
PHYSICAL REVIEW B 100, 245435 (2019)

Grüneisen parameters for the Lieb-Liniger and Yang-Gaudin models

Li Peng ,1,2 Yicong Yu ,1,* and Xi-Wen Guan 1,3,4,†

1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM,
Chinese Academy of Sciences, Wuhan 430071, China

2University of Chinese Academy of Sciences, Beijing 100049, China
3Center for Cold Atom Physics, Chinese Academy of Sciences, APM, Wuhan 430071, China

4Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University,
Canberra ACT 0200, Australia

(Received 19 September 2019; revised manuscript received 15 November 2019; published 27 December 2019)

Using the Bethe ansatz solution, we analytically study expansionary, magnetic, and interacting Grüneisen
parameters (GPs) for one-dimensional (1D) Lieb-Liniger and Yang-Gaudin models. These different GPs
elegantly quantify the dependence of characteristic energy scales of these quantum gases on the volume, the
magnetic field, and the interaction strength, revealing the caloric effects resulting from the variations of these
potentials. The obtained GPs further confirm an identity which is incurred by the symmetry of the thermal
potential. We also present the universal scaling behavior of these GPs in the vicinities of the quantum critical
points driven by different potentials. The divergence of the GPs not only provides an experimental identification
of non-Fermi-liquid nature at quantum criticality but also elegantly determines low-temperature phases of the
quantum gases. Moreover, the pairing and depairing features in the 1D attractive Fermi gases can be captured by
the magnetic and interacting GPs, facilitating experimental observation of quantum phase transitions. Our results
open the way to further study the interaction- and magnetic-field-driven quantum refrigeration and quantum heat
engine in quantum gases of ultracold atoms.
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I. INTRODUCTION

The Grüneisen parameter (GP), originally introduced to
characterize the frequency change due to the variation of
volume in a crystal lattice [1,2], plays an important role in the
study of pressure and volume effects in solid-state materials.
Usually, it was determined from the ratio of thermal expan-
sion to specific heat, quantifying the pressure dependence of
characteristic energy scales of solid materials. Nowadays, it is
extensively studied in geophysics [3,4], plasma physics [5–7],
chemistry physics [8,9], and various fields of physics. The
GP has recently been investigated in heavy-fermion systems
[10–12].

The divergence of the GP in these systems shows generic
signatures of quantum criticality [13,14], revealing the adia-
batic magnetocaloric effect of the heavy-fermion metals.

Dimensionless constants such as the Wilson ratio [15],
Wiedemann-Franz law [16], and the Kadowaki-Wood ratio
[17,18] are very useful in the study of quantum liquids and
electronic transport properties. The nature of these ratios es-
sentially reflects the ratio between two types of fluctuations. It
is well known that the susceptibility (compressibility) Wilson
ratio proposed in [15,19,20] presents the ratio between the
polarization (or particle number) fluctuation and the energy
fluctuation. Although there have been extensive studies on the
GP in various fields of physics, little work is carried out on
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the GP for the quantum gases. This is mainly because both
thermal expansion and specific heat in quantum gases [21]
are notoriously difficult to be measured in experimental study.
A recent study [22] shows that the magnetocaloric effect (or
interaction-driven caloric effect) can help measure the GPs in
the controllable systems of ultracold atoms.

The GP parameter [1,2] reveals the spectrum change (an-
harmonicity of the frequency) to the variation of the volume
of a crystal lattice. However, in literature, the formulation
of the GP seems to be miscellaneous for different physical
phenomena. By the definition of the GP, we first present an
explicit form of the GP in grand canonical ensemble [22]

� = V d p
dT |V,N

dE
dT |V,N

= 1

T

∂2 p
∂μ2

∂ p
∂T − ∂2 p

∂μ∂T
∂ p
∂μ

∂2 p
∂μ2

∂2 p
∂T 2 − (

∂2 p
∂μ∂T

)2 , (1)

where the Maxwell relations and general thermal relation
were used. This expression together with relation (5) presents
a quantitative description of the caloric effect which is induced
by the variation of the system size.

The magnetocaloric effect is described by the so-called
magnetic GP

�mag = −H

T

(∂S/∂H )|N,T,V

(∂S/∂T )|N,H,V
= H

T

∂T

∂H

∣∣∣∣
S,N,V

, (2)

where S is the entropy. The magnetocaloric effect marks the
change of temperature in response to an adiabatic change
of H [see (6)]. This feature has been used for the adiabatic
demagnetization cooling [23,24]. We would like to mention
that in contrast to some previous studies [25,26], here we
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put the magnetic field H in the numerator to make the GP
dimensionless. Similarly, using the Maxwell relations and
general thermal relations, we can obtain the expression of the
magnetic GP in grand canonical ensemble [22]

�mag = −H

T

∂2 p
∂μ2

∂2 p
∂H∂T − ∂2 p

∂μ∂H
∂2 p

∂μ∂T

∂2 p
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∂2 p
∂T 2 − (

∂2 p
∂μ∂T

)2 . (3)

In ultracold atoms the interaction between two colliding
atoms can be tuned by Feshbach resonances or confinement-
induced resonances. The contact interaction can be regarded
as a potential which changes the free energy in a grand canon-
ical ensemble. The interacting caloric effect in quantum gases
has been rarely studied [22,27]. Similarly, the interacting
GP, describing the change of temperature in response to an
adiabatic change of the interaction, can be given by

�int = − c ∂S
∂c |N,H,T,V
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= − c
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where c denotes the interaction strength between atoms.
To summarize, the relations between the caloric effect and

the GPs are given by
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that provide plausible experimental measurements of the GPs
caused by the changes of the volume, magnetic field, and
interaction, respectively. The given relation (7) marks the
change of temperature in response to an adiabatic change of
the interaction strength. Similar to the magnetic GP, the in-
teracting GP is experimentally measurable and can be used to
quantify the adiabatic refrigeration driven by interaction. We
will study these three types of GPs for the one-dimensional
(1D) Bose and Fermi gases in the following sections.

In this paper, we systematically study the GPs for 1D
quantum gases using Bethe ansatz solutions. We analytically
obtain the system size, magnetic field, and interaction-driven
GPs for the Lieb-Liniger model [28] and the Yang-Gaudin
model [29,30].

The obtained GPs show volume, magnetic field, and in-
teraction dependences of characteristic energy scales of the
quantum gases and present the caloric effects resulting from
the variations of these potentials. Our results confirm the
identity among the three types of GPs [22] in 1D quantum
systems:

d� + 2�mag + �int = 2; (8)

here d = 1 is the dimensionality. We also derive the universal
singular behaviors of the GPs at the quantum critical points
in the attractive Yang-Gaudin model [29,30], driven either by
the magnetic field or the interaction.

The divergent behaviors of the GPs near quantum critical
points show the enhancement of the caloric effects at phase

boundaries and help obtain the phase diagram and to realize
quantum cooling.

The outline of this paper is as follows. In Sec. II, we study
the GPs for the 1D Lieb-Liniger Bose gas. Analytical expres-
sion of the interacting GP is presented. In Sec. III, we present
exact analytical expressions of the GPs for the Yang-Gaudin
model in the fully polarized phase, fully paired phase, and
the Fulde-Ferrell-Larkin-Ovchinnikov–(FFLO-) like pairing
phase. We also studied the phase transitions of the model in
terms of different GPs. We conclude with a brief summary in
Sec. IV.

II. GRÜNEISEN PARAMETER FOR
THE LIEB-LINIGER MODEL

The Lieb-Liniger model [28], which describes the 1D inter-
acting bosons, is a prototypical Bethe ansatz solvable model
[31]. It is one of the most extensively studied many-body
systems in ultracold atoms. The Hamiltonian of the model is
(h̄ = 2m = 1)

Ĥ = −
N∑

i=1

∂2

∂xi
2

+ 2c
N∑

i< j

δ(xi − x j ), (9)

where N is the total number of spinless bosons constrained
by periodic boundary conditions on a line of length L. For re-
pulsive (attractive) contact interaction, the interaction strength
c > 0 (c < 0). The coupling constant c = −2h̄2/ma1D is
determined by the 1D scattering length, given by a1D =
(−a2

⊥/2as)[1 − C(as/a⊥)] [32–34]. Here the numerical con-
stant C ≈ 1.4603.

The Bethe ansatz wave function for the Lieb-Liniger model
(9) is given by

� =
∑

p

(−1)p

⎡
⎣ ∏

1�i< j�N

(
1 + ikp j − ikpi

c

)⎤
⎦

× exp

⎛
⎝ N∑

j=1

ikp j x j

⎞
⎠, (10)

where p stands for N! permutations of integers 1, 2, . . . , N .
The pseudomomenta k j satisfies the following BA equation:

eik j L = −
N∏

l=1

k j − kl + ic

k j − kl − ic
. (11)

The solution to Eq. (11) provides complete spectra of the
Lieb-Liniger model with E = ∑N

j k2
j .

In 1969, Yang and Yang [35] introduced the particle hole
ensemble to describe the thermodynamics of the model in
equilibrium, which is later called the thermodynamics Bethe
ansatz (TBA) approach [36]. In terms of the dressed energy
ε(k) = T ln[ρh(k)/ρ(k)] defined with respect to the quasi-
momentum k at finite temperature T , the TBA equation is
given by

ε(k) = k2 − μ − T c

π

∫ +∞

−∞

dq

c2 + (k − q)2
ln(1 + e−ε(q)/T ),

(12)
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where μ is the chemical potential. The dressed energy ε(k)
plays the role of excitation energy measured from the energy
level ε(kF ) = 0, where kF is the Fermi-like momentum. The
pressure p is given in terms of the temperature and chemical
potential

p = T

2π

∫ +∞

−∞
ln(1 + e−ε(k)/T )dk, (13)

serving as the equation of states of the system.
For the strong repulsive interaction, the model (9) is called

the Tonks-Girardeau (TG) gas [37]. In the TG limit, the
Bose-Fermi mapping can be used to study the ground-state
properties of the Bose gas, where the wave function of bosons
can be written as the product of the sign function and the wave
function of the noninteracting fermions. From the expressions
of the GPs (1) and (4), by solving the TBA equation (12) we
can numerically obtain the volume and interacting GPs (see
Fig. 1). In Fig. 1(a) we see a subtle change of the GP as the
interaction strength varies from zero to infinity. In these two
limits, the scaling invariance leads to � = 2 in 1D.

It is particularly interesting to investigate the interacting
GP (4). In the strong interaction regime, γ = c/n � 1,
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FIG. 1. (a) The Grüneisen parameter (1) versus interaction
strength log c for the 1D Bose gas at different temperatures. Here
the total density is fixed at n = 1. In the weak coupling limit,
the system behaves as a free Bose gas for which the GP � = 2.
Whereas in the strong coupling limit, it reduces to a fermionized
Tonks-Girardeau gas with � = 2, which shows a scaling invariant
nature of the GP. (b) The interacting Grüneisen parameter (4) versus
interaction strength log c for the strong coupling regime. Here we set
T = 0.01 and μ = 1, 0.75, 0.5. For a strong repulsion, we observe
good agreement between the numerical (asterisks) and analytical
(solid lines) results, Eq. (21).

T/c2 � 1, the TBA equation (12) can be expanded in the
powers of 1/c [up to the order of O(1/c3)] [38]:

ε(k) ≈ k2 − μ − 2c

c2 + k2
p − 1

2
√

πc3
T 5/2Li5/2(−eA0/T ),

(14)
where A0 = μ + 2p

c − 4μ5/2

15π |c|3 and Lis(z) = 1
�(s)

∫ +∞
0

t s−1

et /z−1 dt
denotes the polylogarithmic function. For simplicity, here
we only consider the calculation up to the order of
1/c2. Substituting Eq. (14) into Eq. (13), we obtain the
pressure

p = − 1

2
√

π
T 3/2Li3/2(−eA/T ) (15a)

with

A = μ + 2

c
p. (15b)

In the following calculation, we only consider the low-
temperature and strongly interacting regimes T/c2 � 1, c�1
in order to obtain an explicit form of the Grüneisen parameter.
In a canonical ensemble and in this low-temperature limit
T/c2 � 1 with c � 1, we can easily calculate the pressure
up to the order O(T 4, 1/c3). Using the series expansion of the
polylogarithmic function [39]

Lis(−ex ) = − xs

�(s + 1)

[
1 + �(s + 1)

6�(s − 1)

(π

x

)2
+ · · ·

]
(16)

in Eq. (15a), we have the following pressure:

p = 2

3π

(
μ + 2

c
p

)3/2

+ πT 2

12

(
μ + 2

c
p

)−1/2

+ O

(
T 4,

1

c3

)
(17)

that essentially depends on the chemical potential and interac-
tion. After a lengthy iteration with Eq. (17), we obtain a close
form of the pressure up to the order O(T 4, 1

c3 ):

p ≈ 2

3π
μ3/2 + 4

3π2c
μ2 + 28

9π3c2
μ5/2

+ T 2

(
π

12
μ−1/2 + 1

9c
+ 5

18πc2
μ1/2

)
. (18)

Here we remark that for our purpose of calculating the GPs
in the Luttinger liquid regions, we also need the leading
order temperature contribution to the pressure. We separately
considered the interaction and temperature orders in the above
calculation.

In the low-temperature limit T/c2 � 1 with c � 1, the
first- and second-order derivatives of pressure with respect to
chemical potential can be obtained from Eq. (18):

∂ p

∂μ
= 1

π
μ1/2 + 8

3cπ2
μ + 70

9c2π3
μ3/2 + O(T 4, 1/c3),

∂2 p

∂μ2
= 1

2π
μ−1/2 + 8

3cπ2
+ 35

3c2π3
μ1/2 + O(T 4, 1/c3).
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Taking the partial derivative of Eq. (18) with respect to
temperature and chemical potential, we have

∂ p

∂T
= T

[
π

6
μ−1/2 + 2

9c
+ 5

9πc2
μ1/2+O(1/c3)

]
,

∂2 p

∂μ∂T
= T

[
− π

12
μ−3/2 + 5

18πc2
μ−1/2+O(1/c3)

]
,

∂2 p

∂T 2
= π

6
μ−1/2 + 2

9c
+ 5

9πc2
μ1/2 + O(1/c3). (19)

By substituting the above derivatives into the definition of
GPs Eqs. (1) and (4), we obtain the explicit expression of the
GPs:

� = 2 − 4
√

μ

πc
− 8μ

3π2c2
+ O

(
1

c3

)
(20)

and

�int = 4
√

μ

πc
+ 8μ

3π2c2
+ O

(
1

c3

)
. (21)

Figure 1(b) shows that the analytical result (21) agrees well
with the numerical calculation for the interacting GP. This
clearly indicates a strong repulsion drives the system into an
ideal gas with a scaling homogeneous spectrum in the limit
c → ∞. The two figures in Fig. 1 clearly indicate different
features of the expansionary and interacting GPs. Our result
further confirms the universal identity (8), namely,

� + �int = 2. (22)

This relation can be used to investigate interaction effect in
quantum gases (see the analysis on a quantum heat engine in
1D Bose gas [27]).

III. GRÜNEISEN PARAMETER
FOR THE YANG-GAUDIN MODEL

In this section we will study the magnetic and interacting
GPs for the 1D Yang-Gaudin model with an attractive in-
teraction [29,30]. The existence of a FFLO pairing state in
the interacting Fermi gas has been predicted by exact solu-
tions [40–42]. Recent breakthrough experiments on trapped
ultracold fermionic atoms confined to 1D have provided a
deep understanding of such a novel FFLO phase of the Yang-
Gaudin model [43] (see a review [44]). Here we will study
the magnetic and interacting GPs throughout the full phase
diagram of the model.

We will show a universal divergent feature of the GPs near
quantum phase transitions. This feature can be used to probe
quantum scaling, caloric effects, and quantum refrigeration
in quantum many-body systems.

The Yang-Gaudin model [29,30] described the 1D spin- 1
2

Fermi gas with a δ-function interaction. The Hamiltonian
reads

Ĥ = −
N∑

i=1

∂2

∂xi
2

+ 2c
N∑

i< j

δ(xi − x j ) − 1

2
H (N↓ − N↑) (23)

in which the terms are the kinetic energy, interaction energy,
and Zeeman energy, respectively. Here N is the total number
of fermions in a length L and c < 0 indicates the contact

attractive interaction. The Bethe ansatz (BA) equations were
given by [29,30]

eik j L =
M∏

α=1

k j − �α + ic/2

k j − �α − ic/2
,

N∏
j=1

�α − k j + ic/2

�α − k j − ic/2
= −

M∏
β=1

�α − �β + ic

�α − �β − ic
. (24)

The energy of the system is given by E = ∑N
j k2

j . The model
has spin population imbalance caused by a difference in the
number of spin-up and spin-down atoms. The key feature
of this ground-state phase diagram was experimentally con-
firmed by using finite temperature density profiles of trapped
fermionic 6Li atoms [43], where three quantum phases—
fully paired state, partially polarized FFLO-like state, and
fully polarized state—exist in a chemical potential–effective
magnetic-field plane [40,41] (also see the phase diagram of
the homogeneous Fermi gas [19,42,44,45]).

In order to build up the thermodynamic Bethe ansatz
approach to the 1D attractive Fermi gas, we define the
dressed energies εb(k) = T ln[ρh

2 (k)/ρ2(k)] and εu(k) =
T ln[ρh

1 (k)/ρ1(k)], corresponding to paired fermions and un-
paired fermions in the grand canonical ensemble, respectively.
According to the Yang-Yang method [35], by minimizing the
free energy the TBA equations are given by [36,44]

εb(k) = 2

(
k2 − μ − 1

4
c2

)
+ Ta2 ∗ ln

(
1 + e−εb(k)/T

)
+ Ta1 ∗ ln

(
1 + e−εu(k)/T

)
,

εu(k) = k2 − μ − 1

2
H + Ta1 ∗ ln(1 + e−εb(k)/T )

− T
∞∑

l=1

al ∗ ln
[
1 + η−1

l (k)
]
,

ln ηl (λ) = lH

T
+ al ∗ ln

(
1 + e−εu(λ)/T

)
+

∞∑
m=1

Tlm ∗ ln
[
1 + η−1

m (λ)
]
, (25)

where an(x) = 1
2π

n|c|
( n|c|

2 )2+x2 and the function Tlm is given in

[44]. In the above equations, “∗” denotes convolution, namely,
a ∗ f (x) = ∫

a(x − y) f (y)dy. And ηl (λ) :≡ ξ h
l (λ)/ξl (λ) is

the ratio between the hole density ξ h
l (λ) and the particle

density ξl (λ) of the length-l strings, associated with the ex-
citations of magnons. The pressure is given by

p = T

π

∫ ∞

−∞
dk ln

(
1 + e−εb(k)/T

)
+ T

2π

∫ ∞

−∞
dk ln

(
1 + e−εu(k)/T

)
. (26)

The TBA Eq. (25) provide us with an analytical way to study
the Grüneisen parameters.

By taking integration by part in the pressure (26), we then
obtain the dimensionless pressure p̃ = p̃(1) + p̃(2) in terms
of the leading terms of the dimensionless effective pressures
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FIG. 2. (a) Phase diagram is mapped out from the contour plot of volume-driven GP, Eq. (1), at t = 0.001. This expansionary GP has
sudden enhancement near the phase boundaries, showing the quantum phase transitions between two different phases among fully paired,
fully polarized, and FFLO-like phases. The white dashed lines denote the analytical zero-temperature critical fields (see [45]). (b)–(d) show
the volume, interaction, and magnetic-field-driven GPs at μ̃ = −0.49 and t = 0.001, 0.0012, and 0.0014, respectively [see Eqs. (1), (4), and
(3)]. These GPs characterize universal scaling behavior near a quantum phase transition.

p̃(r) = p(r)

1
2 |c|3 with r = 1, 2, i.e.,

p̃(1) = − 1

2
√

2π
t3/2Li3/2

( − eÃ(1)/t
)
,

p̃(2) = − 1

2
√

π
t3/2Li3/2

( − eÃ(2)/t
)
, (27)

where Ã(1) = Ã(1)
0 − 2 p̃(2) with Ã(1)

0 = μ̃1 and Ã(2) = Ã(2)
0 −

p̃(2) − 4 p̃(1) with Ã(2)
0 = μ̃2. The superscripts (1) and (2)

denote unpaired and paired fermions, respectively. Here we
denoted the effective chemical potentials μ̃1 = μ̃ + 1

2 h and
μ̃2 = 2μ̃ + 1 for unpaired fermions and paired fermions,
respectively. The dimensionless quantities used in the above
equations are given by

Ã(r) = A(r)

1
2 |c|2 , μ̃ = μ

1
2 |c|2 , h = H

1
2 |c|2 ,

t = T
1
2 |c|2 , p̃(r) = p(r)

1
2 |c|3 .

In Fig. 2(a), we contour plot the GP, Eq. (1), which shows
a full phase diagram at low temperature. We observe the
divergent behavior near the phase boundaries. At the phase
boundaries, these GPs display universal divergent behaviors.
Figures 2(b)–2(d) present different GPs for a fixed effective
chemical potential μ̃ = −0.49 and temperature t = 0.001,
0.0012, and 0.0014, respectively, showing sharp peaks near
the phase transition between the FFLO-like phase and fully
polarized phase as well as between the fully paired phase
and the FFLO-like state. At these phase transitions, the GPs
show strong caloric effect due to the accumulation of entropy,
facilitating the realization of quantum cooling and quantum
heat engines.

A. The GPs for the fully polarized phase

For a noninteracting system, scaling invariance gives
rise to a constant value of the GP, i.e., � = 2/d; here
d is the dimensionality. For the Yang-Gaudin model, in
the fully polarized phase, we have Ã(1) > 0 and Ã(2)<0.
Therefore only the pressure of the fully polarized fermions
p̃(1) contributes to the total pressure at low temperatures,
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namely,

p̃(1) = − 1

2
√

2π
t3/2Li3/2(−eÃ(1)/t ),

Ã(1) = Ã(1)
0 . (28)

Similar to the calculation for the Lieb-Liniger model, for
calculating the GPs in the Luttinger liquid regions, we only
consider the leading order temperature contribution to the
first-order derivative of pressure with respect to the tempera-
ture. We may analytically obtain a series of all the derivatives
of the pressure with respect to the temperature and chemical
potential in the limits t � Ã(1)

0 � 1, t � 1, and μ̃1 � 1:

p̃ =
√

2

3π
μ̃

3/2
1 + π

12
√

2
μ̃

−1/2
1 t2 + O(t4),

∂ p̃

∂μ̃
= 1√

2π
μ̃

1/2
1 + O(t2),

∂2 p̃

∂μ̃2
= 1

2
√

2π
μ̃

−1/2
1 + O(t2),

∂ p̃

∂t
= t

(
π

6
√

2
μ̃

−1/2
1

)
+ O(t3),

∂2 p̃

∂t2
= π

6
√

2
μ̃

−1/2
1 + O(t2),

∂2 p̃

∂μ̃∂t
= t

(
− π

12
√

2
μ̃

−3/2
1

)
+ O(t3),

∂2 p̃

∂h∂t
= −t

(
π

24
√

2
μ̃

−3/2
1

)
+ O(t3),

∂2 p̃

∂μ̃∂h
= 1

4
√

2π
μ̃

−1/2
1 + O(t2). (29)

It is straightforward to obtain the Grüneisen parameter � ≈ 2.
While, with the help of the definition, Eq. (3), the magnetic
GP is given by �mag = 0.

B. The GPs for the fully paired phase

In the fully paired phase, the system consists of pure pairs
in the ground state. At low temperatures, i.e., t � 1, we have
Ã(1) < 0 and Ã(2) > 0. Therefore, the effective pressure of
paired fermions p̃(2) mainly contributes to the total pressure.
It follows that

p̃(2) = − 1

2
√

π
t3/2Li3/2(−eÃ(2)/t ),

Ã(2) = Ã(2)
0 − p̃(2).

Similarly, in the limits t � Ã(2)
0 � 1, t � 1, and μ̃2 � 1,

we separately consider different interaction and tempera-
ture orders and obtain the pressure and the leading order
of the derivatives with respect to chemical potential and
temperature:

p̃ = 2

3π
μ̃

3/2
2 − 2

3π2
μ̃2

2 + 7

9π3
μ̃

5/2
2

+ t2

(
π

12
μ̃

−1/2
2 − 1

18
+ 5

72π
μ̃

1/2
2

)
+ O

(
t4, μ̃3

2

)
,

∂ p̃

∂μ̃
= 2

π
μ̃

1/2
2 − 8

3π2
μ̃2 + 35

9π3
μ̃

3/2
2 + O

(
t2, μ̃2

2

)
,

∂2 p̃

∂μ̃2
= 2

π
μ̃

−1/2
2 − 16

3π2
+ 35

3π3
μ̃

1/2
2 + O(t2, μ̃2),

∂ p̃

∂t
= πt

6

[
μ̃

−1/2
2 − 2

3π
+ 5

6π2
μ̃

1/2
2 + O(μ̃2)

]
,

∂2 p̃

∂t2
= π

6

[
μ̃

−1/2
2 − 2

3π
+ 5

6π2
μ̃

1/2
2 + O(μ̃2)

]
,

∂2 p̃

∂μ̃∂t
= t

[
−π

6
μ̃

−3/2
2 + 5

36π
μ̃

−1/2
2 + O(1)

]
,

∂2 p̃

∂h∂t
= 0,

∂2 p̃

∂μ̃∂h
= 0. (30)

Substituting these derivatives into Eq. (1), we obtain the
expansionary GP

� = 2 + 2
√

μ̃2

π
− 2μ̃2

3π2
. (31)

The last two terms in this expression indicate the interaction
effect of the spin singlet interaction. In fact, for the fully
paired phase, the strongly attractive Fermi gas without po-
larization can be regarded as the super Tonks-Girardeau gas
composed of bosonic Fermi pairs with a weakly attractive
pair-pair interaction. By a transformation c → −c, μ2 = 2μ,
we prove that Eqs. (20) and (31) are equivalent, i.e.,

� = 2 − 4
√

μ

πc
− 8μ

3π2c2
. (32)

Thus we see that the GP for the attractive fermionic pairs
is equivalent to that of the hard-core bosons [see (20)]. In
addition, the magnetic GP, Eq. (3), can be calculated as
�mag = 0.

C. The GPs for the FFLO-like pairing phase

In the FFLO-like pairing phase, the system exhibits two
states: Paired and unpaired fermions. The spectra of the
system are subtly influenced by the system size, interaction
strength, and magnetic field. In this phase, Ã(1)>0 and Ã(2)>0.
Therefore we need to solve the two branches of the TBA
equations (25). Without losing generality, in order to capture
the main features of the GPs at low temperatures, here we
only consider the leading order of the effective pressures.
By iteration of the TBA equations, the pressures of excess
fermions and bound pairs are respectively given by

p̃(1) = − 1

2
√

2π
t3/2Li3/2(−eÃ(1)/t ),

p̃(2) = − 1

2
√

π
t3/2Li3/2(−eÃ(2)/t ),

Ã(1) = μ̃1 − 2 p̃(2),

Ã(2) = μ̃2 − p̃(2) − 4 p̃(1). (33)

Similarly, in the limits t � Ã(1,2)
0 � 1, t � 1, and μ̃1,2 � 1,

we separately consider different interaction and temperature

245435-6
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orders. After a lengthy iteration, we calculate the pressure of excess fermions and bound pairs up to the order O(T 4, μ̃
5/2
1,2 ),

respectively,

p̃(1) =
√

2

3π
μ̃

3/2
1 − 2

√
2

3π2
μ̃

1/2
1 μ̃

3/2
2 + t2

(
π

12
√

2
μ̃

−1/2
1 −

√
2/12μ̃

1/2
1 μ̃

−1/2
2 + 1

18
√

2
μ̃

−3/2
1 μ̃

3/2
2

)
+ O

(
t4, μ̃

5/2
1,2

)
, (34)

p̃(2) = 2

3π
μ̃

3/2
2 − 2

3π2
μ̃2

2 − 4
√

2

3π2
μ̃

3/2
1 μ̃

1/2
2 + t2

(
π

12
μ̃

−1/2
2 − 1

18
− 1

3
√

2
μ̃

−1/2
1 μ̃

1/2
2 +

√
2

18
μ̃

3/2
1 μ̃

−3/2
2

)
+ O

(
t4, μ̃

5/2
1,2

)
. (35)

Then we obtain the leading terms of the derivatives of the
pressure:

∂ p̃

∂μ̃
= 1√

2π
μ̃

1/2
1 + 2

π
μ̃

1/2
2 + O(t2, μ̃1,2),

∂ p̃

∂t
= t

(
π

6
√

2
μ̃

−1/2
1 + π

6
μ̃

−1/2
2

)
+ O

(
t, μ̃1/2

1,2

)
,

∂2 p̃

∂μ̃2
= 1

2
√

2π
μ̃

−1/2
1 + 2

π
μ̃

−1/2
2 + O

(
t2, μ̃

1/2
1,2

)
,

∂2 p̃

∂t2
= π

6
√

2
μ̃

−1/2
1 + π

6
μ̃

−1/2
2 + O

(
1, μ̃

1/2
1,2

)
,

∂2 p̃

∂μ̃∂t
= t

(
− π

12
√

2
μ̃

−3/2
1 − π

6
μ̃

−3/2
2

)
+ O

(
t, μ̃1/2

1,2

)
,

∂2 p̃

∂h∂t
= − π

24
√

2
μ̃

−3/2
1 t + O

(
t, μ̃1/2

1,2

)
,

∂2 p̃

∂μ̃∂h
= 1

4
√

2π
μ̃

−1/2
1 + O

(
t2, μ̃

1/2
1,2

)
. (36)

Thus by definition Eq. (1), the Grüneisen parameter for the
FFLO-like phase is given by

� = 2 +
1√
2

(
λ − 2

λ

)(
λ − 1

2λ

)
1

4λ
+ 2λ + 5

2
√

2

, (37)

where the λ is defined by λ = √
μ̃1/μ̃2, which is related to the

ratio between the densities of unpaired fermions and bound
pairs, i.e., μ̃1/μ̃2 ∼ n1/n2. This expression is valid only for
the strong-coupling limit that the rescaled temperature t is
much less than unity. Here the effective chemical potentials of
unpaired fermions and paired fermions are given by μ̃1 = μ̃ +
1
2 h and μ̃2 = 2μ̃ + 1, respectively. In Fig. 3(a), we observe
good agreement between the numerical result obtained from
the TBA equations (25) and the analytical results, Eq. (37),
at different effective chemical potentials. For small and large
values of the λ, the GP increases near the phase boundaries.

Similarly, at low temperatures, t � 1, we obtain the mag-
netic Grüneisen parameter from Eq. (3):

�mag = − h

μ̃2

1 − 2
λ2

8
√

2λ +
√

2
λ

+ 10
. (38)

Here h = 2μ̃2λ
2 − μ̃2 + 1. The magnetic GP is also a dimen-

sionless parameter and related to the magnetocaloric effect
(see Fig. 3). In this figure, we also observe good agreement
between numerical and analytical results of the GPs at low
temperature T = 1.0 × 10−5 in the strong coupling |c| = 10
and for different total chemical potentials. From Eq. (38), we

observe that the magnetic GP is equal to zero when λ2 = 2.
This point corresponds to the fact that effective chemical
potentials of excess fermions and bound pairs are equal, called
a critical polarization.

Moreover, with the help of the relation Eq. (8), we can
further obtain the interaction GP through the relation �int =
2 − � − 2�mag. Substituting Eqs. (37) and (38) into Eq. (8),
we have

�int =
(

1
μ̃2

− λ2
)(

1 − 2
λ2

)
1√
2λ

+ 4
√

2λ + 5
. (39)

In Fig. 3(c), we observe that the result Eq. (39) is in good
agreement with the numerical result obtained from the TBA
equations (25) according to the definition Eq. (4). This agree-
ment further confirms the identity Eq. (8) among the three

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

2

2.2

2.4

2.6

(a)

0.5 1 1.5 2
-0.5

0

0.5

1

1.5

2

2.5
104

(b)

0.5 1 1.5 2
-5

-4

-3

-2

-1

0

104

(c)

FIG. 3. (a) The Grüneisen parameter, Eq. (1), vs the effective
chemical potential ratio λ for the FFLO-like phase. Dashed lines
show the numerical result from Eq. (1) and the TBA equations (25).
The black solid line presents the result of Eq. (37) having good
agreement with the numerical result. (b) The magnetic Grüneisen
parameter, Eq. (3), vs the effective chemical potential ratio λ for the
FFLO-like phase. (c) The interaction Grüneisen parameter, Eq. (4),
vs the effective chemical potential ratio λ for the FFLO-like phase.
A good agreement between the numerical (symbols) and analytical
(dashed lines) results in the low-density and low-temperature limits.
All shown data have been set for low-temperature T = 1.0 × 10−5,
|c| = 10 in the strong-coupling region and the chemical potential
μ2 = 0.001, 0.002, and 0.004, respectively.
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0.9 1 1.1 1.2 1.3 1.4

-30

-20

-10

0

10

paired FFLO-like polarized

0.95 0.985 1.02

0

2

4

FIG. 4. The Grüneisen parameter vs magnetic field for fixed
rescaled chemical potential μ = −0.245. By definition (1), the nu-
merical result of the GP is obtained from the TBA equation (25). For
the strong-coupling region, we observe that the GP is very close to
the line � = 2 in the fully polarized phase and in the fully paired
phase due to scaling invariant nature. It shows the universal singular
behavior near the quantum phase transitions.

types of GPs. The interaction GP shows an interacting caloric
effect which looks opposite to the magnetocaloric effect. We
also notice the zero point of the interacting GP at λ2 = 2
[see Fig. 3(c)]. This point is very special because the GP
is a constant � = 2, i.e., the energy spectrum has a scaling
invariant. This opens a way to realize adiabatic interacting
quantum cooling in quantum gases of ultracold atoms (also
see cooling and thermometry of atomic Fermi gases [46]).

D. The Grüneisen parameters at quantum criticality

Quantum phase transitions occur in the 1D attractive Fermi
gas at zero temperature by varying the external fields such as
chemical potential and magnetic field. In Fig. 2, we find that
the Grüneisen parameters display singular behavior near the
quantum critical points. Such kind of singular behavior has
been used to signify quantum phase transition [13,21]. Hence,
the GPs can be regarded as a good probe of quantum criticality
and associated universal scaling. An important observation of
the GPs is that both the magnetic field and interacting GPs
characterize the caloric effects for quantum cooling and heat
engines. Here we further study the GPs for the 1D attractive
Yang-Gaudin model, in which the potentials drive the system
into four different phases, i.e., vacuum, fully paired, FFLO-
like pairing (partially polarized), and fully polarized phases
[see Fig. 2(a)].

Figures 4 and 5 show the magnetic field and interacting
GPs at different temperatures, respectively. In Fig. 4, we fixed
the chemical potential at μ = −0.245. The long black dashed
line stands for the constant value � = 2 in the two figures. We
observe that GPs are very close to the value of � = 2 in the
fully polarized phase and in the fully paired phase, where for
t � 1 the system has scaling invariant nature. However, near
the phase boundaries, they are suddenly enhanced and show a
universal divergent nature. This divergent behavior elegantly

0.8 0.9 1 1.1 1.2 1.3
-60

-40

-20

0

20

polarized FFLO-like paired

0.88 0.9 0.92
0

2

4

FIG. 5. The Grüneisen parameter vs interaction strength c for
fixed chemical potential μ = −0.2 and magnetic field H = 0.5. By
definition (1), the numerical result of the GP is obtained from the
TBA equation (25). For the strong-coupling region, we observe that
like Fig. 4, the GP is very close to the line � = 2 in the fully polarized
phase and in the fully paired phase due to scaling invariant nature.
It shows the universal singular behavior near the quantum phase
transitions.

characterizes the critical phenomenon of the model, i.e., ther-
modynamic quantities display universal quantum scalings in
the vicinities of critical points as temperature approaches to
zero. In the following we will discuss the scaling functions
of the GPs near the two nontrivial phase transitions: From
the fully paired phase to the FFLO-like phase and from the
FFLO-like state to the fully polarized phase. The calculation
is presented in the Appendix.

Phase transition P-FFLO. Firstly, we discuss the GPs
near the phase boundary between the fully paired phase
and the FFLO-like state. We assume that the phase transition
from the fully paired phase to the FFLO-like phase is driven
by the effective chemical potential μ̃. The phase boundary
P-FFLO for strong coupling is determined by μ̃c1 = − h

2 +
4

3π
(1 − h)3/2, where 0 < 1 − h � 1. Up to the second order

of (1 − h), we get the scaling functions of the thermodynam-
ics quantities:

ñ = ∂ p̃

∂μ̃
= 2

π

√
b − 1

2
√

2π
t1/2R0

(
Ã1

t

)
,

s̃ = ∂ p̃

∂t
= 1

2
√

2π
t1/2R1

(
Ã1

t

)
,

m̃ = ∂2 p̃

∂μ̃2
= 2

π
√

b
+ 1

2
√

2π
t−1/2R2

(
Ã1

t

)
,

c̃v/t = ∂2 p̃

∂t2
= − 1

2
√

2π
t−1/2R3

(
Ã1

t

)
,

∂2 p̃

∂μ̃∂t
= 1

2
√

2π
t−1/2R4

(
Ã1

t

)
,
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FIG. 6. Universal scaling behavior of the GP vs the rescaled
chemical potential μ̃ at different temperatures t = 0.001, 0.002,
0.003, and 0.004. The GP is calculated by the TBA equation (25).
The intersections in the left and right panels give the phase bound-
aries of the F-FFLO and P-FFLO transitions, respectively.

∂2 p̃

∂h∂t
= 1

4
√

2π
t−1/2R4

(
Ã1

t

)
,

∂2 p̃

∂μ̃∂h
= 1

4
√

2π
t−1/2R2

(
Ã1

t

)
, (40)

where Ã1 = (μ̃ − μ̃c1) and b = (1 − h)(1 + 2
π

√
1 − h).

While the analytic functions Ri (i = 0, 1, 2, 3, 4) are given by

R0(x) = Li1/2(−ex ),

R1(x) = − 3
2 Li3/2(−ex ) + xLi1/2(−ex ),

R2(x) = −Li−1/2(−ex ),

R3(x) = 3
4 Li3/2(−ex ) − xLi1/2(−ex ) + x2Li−1/2(−ex ),

R4(x) = − 1
2 Li1/2(−ex ) + xLi−1/2(−ex ). (41)

By the definition of the GP Eq. (1), we obtain an explicit form

� = 4
√

2b√
π

t−1/2G
(

μ̃ − μ̃c1

t

)
, (42)

where b = (1 − h)(1 + 2
π

√
1 − h) and

G(x) = R4

R2R3 + R4R4
. (43)

For the low-temperature region, i.e., t � 1, the GP Eq. (1) has
a universal scaling t−1/2 for the phase transition P-FFLO.

In Fig. 6(b), we demonstrate this universal scaling behavior
for the phase transition P-FFLO.

Similarly, by the definition of the magnetic GP Eq. (3), we
obtain the scaling function of the magnetic GP:

�mag = h
2
√

2√
π

√
b

t−1/2G
(

μ̃ − μ̃c1

t

)
. (44)

This shows a similar universal scaling behavior of the mag-
netic GP, �mag ∝ t−1/2.

Regarding the scaling property of the pressure p =
c3

2 p̃( μ

c2/2 , T
c2/2 , H

c2/2 ), we can obtain

∂2 p

∂c∂T
= 1

c

[
∂ p

∂T
− 2μ

∂2 p

∂μ∂T
− 2T

∂2 p

∂T 2
− 2H

∂2 p

∂H∂T

]
,

∂2 p

∂c∂μ
= 1

c

[
∂ p

∂μ
− 2μ

∂2 p

∂μ2
− 2T

∂2 p

∂T ∂μ
− 2H

∂2 p

∂H∂μ

]
.

(45)

It follows that

∂2 p

∂c∂T
=

√
2

c

(
−μ

1√
2π

− H
1

2
√

2π

)
T − 1

2 R4

(
A1

T

)
,

∂2 p

∂c∂μ
= 2

π

√
b − 2

c2
μ

4

π
√

b
−

√
2

c
μ

1√
2π

T −1/2R2

(
A1

T

)

−
√

2

c
H

1

2
√

2π
T −1/2R2

(
A1

T

)
. (46)

From the definition of the interaction GP Eq. (4), we have an
explicit form of scaling function:

�int = −4
√

2
√

b√
π

t−1/2G
(

μ̃ − μ̃c1

t

)

−h
4
√

2√
π

√
b

t−1/2G
(

μ̃ − μ̃c1

t

)
. (47)

It can be seen from the above scaling functions that three types
of GPs satisfy the identity

� = 2 − 2�mag − �int. (48)

Phase transition FFLO-F. We now consider the GPs
near the phase transition from the FFLO-like pairing phase
to the fully polarized phase. This phase transition occurs by
the variation of the chemical potential μ̃ too. The critical
phase boundary is determined by μ̃c2 = − 1

2 + 1
3π

(h − 1)3/2;
here h > 1. We expand it to the second order of (h − 1);
we obtained the scaling functions of the thermodynamics
quantities:

∂ p̃

∂μ̃
=

√
a

2π
− 1√

π
t1/2R0

(
Ã2

t

)
,

∂ p̃

∂t
= 1

2
√

π
t1/2R1

(
Ã2

t

)
,

∂2 p̃

∂μ̃2
= 1

2π
√

a
+ 2√

π
t−1/2R2

(
Ã2

t

)
,

∂2 p̃

∂t2
= − 1

2
√

π
t−1/2R3

(
Ã2

t

)
, (49)

∂2 p̃

∂μ̃∂t
= 1√

π
t−1/2R4

(
Ã2

t

)
,

∂2 p̃

∂h∂t
= −

√
a

2π3/2
t−1/2R4

(
Ã2

t

)
,

∂2 p̃

∂μ̃∂h
= 1

4π

1√
a

−
√

a

π3/2
t−1/2R2

(
Ã2

t

)
,
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where by definition Ã2 = 2(μ̃ − μ̃c2) and μ̃c2 denotes the
critical chemical potential.

In the above equation a = (h − 1)(1 + 2
3π

√
h − 1), which

is almost a constant. The scaling function of the GP at this
phase boundary is given by

� =
√

a

2
√

π
t−1/2G

(
2(μ̃ − μ̃c2)

t

)
. (50)

The GP near the phase transition shows the same scaling
behavior � ∝ t−1/2 as that for the phase transition P-FFLO.
Figure 6(a) shows the scaling behavior near the phase transi-
tion FFLO-F. Moreover, the scaling function of the magnetic
GP near the phase transition FFLO-F is given by

�mag = −h
1
π

+ 1√
a

4
√

π
t−1/2G

(
2(μ̃ − μ̃c2)

t

)
. (51)

In order to calculate the interacting GP Eq. (4), we obtain the
quantities

∂2 p

∂c∂T
=

√
2

c

(
−μ

2√
π

+ H

√
a

π
3
2

)
T −1/2R4

(
A2

T

)
,

∂2 p

∂c∂μ
=

√
a

2π
− 2

c2
μ

1

π
√

a
− 2

c2
H

1

2π
√

a

−
√

2

c
μ

4√
π

T −1/2R2

(
A2

T

)

+
√

2

c
H

2
√

a

π3/2
T −1/2R2

(
A2

T

)
. (52)

Then we obtain the scaling function of the interacting GP

�int = h
1
π

+ 1√
a

2
√

π
t−1/2G

(
2(μ̃ − μ̃c2)

t

)

−
√

a

2
√

π
t−1/2G

(
2(μ̃ − μ̃c2)

t

)
. (53)

We further prove that these scaling functions of the GPs at
quantum criticality also satisfy the identity

� = 2 − 2�mag − �int. (54)

IV. CONCLUSION

We have derived various expressions of the Grüneisen pa-
rameters for studying magneto- and interaction-driven-caloric
effects of the Lieb-Liniger and Yang-Gaudin models. Using
the Bethe ansatz solution, we have obtained the expansionary,
magnetic, and interacting Grüneisen parameters for various
quantum phases in these 1D integrable Bose and Fermi gases.
The obtained Grüneisen parameters confirm the identity found
in [22], revealing an important symmetry of the thermal
potentials. These GPs elegantly quantify the dependences of
characteristic energy scales of quantum gases on the volume,
the magnetic field, and the interaction strength, and present
the caloric effects induced by the variations of these potentials
of quantum gases with short-range interactions. In particular,
such different GPs for the 1D attractive Fermi gas significantly
quantify the magneto- and interaction-driven-caloric effects
of quantum gases in the fully paired, FFLO-like and fully
polarized phases. We have also obtained universal scaling
behavior of the GPs in the vicinities of the quantum critical
points in the interacting Fermi gas.

It turns out that the divergence of the GPs in the vicinities
of quantum phase transition points not only provides an exper-
imental identification of non-Fermi liquid nature at quantum
criticality but also remarkably determines the full phase dia-
gram of the gases in low-temperature regimes. Our methods
open the way to further study the interaction- and magnetic-
field-driven quantum refrigeration and quantum heat engine in
quantum gases of ultracold atoms.
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APPENDIX

In this Appendix, we present some results of thermodynamical properties used in our analysis of the GPs at quantum
criticality.

(1) Density:

ñ = ∂ p̃

∂μ̃
= − 1

2
√

2π
F (1)

1/2 − 1√
π

F (2)
1/2 −

√
2

π
F (1)

1/2F (2)
1/2 − 1

2π

(
F (2)

1/2

)2 − 1

2π3/2

(
F (1)

1/2

)2
F (2)

1/2 − 3√
2π3/2

F (1)
1/2

(
F (2)

1/2

)2 − 1/4π
3
2
(
F (2)

1/2

)3
.

(2) Magnetization:

m̃ = ∂ p̃

∂h
= − 1

4
√

2π
F (1)

1/2 − 1

2
√

2π
F (1)

1/2F (2)
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4π3/2
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1/2F (1)
1/2F (2)

1/2 − 1

4
√

2π3/2
F (1)

1/2F (2)
1/2F (2)

1/2 .

(3) Susceptibility:

χ̃ = ∂2 p̃

∂h2
= − 1

8
√

2π
F (1)

−1/2 − 1

4
√

2π
F (1)

−1/2F (2)
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4π3/2
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1/2F (1)
1/2F (2)

−1/2 − 3

8π3/2
F (1)

−1/2F (1)
1/2F (2)

/12 − 1

8
√
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−1/2F (2)
1/2F (2)

1/2 .
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(4) Compressibility:

κ̃ = ∂2 p̃
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= − 1
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.

(5) Entropy:

s̃ = ∂ p̃

∂t
= − 3
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√
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(6) Specific heat:

c̃V /t = ∂2 p̃

∂t2
= − (Ã(1) )2
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(7) Derivative of magnetization with respect to the temperature:

∂M̃

∂t
= ∂2 p̃
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= − 1
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(8) Derivative of density with respect to the temperature.

∂ ñ
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(9) Derivative of density with respect to the magnetic field.
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where F (r)
n = t nLin(−eÃ(r)/t ), r = 1, 2.
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