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Third harmonic generation of undoped graphene in Hartree-Fock approximation
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We theoretically investigate the effects of Coulomb interaction, at the level of the unscreened Hartree-Fock
approximation in an equation of motion framework, on third harmonic generation from undoped graphene. The
unperturbed electronic states are described by a widely used two-band tight-binding model and the Coulomb
interaction is described by the Ohno potential. The ground state is renormalized by taking into account the
Hartree-Fock term and the optical conductivities are obtained by numerically solving the equations of motion.
The absolute values of conductivity for third-harmonic generation depend on the photon frequency � as �−n for
h̄� < 1, and then show a peak as 3h̄� approaches the renormalized energy of the M point. Taking into account
the Coulomb interaction, n is found to be 5.5, which is significantly greater than the value of 4 found with the
neglect of the Coulomb interaction. Therefore, the Coulomb interaction enhances third-harmonic generation at
low photon energies—for our parameters h̄� < 0.8 eV—and then reduces it until the photon energy reaches
about 2.1 eV. The effect of the background dielectric constant is also considered.
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I. INTRODUCTION

The Coulomb interaction between carriers plays an impor-
tant role in determining the band structure of a crystal and its
optical response [1]. In a gapped semiconductor, the repulsive
Coulomb interaction leads to the so-called GW correction,
which increases the band gap above that obtained from the
independent particle approximation (IPA) [2]. In contrast, the
attractive Coulomb interaction, usually between electrons and
holes, leads to the formation of excitons. Both effects must be
included in a calculation to identify the correct linear optical
response near the absorption edge of a semiconductor. Besides
these contributions, the Coulomb interaction also leads to
scattering and the resulting relaxation and thermalization of
carriers, beginning on a timescale of tens of femtoseconds.
For usual semiconductors, these Coulomb effects occur in the
weak interaction regime.

For two-dimensional graphene, the atomic scale thick-
ness leads to strong quantum confinement and reduces the
Coulomb screening [3]. Due to the gapless linear band-
structure characteristic of massless Dirac fermions, the
strength of the Coulomb interaction in graphene, described
by the ratio of the Coulomb energy to the kinetic energy [4],
is αg = e2/(4πε0ε h̄vF ), assuming an effective background
dielectric constant ε and a Fermi velocity vF . Taking the ex-
perimental value vF = 106 m/s, the resulting ratio αg ≈ 2.2/ε

indicates the Coulomb interaction can be tuned from the weak
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interaction regime (ε ≈ 37.5 in certain liquid environments
[5]) to the strong interaction regime (ε = 1 for a free-standing
sample). The Coulomb interaction in graphene affects its
optical response in unexpected ways. First, ab initio calcu-
lations [6] show that the GW correction cannot open the gap,
but does increase the Fermi velocity, and corrects the linear
dispersion around the Dirac points with a logarithmic function
[7]. Second, bound excitons do not exist, and excitonic effects
(EXEs) are not important around the Dirac points; thus, the
linear optical absorption at low photon energies is not affected
by the Coulomb interaction [6,8]. Yet saddle point excitons
can be formed around the M point of the band structure, and
the corresponding resonant optical absorption is redshifted
by about 0.6 eV [5,6], with a Fano-type line shape due to
resonance with the continuum electron-hole states [9,10].
More generally, the optical absorption from the infrared to
the visible is found to be reduced due to the 2D Coulomb
interaction, which also provides a very fast relaxation of hot
electrons [11].

While there have been a number of investigations into
the effects of the Coulomb interaction on the linear opti-
cal response of graphene [5,6,9,10], there have been few
theoretical studies that take into account the effects of the
Coulomb interaction on the nonlinear optical response [12].
The experimental investigations on second- [13] and third-
order optical nonlinearities [14–16], as well as studies of high
harmonic generation [17–19], show many advantages of uti-
lizing 2D materials in nonlinear optics [20–22]. These include
the extremely large nonlinear coefficients [23,24], the ease of
integration in photonic devices [15,25–27], and the tunability
by the chemical potential [14–16]. Some of these features can
be well predicted and understood from calculations within
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the IPA [23,28–32]. Because the Coulomb interaction hardly
affects the linear optical absorption, it might be natural to
assume that its effects on the nonlinear optical response would
also be small. However, a recent study by Avetissian and
Mkrtchian [12] reported a large enhancement of harmonic
generation at THz frequencies due to the 2D Coulomb in-
teraction. There have also been discussions of the plasmonic
effects [33–36] on the optical nonlinearity of graphene. In the
present paper, we model the Coulomb interaction by the Ohno
potential and consider its effects on third-harmonic genera-
tion, in the unscreened Hartree-Fock (HF) approximation, for
fundamental photon energies between 0.2 eV and 3.5 eV. The
effects of a background dielectric constant are also consid-
ered. In principle, our approach is appropriate for intrinsic
graphene, where the screening should not be important for
optical nonlinearity, and also for lightly doped graphene. For
the latter, used in most early experiments [37–40], the screen-
ing induced by the free carriers is not important for large
incident photon energy due to energy mismatch; moreover, the
independent particle theory [28] shows that in this case, the
third-harmonic generation is not sensitive to a nonvanishing
but small chemical potential. For heavily doped graphene, as
used in recent experiments [14,16] to manifest the chemical
potential related resonances in third harmonic geneartion, the
screening of the Coulomb interaction should be taken into
account in calculating the optical nonlinearity of graphene.
However, due to the complexity both in theory and in numeri-
cal calculation, in the present paper we first perform a prelimi-
nary study under the unscreened Hartree-Fock approximation,
leaving the treatment of screening effects to a future work.
And to avoid the effects of screening induced by the optically
excited carriers, we limit our calculation to the weak electric
field regime.

We organize this paper as the following. In Sec. II, we set
up the equation of motion in the Hartree-Fock approximation.
In Sec. III, we present our numerical scheme and numerical
results for the band structure, the density of states (DOS), the
linear conductivity, and the nonlinear conductivity for third-
harmonic generation; the effect of the background dielectric
constant is also investigated. In Sec. IV, we conclude.

II. MODEL

We describe the dynamics of the electrons by a density
matrix with components ραβk(t ), where α and β label the
atom sites A or B, and k is a crystal wave vector. With
the application of an electric field E(t ), the density-matrix
components satisfy the equation of motion:

ih̄∂tραβk(t ) = [
H0

k+eA(t )/h̄ + HHF
k (t ), ρk(t )

]
αβ

+ eE(t ) · (τα − τβ )ραβk(t )

− i	
[
ραβk(t ) − ρ0

αβ(k+eA(t )/h̄)

]
. (1)

Here H0
k is a tight-binding Hamiltonian [28], formed by the pz

orbitals of carbon atoms,

H0
αβk = −γ0( fkδα,Aδβ,B + f ∗

k δα,Bδβ,A), (2)

where γ0 is the nearest-neighbor hopping parameter and fk =
1 + e−ik·a1 + e−ik·a2 is the structure factor, with ai the primitive
lattice vectors and τα the displacement of the αth atom in the

unit cell. The vector potential A(t ) satisfies ∂t A(t ) = −E(t ).
The last term in Eq. (1) describes the relaxation processes phe-
nomenologically, with a relaxation parameter 	; the system
relaxes to an equilibrium state ρ0

k in the moving frame, as will
be discussed in detail below. In the Appendix, we give a brief
derivation of Eq. (1) based on the tight-binding model.

The carrier-carrier Coulomb interaction is included in
the unscreened HF approximation through the term HHF

αβk(t ),
which is given by

HHF
αβk(t ) = −

∫
dk′

(2π )2
Vαβ(k−k′ )ραβk′ (t ), (3)

The Coulomb interaction term Vαβk = A
∑

j e−ik·R jVj;αβ with
A being the area of the unit cell is taken to be the Fourier
transform of the Ohno potential [41],

Vi,αβ = U

ε

√( 4πε0|Ri+τα−τβ |U
e2

)2 + 1
, (4)

where U is an onsite energy, ε can be considered as an effec-
tive background dielectric constant [42], and the Ri are lattice
vectors. We separate the HF term into two contributions,

HHF
αβk(t ) = λmHHF;(0)

αβ(k+eA(t )/h̄) + λeHHF;(1)
αβk (t ) , (5)

HHF;(0)
αβk = −

∫
dk′

(2π )2
Vαβ(k−k′ )ρ

0
αβk′ , (6)

with two auxiliary parameters λm = λe = 1. The first term
exists even in the absence of external field. It takes into
account the Coulomb interaction at the level of a mean-field
approximation (MFA), and it can modify the band structure
significantly [6,43]. Accordingly, it also affects the equilib-
rium distribution. The second term, HHF;(1)

αβk (t ) = HHF
αβk(t ) −

HHF;(0)
αβ(k+eA(t )/h̄), describes the interaction between optically ex-

cited carriers. To better understand the two contributions, λm/e

will be intentionally changed in our numerical calculation to
include (= 1) or exclude (= 0) an effect.

Before we can solve Eq. (1), it is important to determine
ρ0

k , the ground state. While the possibility of forming a new
excitonic ground state in the strong interaction regime has
been extensively discussed [4,44,45], for most experimental
scenarios there is a SiO2 or Si substrate, with a dielectric
constant larger than 2; thus the Coulomb interaction should
be in the weak interaction regime. Therefore, we limit our-
selves to a ground state within the IPA. In our treatment,
the Coulomb interaction has two main consequences: First,
it modifies the band structure through HHF;(0)

αβk . The eigenener-

gies εsk and eigenstates Csk = (CA
sk

CB
sk

)
with a band index s = ±

are determined from the Schrödinger equation,∑
β

(
H0

αβk + HHF;(0)
αβk

)
Cβ

sk = εskCα
sk, (7)

and the equilibrium density matrix is calculated from

ρ0
αβk =

∑
s

Cα
sk

(
Cβ

sk

)∗

1 + e(εsk−μ)/(kBT )
(8)

for a specified chemical potential μ and temperature T .
Equations (6)–(8) form a self-consistent set of equations, and
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they are solved iterately. By initially setting HHF;(0)
αβk = 0 in

Eq. (7), we get Cβ

sk; next we calculate ρ0
k using Eq. (8),

and then we update HHF;(0)
αβk using Eq. (6), repeating this

procedure until ρ0
αβk is converged. A second consequence of

the Coulomb interaction is that the term HHF;(1)
αβk (t ) leads to the

excitonic effects in the framework of carrier dynamics [46].
In this paper, the main quantity of interest is the current

density, which is given by J(t ) = (2π )−2
∫

dkJk(t ) with

Jk(t ) = −e
∑
αβ

vβαk(t )ραβk(t ) , (9)

vαβk(t ) = 1

ih̄

{
(τα − τβ + i∇k)

[
H0

αβ(k+eA(t )/h̄) + HHF
αβk(t )

]}
.

(10)

III. RESULTS

In our numerical calculation, we adopt the parameters γ0 =
2.34 eV, U = 8.29 eV [47], h̄/	 = 20 fs [30], μ = 0 eV,
T = 300 K, and divide the Brillouin zone into a N×N grid
with N = 1500; our main conclusions are not very sensitive
to the exact values of γ0 and U . The time differential is
discretized by a fourth-order Runge-Kutta method with a time
step 0.05 fs. We consider background dielectric constants ε

varying between 2 and 9. The results are presented for three
different approaches: the IPA (with λm = λe = 0), the MFA
(with λm = 1 and λe = 0), and taking into account EXEs (with
λm = λe = 1).

We numerically calculate the current density for a periodic
field E(t ) = E0x̂e−i�t + c.c., with E0 = 5×106 V/m, in the
time range 0 � t � 300 fs [48]. Because the relaxation time
is much shorter than 300 fs, we can approximate the current
density in the last period as Jx(t ) = ∑

n [J (n)
x e−in�t + c.c.].

The linear conductivity can be obtained by σ (1)(�) = J (1)
x /E0

and the THG conductivity is obtained by σ (3)(�) = J (3)
x /E3

0 .
For THG, the photon energies are chosen in the range of
0.2 � h̄� � 3.4 eV. The nonlinear response at terahertz fre-
quencies is also very interesting, of course. However, unlike
the numerical scheme used by Avetissian and Mkrtchian [12],
the application of our approach in the terahertz regime would
require a very dense grid and a very long evolution time.
As well, our neglect of the dynamic screening would likely

affect the reasonableness of the results for terahertz response.
Therefore, we leave the treatment of terahertz response to a
future study.

Insight into the dynamics induced by the applied field
can be gained by looking at the transition-energy-resolved
conductivities, which are defined as

σ (n)(�, εt ) =
∫

dk
(2π )2

J (n)
x;k

En
0

δ[εt − (ε+k − ε−k)] , (11)

where J (n)
x;k is the nth-order Fourier transformation of Jx;k(t ).

They describe how the electronic states at a given transition
energy εt contribute to the optical conductivity at a funda-
mental frequency �. In the IPA and MFA approximations,
|σ (n)(�, εt )| exhibits a peak at εt = mh̄� for the m-photon
resonant optical transition for 1 � m � n, as would be ex-
pected within a single-particle description. In Fig. 1(a), we
illustrate the electronic states for m-photon resonant transi-
tions at m = 1, 2, 3. With the inclusion of the HF term,
the energy shift of these peaks can be used to identify
EXEs. Very generally, the conductivities are given by the
integral over transition energies of these resolved quantities,
σ (n)(�) = ∫

dεtσ
(n)(�, εt ).

A. Band structure and linear conductivity

Figures 1(a) and 1(b) give the single particle band structure
and DOS in the IPA and the MFA for ε = 3. In the IPA,
the dispersion is linear around the Dirac points with a Fermi
velocity vF = √

3a0γ0/2h̄ ≈ 0.76×106 m/s, and the DOS is
also approximately linear in a large energy range between
about −1.5 eV and 1.5 eV. There are significant changes in
the band structure as we move to the MFA. Our results are
in line with a host of other calculations, showing that the
single particle bands deviate from linear dispersion [43], and
even away from the Dirac points, the Fermi velocity increases.
The band energy at the M point increases from 2.34 eV in
the IPA to 3.25 eV in the MFA, and the energy at the 	

point also increases from 7 eV in the IPA to 8.27 eV in the
MFA. The increase of these characteristic energies by the HF
term shows behavior similar to the effects of GW correc-
tions in gapped semiconductors. Although both the IPA and
MFA are single-particle approximations, their different band
structures result in a clear difference between their predicted
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FIG. 1. Effects of the HF term on (a) the band structure, (b) the density of states, (c) the linear optical conductivity, and (d) the energy
dependence of the dipole transition matrix elements between the two bands along the high symmetry lines K → M → 	. The gray arrows in
(a) indicate the resonant transitions by multiple photons.
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FIG. 2. Transition-energy-resolved linear conductivity for different excitation frequencies h̄� = 0.7, 1.5, and 5.3 eV in the IPA, MFA, and
EXE models. The values for the real part, the imaginary part, and the absolute values are presented.

linear optical conductivities, as shown in Fig. 1(c). The MFA
corrections to the dispersion also enhance the real parts of the
linear conductivity for photon energies less than 2.5 eV. The
enhancement is a joint effect involving the enhanced dipole
matrix elements shown in Fig. 1(d) and the decreased DOS
shown in Fig. 1(b), with the former dominating. The result
shows how the MFA modifies the single-particle electronic
states. When the photon energy matches the optical transition
energy at the M point, the real part of the conductivity shows
a very sharp peak in both the IPA and MFA, induced by
the Van Hove singularity at the M point. With the further
inclusion of EXEs, the resulting linear conductivity in the
EXE exhibits three main features: (1) The conductivity for
h̄ω < 3 eV is very close to the universal conductivity obtained
in the IPA. (2) The singularity peak is shifted from a photon
energy 6.5 eV to 5.3 eV, which indicates a strong EXE around
the M point. The exciton binding energy is about 1.2 eV,
of the same order of magnitude for excitons in other 2D
materials. (3) The broadened peak at the M point, followed by
a small dip, confirms the Fano resonance between the saddle
excitons and continuum electron-hole states. These results
agree qualitatively with an ab initio calculation [6], which
provides a good check of the reasonableness of our model.
Roughly speaking, the linearity conductivity plot for EXE
lies between that of IPA and MFA, indicating an interference
between the mean-field and excitonic contributions. We will
see this kind of “undoing” of the mean-field contributions by
the excitonic contributions is even more pronounced when we
consider the nonlinear response below.

In Fig. 2, we plot the transition-energy-resolved conductiv-
ity, σ (1)(�, εt ), for the excitation photon energies h̄� = 0.7,
1.5, and 5.3 eV. For the single-particle models (the IPA and
MFA), a Lorentzian shape σ (1)(�, εt ) ∝ i(h̄� − εt + i	)−1

results. The real part of σ (1)(�, εt ), which corresponds to the
absorption at each transition energy εt , is always positive and
localized around εt ∼ h̄� with a broadening approximately
determined by the relaxation parameter; this is as expected
for a single-particle theory. The difference between the IPA
and the MFA is mainly due to the different optical transition
matrix elements. For the imaginary part, the band structure
and the DOS play important roles, with peaks around the
singularity at the M points (εt ≈ 4.6 eV for the IPA and 6.5 eV
for the MFA). With the inclusion of the EXEs, σ (1)(�, εt )
deviates from its MFA behavior only around the peak at

εt ≈ h̄�. For h̄� = 0.7 and 1.5 eV, the absolute value only
changes slightly, but the mixture of the real and imaginary
parts indicates a phase change of the optical transition matrix
elements. Overall, EXEs are very weak for low-photon en-
ergies, agreeing with the ab initio results. For h̄� = 5.3 eV,
the absolute value of σ (1)(�, εt ) includes a significant contri-
bution from the electronic states at the M point for εt > h̄�,
showing the important role played by EXEs.

B. Third-harmonic generation

We now turn to THG, the conductivities of which are
plotted in Fig. 3 for IPA, MFA, and EXEs. We first look at
the spectra in the IPA. The absolute value of conductivity
decreases with the photon energy, approximately following
a power law ∝ �−n0 with n0 ∼ 4.4, and reaches a minimum
at h̄� ≈ 1.2 eV; then it increases to a maximum at h̄� ∼
1.6 eV, and decreases again afterward. This spectrum is very
similar to perturbative results in literature [28,49]. Ignoring
relaxation, the analytic perturbative conductivity [29] gives
σTHG ∝ �−4 for low photon energies, shown in Fig. 3 as
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FIG. 3. Effects of the HF term on the nonlinear conductivity for
third-harmonic generation. The dotted curve gives the perturbative
conductivity obtained by an analytic expression [29]; the other three
curves are obtained under a field E0 = 5×106 V/m. The blue (red)
curves are the results obtained from the single-particle band structure
with (without) HF corrections, and the black curves are obtained
with the excitonic effects. The green dots are obtained using a field
E0 = 106 V/m.
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FIG. 4. Transition-energy-resolved THG conductivity for fundamental photon energies h̄� = 0.7 eV, 1.5 eV, and 2.1 eV.

a dashed curve. Our numerical results give a faster decay
(n0 > 4) because the simulation field strength E0 = 5×106

V/m is slightly beyond the perturbative limit. Therefore, sat-
uration effects start to play a role, and they enhance the THG
due to the extra optically excited carriers from the one-photon
absorption [30]. As might be expected, the saturation is more
important at low-photon energy, where the saturation intensity
is lower. The perturbative limit is obtained for a weaker field
E0 = 106 V/m, as shown by the green filled dots in Fig. 3,
which agree with the analytic results very well. Because a
much longer simulation time for this weak field is required,
we keep our other calculations using E0 = 5×106 V/m. The
peak around 1.6 eV is induced by the three-photon resonant
transition at the Van Hove singularity point. This is consistent
with an analytic perturbative result [49].

When the Coulomb interaction is included at the level of
the MFA, the spectra are obviously different, shown as filled
red squares in Fig. 3. For the calculated photon energies, the
values in the MFA are orders of magnitude larger than those
in the IPA, mirroring the change in the linear conductivity as
we move from the IPA to the MFA, although the increase
is much greater here. Except for a very weak peak around
h̄� ≈ 2.2 eV, which corresponds to the three-photon resonant
transition at the M point, the whole spectrum follows a power
law ∝ �−nm with nm ≈ 3 for h̄� < 3.4 eV. When the EXEs
are included, the THG conductivity again changes dramati-
cally, as shown in the black square in Fig. 3. At low-photon
energies, h̄� < 1 eV, the THG shows a different scaling with
� than seen in either the IPA or the MFA, scaling as �−ne with
ne ∼ 5.5; compared to the IPA results, the EXE results are
enhanced by about three times at h̄� = 0.2 eV, but reduced
about 20% at h̄� = 1 eV. When the photon energy increases,
a peak appears at h̄ω ≈ 2.1 eV, which is the same energy for
the weak peak appearing in the MFA. In brief, the Coulomb
interaction mainly affects the THG in the following ways:
(1) THG in the MFA is orders of magnitude larger than
that in the IPA. The increase is even much larger than that
calculated for the linear response. Therefore, the details of
the band structure are very important for understanding the
optical nonlinearity. (2) The further inclusion of EXEs can
bring the THG very close to the results in the IPA, showing a
strong interference between the mean-field contribution and
the excitonic contribution. (3) At low-photon energies, the
Coulomb interaction changes the photon energy dependence,
with the power index changing from n0 = 4.4 in the IPA to

nm = 3 in the MFA and ne = 5.5 in the EXE results. (4) For
the EXE spectra, the three-photon resonance with the M-point
gives a peak at h̄� ≈ 2.1 eV. This energy does not correspond
to the one third of the M-point exciton energy (5.3 eV/3 ∼
1.8 eV), but is very close to one-third of the M-point energy
in the MFA (6.5 eV/3 ∼ 2.16 eV). The lack of an energy
shift may indicate that the EXEs are not important for the
three-photon resonance with the M point. These four features
indicate the importance of the Coulomb interaction on the
THG in an intrinsic graphene; both (1) and (2) correspond to
similar effects of Coulomb interaction on the linear optical
response.

To gain some insight into these features, we calculate
the transition-energy-resolved THG conductivity, shown in
Fig. 4 for h̄� = 0.7 eV, 1.5 eV, and 2.1 eV. In the single-
particle approximations, the values of |σ (3)(�, εt )| show
three peak contributions located around transition energies
mh̄� with m = 1, 2, 3, corresponding to the one-photon, two-
photon, and three-photon resonant transitions. In the IPA, the
two-photon resonant transition destructively interferes with
the one-photon and three-photon resonant transitions [28]
(approximately corresponding to prefactors −17, 64,−45),
which results in a small THG conductivity. In the MFA, there
are of course changes in the DOS and the dipole matrix
elements that affect the THG, but as well the interference is
also greatly changed due to the modification of the Dirac band
structure. Although there is still some destructive interference
between these transitions, the sign of the first peak in the
MFA is changed compared to that in the IPA, the cancellation
is not complete, and this leads to a larger THG response.
As well, there is an additional peak located at zero energy.
This peak has the same sign as the peak at 2h̄�, and it
is larger in the MFA than in the IPA. With the inclusion
of excitonic effects, the transition energy distribution of the
absolute values of THG becomes very similar to that of the
IPA, especially around the peak at εt = 0; simultaneously,
an additional phase is introduced around each peak that
changes both the real and imaginary parts. The results indicate
that the interference between the mean-field contributions
and the EXEs also exists in the optical nonlinearity. For
h̄� = 2.1 eV, the transition-energy-resolved spectra shows
that the resonant peaks locate around εt ∼ mh̄�, which are
similar to the dependence in the single-particle approxima-
tion. This confirms that EXEs play a minor role for the peak
around h̄� ≈ 2.1 eV in Fig. 3.
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FIG. 5. Effects of the substrate dielectric constant ε on the THG
conductivity. (a) The spectrum of the THG conductivity for different
ε. (b) The ε of the THG conductivity for three-photon energy
h̄� = 0.2, 0.7, and 1.0 eV. The results for 0.2 eV are scaled by 10−3.

We now turn to a comparison with early experiments
[37–40], in which lightly doped graphene samples were used.
For the experiments with wavelengths [37–39] in the range
of 1.5 ∼ 1.7 μm, the calculated THG coefficients in the IPA
and EXE are almost the same, and thus the inclusion of
the Coulomb interaction at the Hartree-Fock level does not
improve the results in the IPA and linear dispersion approx-
imation. For a fundamental wavelength at λ = 0.8 μm, with
its third harmonics resonant with the M point [40], the linear
dispersion approximation is no longer appropriate, and our
numerical calculation gives the THG susceptibility χ (3) =
σ (3)λ/(−6iπcε0deff ) as 1.8×10−19 m3/V3 for the peak of the
IPA at h̄� ∼ 1.6 eV and 0.68×10−19 m3/V3 for the peak
of the EXE at h̄� ∼ 2.1 eV, where c is the speed of light
and deff = 3.3 Å is the effective thickness of graphene. Both
calculated values are of the same order of magnitude of the
experimental value [40].

C. Substrate effects

Because of the complexity of the nonlinear optical re-
sponse of graphene, it is easy to reveal the consequences of
many-body effects by changing the substrate, or more gen-
erally the environment, which is very effective in tuning the
interaction strength of the Coulomb interaction [5]. In Fig. 5,
we show how the background dielectric constant ε affects the
THG. The Coulomb interaction is inversely proportional to ε,
and thus a large background dielectric constant corresponds
to a weak interaction; the limit ε → ∞ corresponds to no
Coulomb interaction.

With an increase in ε, the THG conductivity decreases for
photon energies h̄� less than about 0.8 eV, and the power in-
dex n for σ (3) ∝ �−n also decreases. But for photon energies
h̄� larger than about 0.8 eV, the THG conductivity increases;
the peak corresponding to the resonant three-photon transition
at the M point is shifted to a lower photon energy, because
the energy renormalization decreases with the strength of
the Coulomb interaction. The THG conductivity is more
sensitive to the substrate dielectric constant at lower photon
energies, and it can change over one order of magnitude for
h̄� = 0.2 eV when ε changes from 2 to ∞.

IV. CONCLUSION

We have theoretically investigated the effects of the
Coulomb interaction on third-harmonic generation from un-
doped graphene in the unscreened Hartree-Fock approxima-
tion, with the inclusion of mean-field energy corrections and
EXEs. Although there are no bound excitons formed in gap-
less graphene, the Coulomb interaction still affects the third-
harmonic generation significantly. We find that the Coulomb
interaction can increase the amplitude of third-harmonic gen-
eration at low-photon energy, and decrease it at high-photon
energy. Despite the fact that saddle point excitons lead to a
large energy shift of the resonant peak in linear absorption,
they leave no fingerprint on the energy of the three-photon res-
onance in third harmonic generation. The underlying physics
can be understood by the inclusion of the Coulomb inter-
action in a step-by-step fashion. At the level of the MFA,
the Coulomb interaction greatly modifies the single-particle
band structure, which leads to an enhancement of the third-
harmonic generation by around two orders of magnitude com-
pared to the results obtained without the Hartree-Fock term.
However, with the full inclusion of the Hartree-Fock term,
this large enhancement is largely canceled, except for the
Coulomb-induced changes of the power scaling. Therefore,
there is a very strong interference between the contributions
from the mean-field energy correction and EXEs. We found
these effects could be revealed experimentally by changing
the background dielectric constant, leading to changes both in
the absolute value of the third-harmonic generation coefficient
and in its frequency dependence. The strength of the modifi-
cations due to changes in the environment is very sensitive
to the fundamental frequency and a stronger dependence on
the environment dielectric constant can be found at lower
incident photon energy. Therefore, the strong dependence of
third-harmonic generation on the Coulomb interaction may
provide an tool for studying the many-body effect in graphene.

For undoped graphene, our results show that the Coulomb
interaction can significantly modify third-harmonic genera-
tion at low frequencies. Thus it may be important as well in
other nonlinear optical phenomena involving small frequen-
cies, such as degenerate four-wave mixing, coherent current
injection, Kerr effects and two-photon absorption, current-
induced second-order optical nonlinearity, and jerk current
[50]. For doped graphene, where dynamic screening should be
important, the unscreened Hartree-Fock approximation may
be not adequate. Previous calculations [28,31] of the optical
nonlinearity in doped graphene exhibit many resonances,
arising whenever any photon energy involved matches the gap
induced by a nonzero chemical potential; they are also ob-
served in recent experiments [14,16]. What role the Coulomb
interaction plays around these resonances is an important
but unexplored problem in understanding the physics of the
optical nonlinearity in graphene.

ACKNOWLEDGMENTS

This work has been supported by K.C. Wong Ed-
ucation Foundation Grant No. GJTD-2018-08), scientific
research project of the Chinese Academy of Sciences
Grant No. QYZDB-SSW-SYS038, National Natural Science

245433-6



THIRD HARMONIC GENERATION OF UNDOPED GRAPHENE … PHYSICAL REVIEW B 100, 245433 (2019)

Foundation of China Grants No. 11774340 and No. 61705227.
J.E.S. is supported by the Natural Sciences and Engineering
Research Council of Canada. J.L.C. acknowledges the support
from Xu Guang Talent Program of CIOMP and valuable
discussions with Prof. K. Shen.

APPENDIX: THE DERIVATION
OF THE EQUATION OF MOTION

We start with a tight-binding Hamiltonian Ĥ = Ĥ0 +
Ĥc + eE(t ) · r̂ with

Ĥ0 =
∑

iα, jβ,σ

γi− j,αβa†
iασ a jβσ , (A1)

Ĥc = 1

2

∑
iασ1
jβσ2

Vi− j,αβa†
iασ1

a†
jβσ2

a jβσ2 aiασ1 , (A2)

r̂ =
∑
iασ

Riαa†
iασ aiασ . (A3)

Here aiασ is an annihilation operator of an electronic pz orbital
with a spin σ (=↑,↓) at the site Riα = Ri + τα , where i =
(ni, mi ) is an abbreviated notation for Ri = nia1 + mia2. The
term Ĥ0 gives the unperturbated tight binding Hamiltonian. In
this paper, we use the parameters

γi,AB = −γ0[δi,(0,0) + δi,(1,0) + δi,(0,1)], (A4)

γi,BA = −γ0[δi,(0,0) + δi,(−1,0) + δi,(0,−1)]. (A5)

We treat the Coulomb interaction Ĥc at the level of Hartree-
Fock approximation, and take

Ĥc →
∑
iασ1
jβσ2

Vi− j,αβ [〈a†
iασ1

aiασ1〉a†
jβσ2

a jβσ2

−〈a†
iασ1

a jβσ2〉a†
jβσ2

aiασ1 ]. (A6)

The constant energy shift in this approximation has been
ignored. The notation 〈P〉 stands for the statistical average of

the operator P over the ground state. Considering a paramag-
netic ground state in extended graphene, the term 〈a†

iασ1
a jβσ2〉

should only be a function of i − j due to the translational sym-
metry. Then the first term can be seen to be a simple energy
shift. By ignoring the spin we get an effective Hamiltonian as

Ĥeff(t ) =
∑
iα jβ

[
γi− j,αβ + H

HF
i− j,αβ

]
a†

iαa jβ + eE(t ) · r̂, (A7)

with

H
HF
i− j,αβ = −Vi− j,αβ〈a†

jβaiα〉 . (A8)

In this work, we describe the dynamics of the system by
a density matrix ρ i− j,αβ (t ) = 〈a†

jβ (t )aiα (t )〉, with aiα (t ) being
the operator aiα in Heisenberg representation. In the Hartree-
Fock approximation, it satisfies the equation of motion

ih̄∂tρ i;αβ (t ) =
∑

j

[
γi− j + H

HF
i− j, ρ j (t )

]
αβ

+ eE(t ) · (Ri + τα − τβ )ρ i;αβ (t )

− i	
[
ρ i;αβ (t ) − ρ0

i;αβ

]
. (A9)

In the commutator, γi, HHF
i , and ρ i(t ) are treated as matrices

with elements determined by the indexes αβ. The last term
models the relaxation process with one phenomenological en-
ergy parameter 	, and ρ0

i;αβ gives the equilibrium distribution
including the Hartree-Fock effects. The velocity operator is
given by v̂ = (ih̄)−1[r̂, Ĥeff(t )] = ∑

i jαβ vi− j,αβa†
iαa jβ with

v j,αβ = (ih̄)−1(R j + τα − τβ )
(
γ j,αβ + H

HF
j;αβ

)
. (A10)

Then the current density can be calculated through

J(t ) = −eA−1
∑
jαβ

v j,αβρ− j;βα (t ) . (A11)

After Fourier transform of the index i to wave vectors
k, i.e., γ j → H0

k = ∑
j e−ik·R j γ j , as well as H

HF
j → HHF

k ,
ρ j → ρk, and changing to the moving frame, we get the
equations in the main text.

[1] M. Kira and S. Koch, Prog. Quantum Electron. 30, 155 (2006).
[2] S. G. Louie, Predicting materials and properties: Theory of

the ground and excited state, in Conceptual Foundations of
Materials—A Standard Model for Ground- and Excited-State
Properties (Elsevier, Amsterdam, 2006), Chap. 2, pp. 9–53.

[3] E. H. Hwang and S. Das Sarma, Phys. Rev. B 77, 081412(R)
(2008).

[4] J. Grönqvist, T. Stroucken, M. Lindberg, and S. Koch,
Eur. Phys. J. B 85, 395 (2012).

[5] P. Yadav, P. K. Srivastava, and S. Ghosh, Nanoscale 7, 18015
(2015).

[6] L. Yang, J. Deslippe, C.-H. Park, M. L. Cohen, and S. G. Louie,
Phys. Rev. Lett. 103, 186802 (2009).

[7] J. Jung and A. H. MacDonald, Phys. Rev. B 84, 085446
(2011).

[8] M. I. Katsnelson, Europhys. Lett. 84, 37001 (2008).
[9] K. F. Mak, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 106,

046401 (2011).

[10] K. F. Mak, F. H. da Jornada, K. He, J. Deslippe, N. Petrone, J.
Hone, J. Shan, S. G. Louie, and T. F. Heinz, Phys. Rev. Lett.
112, 207401 (2014).

[11] E. Malic, T. Winzer, E. Bobkin, and A. Knorr, Phys. Rev. B 84,
205406 (2011).

[12] H. K. Avetissian and G. F. Mkrtchian, Phys. Rev. B 97, 115454
(2018).

[13] Y. Zhang, D. Huang, Y. Shan, T. Jiang, Z. Zhang, K. Liu, L. Shi,
J. Cheng, J. E. Sipe, W.-T. Liu, and S. Wu, Phys. Rev. Lett. 122,
047401 (2019).

[14] T. Jiang, D. Huang, J. Cheng, X. Fan, Z. Zhang, Y. Shan, Y. Yi,
Y. Dai, L. Shi, K. Liu, C. Zeng, J. Zi, J. E. Sipe, Y.-R. Shen,
W.-T. Liu, and S. Wu, Nat. Photon. 12, 430 (2018), and
references therein.

[15] K. Alexander, N. A. Savostianova, S. A. Mikhailov, B. Kuyken,
and D. V. Thourhout, ACS Photon. 4, 3039 (2017).

[16] G. Soavi, G. Wang, H. Rostami, D. G. Purdie, D. De Fazio,
T. Ma, B. Luo, J. Wang, A. K. Ott, D. Yoon, S. A. Bourelle,

245433-7

https://doi.org/10.1016/j.pquantelec.2006.12.002
https://doi.org/10.1016/j.pquantelec.2006.12.002
https://doi.org/10.1016/j.pquantelec.2006.12.002
https://doi.org/10.1016/j.pquantelec.2006.12.002
https://doi.org/10.1103/PhysRevB.77.081412
https://doi.org/10.1103/PhysRevB.77.081412
https://doi.org/10.1103/PhysRevB.77.081412
https://doi.org/10.1103/PhysRevB.77.081412
https://doi.org/10.1140/epjb/e2012-30593-0
https://doi.org/10.1140/epjb/e2012-30593-0
https://doi.org/10.1140/epjb/e2012-30593-0
https://doi.org/10.1140/epjb/e2012-30593-0
https://doi.org/10.1039/C5NR04800A
https://doi.org/10.1039/C5NR04800A
https://doi.org/10.1039/C5NR04800A
https://doi.org/10.1039/C5NR04800A
https://doi.org/10.1103/PhysRevLett.103.186802
https://doi.org/10.1103/PhysRevLett.103.186802
https://doi.org/10.1103/PhysRevLett.103.186802
https://doi.org/10.1103/PhysRevLett.103.186802
https://doi.org/10.1103/PhysRevB.84.085446
https://doi.org/10.1103/PhysRevB.84.085446
https://doi.org/10.1103/PhysRevB.84.085446
https://doi.org/10.1103/PhysRevB.84.085446
https://doi.org/10.1209/0295-5075/84/37001
https://doi.org/10.1209/0295-5075/84/37001
https://doi.org/10.1209/0295-5075/84/37001
https://doi.org/10.1209/0295-5075/84/37001
https://doi.org/10.1103/PhysRevLett.106.046401
https://doi.org/10.1103/PhysRevLett.106.046401
https://doi.org/10.1103/PhysRevLett.106.046401
https://doi.org/10.1103/PhysRevLett.106.046401
https://doi.org/10.1103/PhysRevLett.112.207401
https://doi.org/10.1103/PhysRevLett.112.207401
https://doi.org/10.1103/PhysRevLett.112.207401
https://doi.org/10.1103/PhysRevLett.112.207401
https://doi.org/10.1103/PhysRevB.84.205406
https://doi.org/10.1103/PhysRevB.84.205406
https://doi.org/10.1103/PhysRevB.84.205406
https://doi.org/10.1103/PhysRevB.84.205406
https://doi.org/10.1103/PhysRevB.97.115454
https://doi.org/10.1103/PhysRevB.97.115454
https://doi.org/10.1103/PhysRevB.97.115454
https://doi.org/10.1103/PhysRevB.97.115454
https://doi.org/10.1103/PhysRevLett.122.047401
https://doi.org/10.1103/PhysRevLett.122.047401
https://doi.org/10.1103/PhysRevLett.122.047401
https://doi.org/10.1103/PhysRevLett.122.047401
https://doi.org/10.1038/s41566-018-0175-7
https://doi.org/10.1038/s41566-018-0175-7
https://doi.org/10.1038/s41566-018-0175-7
https://doi.org/10.1038/s41566-018-0175-7
https://doi.org/10.1021/acsphotonics.7b00559
https://doi.org/10.1021/acsphotonics.7b00559
https://doi.org/10.1021/acsphotonics.7b00559
https://doi.org/10.1021/acsphotonics.7b00559


J. L. CHENG, J. E. SIPE, AND CHUNLEI GUO PHYSICAL REVIEW B 100, 245433 (2019)

J. E. Muench, I. Goykhman, S. Dal Conte, M. Celebrano,
A. Tomadin, M. Polini, G. Cerullo, and A. C. Ferrari,
Nat. Nanotechnol. 13, 583 (2018).

[17] N. Yoshikawa, T. Tamaya, and K. Tanaka, Science 356, 736
(2017).

[18] I. Al-Naib, J. E. Sipe, and M. M. Dignam, Phys. Rev. B 90,
245423 (2014).

[19] M. Baudisch, A. Marini, J. D. Cox, T. Zhu, F. Silva, S.
Teichmann, M. Massicotte, F. Koppens, L. S. Levitov, F. J. G.
de Abajo, and J. Biegert, Nat. Commun. 9, 1018 (2018).

[20] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photon.
4, 611 (2010).

[21] Z. Sun, A. Martinez, and F. Wang, Nat. Photon. 10, 227 (2016).
[22] A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun,

Adv. Mater. 30, 1705963 (2018).
[23] S. A. Mikhailov, Europhys. Lett. 79, 27002 (2007).
[24] E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A.

Mikhailov, Phys. Rev. Lett. 105, 097401 (2010).
[25] T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu,

G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, Nat. Photon.
6, 554 (2012).

[26] N. Vermeulen, D. Castelló-Lurbe, J. L. Cheng, I. Pasternak, A.
Krajewska, T. Ciuk, W. Strupinski, H. Thienpont, and J. Van
Erps, Phys. Rev. Appl. 6, 044006 (2016).

[27] N. Vermeulen, D. Castelló-Lurbe, M. Khoder, I. Pasternak, A.
Krajewska, T. Ciuk, W. Strupinski, J. Cheng, H. Thienpont, and
J. Van Erps, Nat. Commun. 9, 2675 (2018).

[28] J. L. Cheng, N. Vermeulen, and J. E. Sipe, New J. Phys. 16,
053014 (2014); 18, 029501 (2016).

[29] J. L. Cheng, N. Vermeulen, and J. E. Sipe, Phys. Rev. B 91,
235320 (2015); 93, 039904(E) (2016).

[30] J. L. Cheng, N. Vermeulen, and J. E. Sipe, Phys. Rev. B 92,
235307 (2015).

[31] S. A. Mikhailov, Phys. Rev. B 93, 085403 (2016).
[32] H. Rostami and M. Polini, Phys. Rev. B 93, 161411(R) (2016).
[33] S. A. Mikhailov, Phys. Rev. B 84, 045432 (2011).
[34] H. Rostami, M. I. Katsnelson, and M. Polini, Phys. Rev. B 95,

035416 (2017).
[35] T. J. Constant, S. M. Hornett, D. E. Chang, and E. Hendry,

Nat. Phys. 12, 124 (2016).

[36] J. L. Cheng, J. E. Sipe, N. Vermeulen, and C. Guo, J. Phys.
Photon. 1, 015002 (2019).

[37] N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu,
A. L. Smirl, and H. Zhao, Phys. Rev. B 87, 121406(R) (2013).

[38] A. Säynätjoki, L. Karvonen, J. Riikonen, W. Kim, S. Mehravar,
R. A. Norwood, N. Peyghambarian, H. Lipsanen, and K. Kieu,
ACS Nano 7, 8441 (2013).

[39] R. I. Woodward, R. T. Murray, C. F. Phelan, R. E. P. de Oliveira,
T. H. Runcorn, E. J. R. Kelleher, S. Li, E. C. de Oliveira,
G. J. M. Fechine, G. Eda, and C. J. S. de Matos, 2D Mater.
4, 011006 (2017).

[40] S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and
R. M. Osgood, Jr., Phys. Rev. X 3, 021014 (2013).

[41] J. Jiang, R. Saito, G. G. Samsonidze, A. Jorio, S. G. Chou, G.
Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 75, 035407
(2007).

[42] For graphene embedded inside two different materials, the
background dielectric constant is the average of the dielectric
constants. Because the interaction is mainly through the electric
force outside of the graphene plane, the screening from the
graphene electrons is ignored.

[43] E. H. Hwang, Ben Yu-Kuang Hu, and S. Das Sarma, Phys. Rev.
Lett. 99, 226801 (2007).

[44] T. Stroucken, J. H. Grönqvist, and S. W. Koch, J. Opt. Soc. Am.
B 29, A86 (2012).

[45] T. Stroucken, J. H. Grönqvist, and S. W. Koch, Phys. Rev. B 84,
205445 (2011).

[46] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and
Optics of Semiconductors (Springer, Berlin, 2007).

[47] Z. S. Sadeq, R. A. Muniz, and J. E. Sipe, Phys. Rev. Mater. 2,
014001 (2018).

[48] This work considers the third harmonic generation in the weak
field regime, thus the use of a periodic field follows the standard
perturbative treatment, which should be suitable in experiments
where the pulse duration is much longer than the relaxation time
[30].

[49] Z. Liu, C. Zhang, and J. C. Cao, Phys. Rev. B 96, 035206
(2017).

[50] J. L. Cheng, J. E. Sipe, S. W. Wu, and C. Guo, APL Photon. 4,
034201 (2019).

245433-8

https://doi.org/10.1038/s41565-018-0145-8
https://doi.org/10.1038/s41565-018-0145-8
https://doi.org/10.1038/s41565-018-0145-8
https://doi.org/10.1038/s41565-018-0145-8
https://doi.org/10.1126/science.aam8861
https://doi.org/10.1126/science.aam8861
https://doi.org/10.1126/science.aam8861
https://doi.org/10.1126/science.aam8861
https://doi.org/10.1103/PhysRevB.90.245423
https://doi.org/10.1103/PhysRevB.90.245423
https://doi.org/10.1103/PhysRevB.90.245423
https://doi.org/10.1103/PhysRevB.90.245423
https://doi.org/10.1038/s41467-018-03413-7
https://doi.org/10.1038/s41467-018-03413-7
https://doi.org/10.1038/s41467-018-03413-7
https://doi.org/10.1038/s41467-018-03413-7
https://doi.org/10.1038/nphoton.2010.186
https://doi.org/10.1038/nphoton.2010.186
https://doi.org/10.1038/nphoton.2010.186
https://doi.org/10.1038/nphoton.2010.186
https://doi.org/10.1038/nphoton.2016.15
https://doi.org/10.1038/nphoton.2016.15
https://doi.org/10.1038/nphoton.2016.15
https://doi.org/10.1038/nphoton.2016.15
https://doi.org/10.1002/adma.201705963
https://doi.org/10.1002/adma.201705963
https://doi.org/10.1002/adma.201705963
https://doi.org/10.1002/adma.201705963
https://doi.org/10.1209/0295-5075/79/27002
https://doi.org/10.1209/0295-5075/79/27002
https://doi.org/10.1209/0295-5075/79/27002
https://doi.org/10.1209/0295-5075/79/27002
https://doi.org/10.1103/PhysRevLett.105.097401
https://doi.org/10.1103/PhysRevLett.105.097401
https://doi.org/10.1103/PhysRevLett.105.097401
https://doi.org/10.1103/PhysRevLett.105.097401
https://doi.org/10.1038/nphoton.2012.147
https://doi.org/10.1038/nphoton.2012.147
https://doi.org/10.1038/nphoton.2012.147
https://doi.org/10.1038/nphoton.2012.147
https://doi.org/10.1103/PhysRevApplied.6.044006
https://doi.org/10.1103/PhysRevApplied.6.044006
https://doi.org/10.1103/PhysRevApplied.6.044006
https://doi.org/10.1103/PhysRevApplied.6.044006
https://doi.org/10.1038/s41467-018-05081-z
https://doi.org/10.1038/s41467-018-05081-z
https://doi.org/10.1038/s41467-018-05081-z
https://doi.org/10.1038/s41467-018-05081-z
https://doi.org/10.1088/1367-2630/16/5/053014
https://doi.org/10.1088/1367-2630/16/5/053014
https://doi.org/10.1088/1367-2630/16/5/053014
https://doi.org/10.1088/1367-2630/16/5/053014
https://doi.org/10.1088/1367-2630/18/2/029501
https://doi.org/10.1088/1367-2630/18/2/029501
https://doi.org/10.1088/1367-2630/18/2/029501
https://doi.org/10.1103/PhysRevB.91.235320
https://doi.org/10.1103/PhysRevB.91.235320
https://doi.org/10.1103/PhysRevB.91.235320
https://doi.org/10.1103/PhysRevB.91.235320
https://doi.org/10.1103/PhysRevB.93.039904
https://doi.org/10.1103/PhysRevB.93.039904
https://doi.org/10.1103/PhysRevB.93.039904
https://doi.org/10.1103/PhysRevB.92.235307
https://doi.org/10.1103/PhysRevB.92.235307
https://doi.org/10.1103/PhysRevB.92.235307
https://doi.org/10.1103/PhysRevB.92.235307
https://doi.org/10.1103/PhysRevB.93.085403
https://doi.org/10.1103/PhysRevB.93.085403
https://doi.org/10.1103/PhysRevB.93.085403
https://doi.org/10.1103/PhysRevB.93.085403
https://doi.org/10.1103/PhysRevB.93.161411
https://doi.org/10.1103/PhysRevB.93.161411
https://doi.org/10.1103/PhysRevB.93.161411
https://doi.org/10.1103/PhysRevB.93.161411
https://doi.org/10.1103/PhysRevB.84.045432
https://doi.org/10.1103/PhysRevB.84.045432
https://doi.org/10.1103/PhysRevB.84.045432
https://doi.org/10.1103/PhysRevB.84.045432
https://doi.org/10.1103/PhysRevB.95.035416
https://doi.org/10.1103/PhysRevB.95.035416
https://doi.org/10.1103/PhysRevB.95.035416
https://doi.org/10.1103/PhysRevB.95.035416
https://doi.org/10.1038/nphys3545
https://doi.org/10.1038/nphys3545
https://doi.org/10.1038/nphys3545
https://doi.org/10.1038/nphys3545
https://doi.org/10.1088/2515-7647/aaeadb
https://doi.org/10.1088/2515-7647/aaeadb
https://doi.org/10.1088/2515-7647/aaeadb
https://doi.org/10.1088/2515-7647/aaeadb
https://doi.org/10.1103/PhysRevB.87.121406
https://doi.org/10.1103/PhysRevB.87.121406
https://doi.org/10.1103/PhysRevB.87.121406
https://doi.org/10.1103/PhysRevB.87.121406
https://doi.org/10.1021/nn4042909
https://doi.org/10.1021/nn4042909
https://doi.org/10.1021/nn4042909
https://doi.org/10.1021/nn4042909
https://doi.org/10.1088/2053-1583/4/1/011006
https://doi.org/10.1088/2053-1583/4/1/011006
https://doi.org/10.1088/2053-1583/4/1/011006
https://doi.org/10.1088/2053-1583/4/1/011006
https://doi.org/10.1103/PhysRevX.3.021014
https://doi.org/10.1103/PhysRevX.3.021014
https://doi.org/10.1103/PhysRevX.3.021014
https://doi.org/10.1103/PhysRevX.3.021014
https://doi.org/10.1103/PhysRevB.75.035407
https://doi.org/10.1103/PhysRevB.75.035407
https://doi.org/10.1103/PhysRevB.75.035407
https://doi.org/10.1103/PhysRevB.75.035407
https://doi.org/10.1103/PhysRevLett.99.226801
https://doi.org/10.1103/PhysRevLett.99.226801
https://doi.org/10.1103/PhysRevLett.99.226801
https://doi.org/10.1103/PhysRevLett.99.226801
https://doi.org/10.1364/JOSAB.29.000A86
https://doi.org/10.1364/JOSAB.29.000A86
https://doi.org/10.1364/JOSAB.29.000A86
https://doi.org/10.1364/JOSAB.29.000A86
https://doi.org/10.1103/PhysRevB.84.205445
https://doi.org/10.1103/PhysRevB.84.205445
https://doi.org/10.1103/PhysRevB.84.205445
https://doi.org/10.1103/PhysRevB.84.205445
https://doi.org/10.1103/PhysRevMaterials.2.014001
https://doi.org/10.1103/PhysRevMaterials.2.014001
https://doi.org/10.1103/PhysRevMaterials.2.014001
https://doi.org/10.1103/PhysRevMaterials.2.014001
https://doi.org/10.1103/PhysRevB.96.035206
https://doi.org/10.1103/PhysRevB.96.035206
https://doi.org/10.1103/PhysRevB.96.035206
https://doi.org/10.1103/PhysRevB.96.035206
https://doi.org/10.1063/1.5053715
https://doi.org/10.1063/1.5053715
https://doi.org/10.1063/1.5053715
https://doi.org/10.1063/1.5053715

