/a. Right is another possible stacking where the distorted
layers still resemble those of P63/m. While the structure as a whole
loses all symmetry, the individual layers possess P1 symmetry. Cir-
cles represent vertical rotors, while single triangles are near vertical.
Red arrows correspond to the next layer stacked in the c direction.

2 x 2 x 4 supercell (accounting for translational invariance).
Even when allowing for an additional Metropolis-Hastings
update where an entire layer is translated in the a − b plane,
obtaining an unambiguous ground state remains difficult as
many of the stackings are similar in energy and the exact
distortion of the layers likely depends on the specific stacking
order.

Figure 6 shows the distribution of polar and azimuthal
angles of all structures found in Fig. 4 as a function of
increasing c/a ratio. θ can be seen to start out of the plane,
and tend towards largely planar π/2 orientations at high c/a
ratios. Close to ideal c/a, a wide range of different angles are
found, reflecting the orientational frustration.

In the intermediate region where the P1 structure is most
stable, the angles φ adopt sixfold rotational symmetry, which
supports the notion that the layers are just distorted versions of
the planar P6 structure. Because the rotors are tilted out of the
plane however, the individual layers generally only possess
P1 symmetry as can be seen in Fig. 7. The non-ABA stacking
removes further symmetries of the structure as a whole.

Finally, since the planar structure in Fig. 2 is enantiomor-
phic, there are two possible sets of the six planar angles φ

shifted relatively by 0.669 rad, which is indeed recovered in
the high c/a limit where P63/m becomes stable.

6. Ground-state energies

Eqq can be evaluated for the typical unit cell volumes
expected for phases I and II. Using a Vinet EOS [2], the
equilibrium volume for phase I can be calculated at 100 GPa.
These are shown in Table I for a selection of c/a ratios. Even
though some of the obtained structures are stable at a wide
range of c/a values (as can be seen from Fig. 4), the overall
energy scale still remains on the order of 0.1 eV. P63/m can be
seen to have the lowest Eqq, but this is only because of its very

TABLE I. Eqq per rotor for the various phases, calculated using
the volume from a Vinet EOS [2] at 100 GPa.

Pbca Pca21 P1 P63/m Pa3

c/a ratio 1.4 1.6 1.75 2.1 –
Eqq/rotor (meV) −127.6 −114.9 −119.9 −142.0 137.8
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FIG. 8. Heating of the Pa3 fcc ground state and the four hcp
ground state structures. Runs for Pbca, Pca21, P1, and P63/m were
performed at c/a ratios of 1.4, 1.6, 1.75, and 2.1 respectively. All
are observed to undergo a first-order phase transition. While the
critical temperature varies among the structures, the low- and high-
temperature heat capacities are similar. Because the autocorrelation
time diverges around the critical point, the error bars in that region
are likely underestimated.

high c/a ratio where the planar quadrupoles are much closer
to each other.

B. Phase transitions

Our model exhibits an order-disorder transition, akin to the
phase I–II “broken symmetry” transition in hydrogen, where
the rotors go from free rotation at high temperature to strongly
inhibited libration with a fixed average orientation at low
temperature. We study this by heating from the previously
determined ground states. To detect the transition, we monitor
the “heat capacity” contribution as calculated from fluctua-
tions in the Eqq energy. This should diverge at a first-order
transition.

Both fcc and hcp ground state structures were heated from
their respective ground structure. For fcc, this was the stable
Pa3. For hcp, we consider the four ground-state structures dis-
cussed previously: these are Pbca, Pca21, the low-symmetry
P1, and finally P63/m. Because calculating Eqq is relatively
expensive, nearest and next-nearest neighbors are considered
for all runs which is sufficient to give a clear phase transition.

The main tuning lies in the measurement interval τmeas

(in MC sweeps), which should ideally be greater than the
autocorrelation time. All temperatures were equilibrated and
simulated separately. Equilibration and measurement were
fixed to 100τmeas and 1000τmeas, respectively, while τmeas was
tuned to give reasonable error bars. The results for the five
structures are shown in Fig. 8.

The slope of Eqq and therefore the heat capacity in the
ordered regime is roughly the same, which is to be expected
given their common interaction mechanism. Also, phase tran-
sitions below the order-disorder critical temperature can oc-
cur. This is seen in the curve for Pca21 where it transitions to
a structure of lower Eqq.

P63/m proved to be metastable near and below the ideal
c/a ratio, and transformed to a less ordered type of structure
of the type discussed earlier. Detailed observation of Monte
Carlo runs show that the process is gradual, with progressive
breaking of the stacking as the temperature is increased. Since
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each transition lowers the energy, we conclude that P63/m is
not the ground state at this c/a ratio, but we were unable to
identify a unique stable structure.

The hcp disorder transformation temperature is generally
significantly lower than in fcc, except for in P63/m. This does
not mean that fcc is more stable, because the lattice stability is
determined by angle-independent contributions not included
here. Nevertheless, in the context of the current model this
can be understood from their relatively low Eqq.

The single rotor Metropolis update becomes inefficient
near the critical temperature. Sampling this critical region is
expensive due to the complicated expression for Eqq, so larger
systems were not considered. Here, the boundary is expected
to sharpen to a discontinuity in Eqq and a corresponding
divergence in the heat capacity.

IV. CONCLUSIONS AND DISCUSSION

In summary, Markov chain Monte Carlo simulations were
performed to analyze the behavior of rotors on 2D-triangular,
fcc, and hcp lattices interacting through the quadrupole-
quadrupole interaction.

The triangular lattice gives a structure with 3/4 molecules
in plane and 1/4 perpendicular to it. The fcc system consis-
tently gives the Pa3 structure upon cooling, in which each
close-packed plane is similar to the triangular lattice but
with the atoms tilted out of plane so all (111) planes are
equivalent.

The hcp system, on the other hand, is strongly dependent
on the c/a ratio. In the range of c/a ratios near the ideal value
of 1.633, there is significant variation in the type of stacking
observed. We showed that Pca21 stacking is stable below
the ideal c/a, whereas low-symmetry stackings of distorted
P6-type layers are found at and above the ideal value. Many
different types of stacking of such layers are possible with
very similar energies. These P63/m and Pca21 are among the
structures predicted in hydrogen by ab initio structure search
[11], suggesting that quadrupole interactions are important
in phase II. Interestingly, the phase III candidates are not

found in our MC, implying that other contributions to the free
energy such as packing efficiency drive the transition to phase
III [19].

The Pa3 type structure is the most favorable energetically,
but it is based around fcc stacking which is not favored by
the van der Waals interaction [36,37]. Pa3 is the α phase
of nitrogen, presumably the energy gain from ordering the
strong quadrupole moment overcomes the preference for hcp
exhibited in β-N2.

There is an Eqq-driven order-disorder phase transition in
both hcp and fcc. Tc is higher in fcc, reflecting the existence
of a single favored energy minimum in Pa3. By contrast,
hcp has multiple minima, permitting phase transformations
between different ordered structures. Although Eqq favors
fcc, the fcc-hcp stability is primarily determined by angle-
independent terms not required in this model. The single rotor,
small-angle Metropolis-Hastings update works well for the
present purpose, but does leave room for improvements, such
as whole-layer inversions.

Recent x-ray work suggests that phases III and IV in
hydrogen are also based on an hcp lattice [22], with nonideal
c/a. Our Eqq-based model does not find the DFT candidate
structures for these high-pressure phases, so we can infer
that the symmetry breaking in phase III and IV are not the
consequence of quadrupole-quadrupole interactions.

In summary, we have demonstrated that the quadrupole-
quadrupole interaction alone stabilizes a number of hcp-based
structures previously proposed as candidates for hydrogen
phase II, but that this interaction cannot be responsible for the
preference of hcp over fcc stacking. The actual stable structure
is highly dependent on the c/a ratio, with the crossover
between Pca21 and P63/m types being very close to the
experimentally observed value.
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