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Theory for the stationary polariton response in the presence of vibrations
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We construct a model describing the response of a hybrid system where the electromagnetic field—in
particular, surface plasmon polaritons—couples strongly with electronic excitations of atoms or molecules. Our
approach is based on the input-output theory of quantum optics, and in particular it takes into account the thermal
and quantum vibrations of the molecules. The latter is described within the P(E ) theory analogous to that used in
the theory of dynamical Coulomb blockade. As a result, we are able to include the effect of the molecular Stokes
shift on the strongly coupled response of the system. Our model then accounts for the asymmetric emission from
upper and lower polariton modes. It also allows for an accurate description of the partial decoherence of the
light emission from the strongly coupled system. Our results can be readily used to connect the response of the
hybrid modes to the emission and fluorescence properties of the individual molecules, and thus are relevant in
understanding any utilization of such systems, such as coherent light harvesting.
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I. INTRODUCTION

Photonic structures, such as optical cavities or surface
plasmon polaritons, can modify an electromagnetic vacuum
field by confining the light to smaller volumes and restrict-
ing the number of available photonic modes. Any electronic
excitation inside such modified vacuum can interact much
more strongly with the confined light mode. This interaction
can become strong enough for the coupling energy to show
up in the absorption and emission spectra of such systems,
suggesting the formation of hybrid light-matter states, called
polaritons. Common examples studied in this strong-coupling
limit are single atoms [1], excitons in semiconductors [2], and
photoactive molecules [3,4].

More recently, strong coupling of molecules with con-
fined light modes has been the focus of interest because the
hybridization between light and matter into polaritons not
only delocalizes the excitation over many molecules, but also
changes their potential-energy surface, and thus provides a
new way to control chemistry [5]. Experiments on strongly
coupled molecules have already shown (i) suppression of
photo-oxidation of TBDC J-aggregates coupled to plasmonic
nanoprisms [6], and of photoisomerization of Spiropyran in-
side an optical cavity [7]; (ii) enhanced electronic conductivity
in organic semiconductors [8]; (iii) intermolecular excitation
energy transfer over large distances inside optical cavities
[9,10]; and (iv) enhanced decay of triplet states in erythrosine
B molecules [11]. Since polaritons are like interacting dressed
photons with mass, they can undergo Bose-Einstein conden-
sation even at room temperature [12], which further enables
very efficient and thresholdless polariton lasing [13,14].

Strong coupling between a single molecule and electro-
magnetic field is very hard to achieve [15,16]. The com-
mon way to circumvent this problem is to couple multiple
molecules to the same photonic mode. Often these systems are

still described within effective two-state models accounting
only for the two polaritonic states [17]. However, such a
description disregards the fact that the visible polariton modes
are now superpositions of several molecular excitations and
the photonic mode, and they are not the only eigenmodes of
the system. The response of the whole system also depends
on the presence of “dark modes,” i.e., superpositions having
no photonic component. These dark modes become relevant
especially when dissipation processes within the molecules,
such as those linked to vibrations, are included. In this case,
they can dramatically affect the predicted guiding of the
chemistry, and even the validity of the whole concept. They
have been taken into account in some multiscale simulations
coupling the investigated molecules to thermal environments
[18]. However, those simulations often consider the transient
response, whereas the majority of experiments on light-matter
coupling concern stationarily driven setups.

Here we construct a detailed description of the stationar-
ily driven response of the strongly coupled system, taking
into account the effect of inhomogeneous broadening of the
molecular response due to quantum and thermal vibrations of
the molecules. We take the vibrations into account via the
P(E ) theory analogous to that used in Coulomb blockade
[19,20]. This theory describes the probability of absorbing
(for E > 0) or emitting (E < 0) the energy E to/from the
vibrations. For the specific models of harmonic vibrations,
such a P(E ) function can be calculated exactly. In general, we
find how this P(E ) is related to the absorption and emission
spectra of individual molecules. Therefore, an alternative ap-
proach is to deduce an effective P(E ) for the measured spectra
of individual molecules. The resulting fluorescence spectrum
is similar to that found via quantum many-body theory [21].
However, in these approaches, only the transient response is
considered which requires assumptions on the initial state
of the system. In our work, the focus is on the stationary
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response, in which case different conservation laws and their
explicit breaking come into focus. What is more, we connect
this fluorescence spectrum directly to the absorption/emission
spectrum of the strongly coupled system. In a certain limit of
parameters, the resulting inhomogeneous broadening of the
molecular absorption/emission then determines the linewidth
of the polariton modes. In particular, our model explains the
asymmetric emission spectra of upper and lower polaritons
seen in many experiments [22–27], as well as the varying
polarization of that emission depending on the quantum co-
herence of the system, as shown recently [22].

Besides the detailed description of the vibrations, we in-
clude polarization of the confined light field and the positions
of the molecules. The position of a molecule with respect to
the light field only amounts to a phase factor to the light-
matter coupling, but collectively it leads to experimentally
observable effects. Perhaps the most striking effect is the
superradiance due to coherent emission described by Dicke
in the 1950s [28], but conversely it is seen in the usual
experiments where many molecules are distributed over a
region larger than the light wavelength. On the other hand,
the polarization of the light and the transition dipole moment
of a molecule determine whether there is coupling at all: if
these directions are perpendicular, the coupling vanishes. This
provides another way to control light-matter interaction which
could be used in applications [29]. In this paper, we describe
both the incoherent and coherent limits of polaritonics.

Although many aspects of our theory can be generalized
to any confined light mode, such as resonances of Fabry-
Pérot cavities, here we focus in particular on surface plasmon
polaritons (below, plasmons) driven by an external light field.
Plasmons are evanescent like electromagnetic modes propa-
gating along a metal-dielectric surface with a two-dimensional
momentum �k along the surface. In general, they have a
nonlinear dispersion ω(�k), and due to the evanescent nature
their electromagnetic field is highly confined to the surface.
Because of this confinement, the dipolar coupling to molec-
ular excitations residing at the surface can be made strong
[3,23], leading to the observed avoided crossing between
the two systems and thus offering the possibility to control
photochemical reactions. A typical way to launch plasmons is
via the Kretschmann configuration, i.e., coupling an external
electromagnetic field to the surface modes via a prism [30].
In this setup, the angle with which the light enters the prism
determines a specific plasmon �k vector. Hence, in this work,
we concentrate on a single plasmon mode with defined �k and
a generic frequency ωc.

To be specific, we consider the plasmon-molecule system
in the strong-coupling regime. We describe the plasmon by a
single bosonic mode c of frequency ωc and a given polariza-
tion ûpl with respect to its wave vector �k. A concrete example
of such a plasmon is the surface plasmon polariton traveling
along an interface in the xy plane in the y direction with
ûpl = (0, sin β, cos β ) as in Fig. 1(a). The plasmon interacts
with N identical molecules [31,32], which we approximate
as two-level systems with transition frequency ωm. We de-
note the rising (lowering) operator of a molecule with σ

†
j

(σ j). As in typical experiments, we assume that the electric
dipole moments of the molecules point in uniformly random

FIG. 1. (a) The measurement setup in which a surface plasmon
polariton is excited on an interface where it can strongly couple
to molecules. (b) Schematic with relevant parameters to the input-
output formalism.

directions n̂ j . Following the standard approach of quantum
optics [33,34], the Hamiltonian of the strong-coupled system
is in the rotating wave approximation (h̄ = 1),

Hs−c = ωcc†c +
N∑

j=1

(ωmσ
†
j σ j + g jσ

†
j c + g∗

jc
†σ j ). (1)

The position �r j of a molecule affects the coupling g j in two
ways: it contains a complex phase factor due to the phase
of the plasmon, and the coupling strength depends on the
distance to the interface. If this distance is independent of
the polarization, the latter effect may be disregarded and the
average value used. Also, the coupling strength depends on the
angle between the plasmon polarization and dipole moment of
a molecule. Thus, we write g j = gei�k·�r j (n̂ j · ûpl ).

In addition to the strong-coupled system, we include the
vibrational modes of the molecules. We assume a single
vibration mode b j per molecule with eigenfrequency ωv ,
but the generalization to multiple modes is straightforward
(Appendix A). These vibrations and their interactions are
described by

Hv =
N∑

j=1

ωvb†
jb j +

N∑
j=1

ωv

√
Sσ

†
j σ j (b

†
j + b j ). (2)

The coupling between electronic and vibrational modes
is quantified with a dimensionless parameter

√
S, the

Huang-Rhys factor [35], which is related to the Stokes shift
measured in fluorescent emission.

We seek an approach to find the response of the strongly
coupled plasmon-molecule system in the presence of vibra-
tions. To this end, we employ the input-output formalism of
quantum optics [36,37]. We assume that there are separate
bosonic baths for each molecule, vibration, and plasmon to
which the coupling is linear in σ j, b j , and c, respectively. In
the Markov approximation, these couplings are described by
the dissipation rates κ̃ j, γ j , and κ of the molecules, vibra-
tions, and plasmon. In the following, we suppose identical
molecules and vibrations so that γ j = γ and κ̃ j = κ̃ . We
neglect the thermal fluctuations of plasmons and molecules
here as h̄ωm, h̄ωc � kBT even at room temperature. We
simplify the molecule-vibration Hamiltonian by introducing
a new polaron operator σ S

j = e
√

S(b†
j−b j )σ j ≡ Qjσ j . Lastly,
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we assume a low driving power which corresponds to the
single-excitation limit σ †σ ≈ 0. We find that when h̄ωv

kBT >
γ S
2κm

,
where κm = κ̃ + γ S is the total effective damping rate of the
individual molecules, the dynamics of the vibrational modes
b j are approximately uncoupled from the plasmon-molecule
system, as shown in Appendix B. This allows us to use the
Caldeira-Leggett model [38] for the vibrational dynamics.
The plasmon and molecular equation are, in this case,

ċ = −iωcc − i
∑

j

g∗
jσ

S
j Q†

j − κ

2
c − √

κextcin, (3a)

σ̇ S
j = −iω̃mσ S

j − ig jQjc − κm

2
σ S

j − √
κext

m Qjσin, j, (3b)

where ω̃m = ωm − Sωv is the renormalized molecular fre-
quency, while κext and κext

m are the couplings to external
driving fields. For the plasmon-molecule system, we assume
that only the plasmon is driven so that cin = αe−iωd t and
σin, j = 0.

We model a measurement on the plasmon-molecule system
so that the incoming light cin produces a reflected �R

out and
transmitted �T

out field. These fields contain both the plasmon
and the molecular emission, but not the emission of phonons
from the vibrations because they are usually not measured.
Phonon emission hence allows for a loss of energy in the
process, so that the power in the output fields can be lower
than the one in the input. We also separately include coupling
to s- and p-polarized light represented by ûp = ûy and ûs =
ûx [Fig. 1(a)]. Since the propagating plasmon cannot emit
s-polarized light to the direction perpendicular to the interface
but the molecules have no directional preference, we consider
s- and p-polarized output fields separately. The output fields
obey a general expression,

�
T/R
out,s/p = (

δ
T/R
R cin +

√
κ

T/R
o c

)
δs/p

p +
∑

j

η
T/R
j,s/pσ j . (4)

In this equation, δT
R = 0 and δR

R = 1, meaning that only the
reflected field interferes with the input field. The δ

s/p
p is

defined similarly because the plasmon couples only to p-
polarized modes. The constants η

T/R
j,s/p describe the coupling

of the molecule electronic states to the environmental s- and

p-polarized free-space modes, and thus η
T/R
j,s/p =

√
κ

T/R
m (n̂ j ·

ûs/p). These fields and couplings to the system are represented
schematically in Fig. 1(b). The output spectral density is
obtained from

ST/R
s/p (ω; ωd ) = 1

2π

∫
dteiωt

〈
�

T/R†
out,s/p(0)�T/R

out,s/p(t )
〉
, (5)

where ω is the frequency of the output field and ωd is the
driving frequency.

We note that the Markov approximation leading to Eqs. (3)
disregards the heating of the various baths of the plasmons,
molecules, and vibrations. These heating effects can be disre-
garded when the heat conductance from those baths to other
degrees of freedom exceeds that due to the losses described
by κ, κm, and γ .

II. P(E ) THEORY

The presence of the vibrations makes the input-output
equations (3) nonlinear as they contain products of different
dynamical fields. This nonlinearity leads to an inelastic (flu-
orescent) response of the molecules to the light field, where
the emitted light from the molecules takes place at lower
frequencies than the absorption. This is often referred as the
Stokes shift. In order to take this nonlinearity into account
in the output spectra, we introduce P(E ) theory similar to
the one in a dynamical Coulomb blockade [19]. Recently,
the same problem has been discussed in Ref. [39] using
similar methods, but only in a specific limit of vibrations
(see below). The identification of P(E ) allows for a more
general approach, also enabling the resolution of polariton
emission, which is lacking from Ref. [39]. Let us first define
P(t ) = 〈Q†

j (t )Qj (0)〉 and its Fourier transform,

P(E ) = 1

2π

∫
dteiEt P(t ). (6)

When the molecules are identical, P(E ) does not depend
on the molecule index j; this assumption is easily lifted if
needed. The P(E ) function normalizes to unity and is real for
stationary vibrations, i.e., 〈Q†

j (t + τ )Qj (τ )〉 = 〈Q†
j (t )Qj (0)〉

for any time τ . We can thus interpret the P(E ) function as
a probability distribution of transforming energy E to the
vibrations (E > 0), or vice versa (E < 0). This P(E ) function
is characterized by four parameters: vibration eigenfrequency
ωv , their linewidth γ , Huang-Rhys factor S, and temperature
T of their bath. It constitutes a full description of the response
of the vibrations.

We present a general derivation of the P(E ) function and
a related L function assuming Gaussian thermal fluctuations.
Then, we derive P(E ) analytically in the limit in which γ

vanishes. In this regime, P(E ) is related to the absorption
function defined by Huang and Rhys [35]. However, our
analytic results for the response also apply in the case of
general γ and can be used for different models of vibrations.

A. Derivation of P(E )

We now derive the P(E ) function analytically in a similar
manner as in the context of dynamical Coulomb blockade
[19]. To establish notation, we omit the molecular index j here
and denote x = b† + b and p = i(b† − b), the dimensionless
position and momentum operator, respectively. Then, we may
write Q†(t ) = ei

√
Sp(t ) in the correlator P(t ), which is the

inverse Fourier transform of P(E ). This correlator can be
evaluated for thermal vibrations. If the vibrations are de-
scribed by a harmonic-oscillator Hamiltonian, the fluctuations
are Gaussian and the weak version of the Wick’s theorem
(see, e.g., Ref. [19] and an example of a non-Gaussian P(E )
in Ref. [40]) applies. We identify P(t ) as the characteristic
function of fluctuations of the stochastic quantity p(t ) − p(0),
where everywhere in the calculations p(t ) should be ordered
to the left of p(0). We assume the thermal vibrations to
be stationary, and therefore the expectation value of p(t ) −
p(0) vanishes [as 〈p(t )〉 = 〈p(0)〉 for stationary vibrations].
Consequently, for Gaussian fluctuations, we can write the
characteristic function in terms of the variance alone. In that
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case [20],

P(t ) = eT 〈(i√S[p(t )−p(0)])2〉/2 = eS〈[p(t )−p(0)]p(0)〉, (7)

where the latter equality uses the fact that 〈p(t )2〉 = 〈p(0)2〉.
The operator T takes care of ordering p(t ) before p(0), but
that operator is no longer needed in the second equality be-
cause, there, p(t ) always precedes p(0) in operator products.

Now, p(t ) can be obtained by solving the quantum
Langevin equations without the rotating wave approximation
(also known as the Caldeira-Leggett model [38]),

ẋ(t ) = ωv p(t ), ṗ(t ) = −ωvx(t ) − γ p(t ) + ξ (t ), (8)

where γ is the linewidth of vibrations, and ξ is a Langevin
force describing the thermal fluctuations. It has the correlator

〈ξ (t )ξ (t ′)〉 =
∫

dω exp[−iω(t − t ′)]Sξ (ω), (9)

where the noise correlator is given by

Sξ (ω) = γω

πωv

[
coth

(
ω

2kBT

)
+ 1

]
(10)

for thermal noise [41].
The Langevin equations (8) can be solved via Fourier

transform. The result is(
x(ω)
p(ω)

)
= 1

ω2 − ω2
v + iωγ

(−ωv

iω

)
ξ (ω). (11)

After some Fourier analysis with the help of Eqs. (9)–(11), we
find P(t ) = eJ (t )−J (0) according to Eq. (7), with

J (t ) = S〈p(t )p(0)〉

= Sγ

πωv

∫
dωe−iωt ω3(

ω2 − ω2
v

)2 + ω2γ 2

×
[

coth

(
ω

2kBT

)
+ 1

]
. (12)

The resulting P(E ) is thus governed by three dimensionless
parameters: the Huang-Rhys factor S, the quality factor of
vibrations ωv/γ , and the relative temperature kBT/ωv . Note
that in the Caldeira-Leggett model, J (t ) is related to the
vibrational spectral density Jv (t ) = Sω2

v〈x(t )x(0)〉 via their
respective Fourier transforms by Jv (ω) = J (ω)/ω2.

A simpler expression for J (t ) is obtained if, instead of the
Caldeira-Leggett model, one uses the usual quantum optical
equation ḃ = −(iωv + γ

2 )b + √
γ bin, as in [39] for example.

Then, for white noise 〈bin(t )b†
in(t ′)〉 = (nth + 1)δ(t − t ′), we

find

J (t ) = S(nth + 1)e−iωvt− γ

2 |t | + Sntheiωvt− γ

2 |t |. (13)

Here, nth = (eωv/(kBT ) − 1)−1 is the Bose factor, i.e., the mean
number of thermal phonons at the vibrational frequency ωv .
We arrive at the same solution from the Caldeira-Leggett
model by using the method of residues to calculate the integral
(12) and then approximating γ � ωv . This is hence the limit
where Ref. [39] is valid. However, typical multiscale quantum
chemistry calculations assume the opposite limit of a large
γ � κ̃ , where molecular vibrations decay before the photon
excitation.

Lastly, there are two general properties of the P(E ) func-
tion worth noting. First, since P(t ) may be regarded as a
characteristic function of the probability distribution P(E ), the
raw moments of the energy can be expressed as

E(En) = in dnP(t )t

dtn

∣∣∣∣
t=0

= in dneJ (t )

dtn

∣∣∣∣
t=0

. (14)

With the help of this formula, the mean and variance of P(E )
can be found. Second, the Kubo-Martin-Schwinger (KMS)
relation for thermal fluctuations at temperature T leads to the
detailed balance condition (or emission-absorption asymme-
try) for P(E ),

P(−E ) = exp

(
− E

kBT

)
P(E ). (15)

This asymmetry in P(E ) is relevant for the anti-Stokes part of
the spectrum. Some approximations, such as the white-noise
approximation, break this balance condition.

B. L function

Another quantity we encounter that is relevant for the
emission spectrum of a molecule is the Fourier transform of
the four-point correlator,

L(t1, t2, t3) = 〈Q†(t1)Q(t2)Q†(0)Q(t3)〉. (16)

This function is clearly related to P(t ) as for certain time argu-
ments it coincides with the definition of P(t ), e.g., L(t, 0, 0) =
P(t ). Using the same assumptions as in the derivation of P(E ),
we may write

L(t1, t2, t3) = e−ST 〈[p(t1 )−p(t2 )+p(0)−p(t3 )]2〉/2, (17)

where T orders operator products so that they are in the same
order as in Eq. (16). Now, since the vibrations are stationary,
we may write L in terms of P(t )’s,

L(t1, t2, t3) = P(t1 − t2)P(t1 − t3)P(t2)P(−t3)

P(t1)P(t2 − t3)
. (18)

Even if we can fully calculate J (t ), the Fourier transform of
L is not straightforward to evaluate numerically in the general
case.

C. γ = 0 limit

Next, we consider the limit in which the dissipation rate
of vibrations vanishes and derive expressions for both P(E )
and L. We note that the definition of J (t ), given by Eq. (12),
contains a nascent δ function,

P̃(ω) = 1

π

γω2(
ω2

v − ω2
)2 + ω2γ 2

, (19)

which in the limit γ → 0 reduces to P̃(ω) = 1
2 [δ(ω − ωv ) +

δ(ω + ωv )]. Therefore,

J (t ) = S(nth + 1)e−iωvt + Sntheiωvt . (20)

Note that this coincides with the limit γ → 0 in the white-
noise model given by Eq. (13). The corresponding character-
istic function P(t ) is known in probability theory to be that of
the Skellam distribution [42]. It is a distribution that describes
the difference of two independent Poisson processes. In our
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case, these processes are the emission and absorption of
phonons. P(E ) then describes the total number of phonons
transferred from/to vibrations to/from their environment. The
resulting P(E ) function is

P(E ) =
∞∑

k=−∞
pk (S)δ(E − kωv ), (21a)

pk (S) = e−S(2nth+1)

(
1 + 1

nth

) k
2

Ik[2S
√

nth(nth + 1)], (21b)

where Ik (x) is the modified Bessel function of the first kind.
In the zero-temperature limit, pk (S) = e−S Sk

k! for k � 0 and
pk (S) = 0 for k < 0, i.e., the probability to emit phonons
becomes Poissonian and the absorption probability vanishes.

We find the average and variance of the γ = 0 distribution
by using Eqs. (14) and (20),

E(E ) = Sωv and var(E ) = (2nth + 1)Sω2
v . (22)

The variance depends on the temperature so that for high
temperatures kBT � ωv , the variance is directly proportional
to the temperature: var(E ) ≈ 2SωvkBT . It should be noted that
both the variance and the average are proportional to S, which

also holds for a Poissonian quantity. The physical picture is
that the mean of E describes the Stokes shift in the molecules,
whereas the variance (or standard deviation) is connected with
the inhomogeneous broadening of the molecular linewidth
due to vibrations.

Finally, we derive L in the γ → 0 limit using Eq. (18). It
is necessary to simplify 1/P(t ) in order to find the Fourier
transform of L. Since P(t ) = eJ (t )−J (0) and J (t ) ∝ S, we may
find 1/P(t ) by changing S → −S in Eq. (21). Using the parity
of the modified Bessel function of the first kind Ik (−x) =
(−1)kIk (x), we can express the inverse as

1/P(t ) =
∞∑

k=−∞
pk (−S)e−ikωvt

=
∞∑

k=−∞
(−1)k exp[2S(2nth + 1)]pk (S)e−ikωvt . (23)

Below, we omit the S dependence and denote pk (S) = pk .
The Fourier transform of L is straightforward with the help

of Eq. (23). We obtain

L(ω1, ω2, ω3) = 1

(2π )3

∫
dt1dt2dt3L(t1, t2, t3)eiω1t1+iω2t2+iω3t3

=
∑

k1,k2,k3,k4,k5,k6

(−1)k1+k2 pk1 pk2 pk3 pk4 pk5 pk6 e4S(2nth+1)δ(ω1 − [k1 + k3 + k4]ωv )

× δ(ω2 − [k2 − k3 + k5]ωv )δ(ω3 + [k2 + k4 + k6]ωv ). (24)

This result can be used to obtain the fluorescence spectrum
of a molecule. The expression is slightly cumbersome to use
because the six sums obtain values from −∞ (or from 0
when T = 0) to ∞. This problem is alleviated by the rapid
decrease of pk as a function of k. Consequently, Eq. (24) is
straightforward to compute numerically.

III. STOKES SHIFT

Before solving the full plasmon-molecule problem, we
illustrate how the P(E ) theory is used to model a mea-
surement of the Stokes shift in a molecule-vibration sys-
tem. This is achieved by removing the plasmon term from
Eq. (3b) and driving the molecules, i.e., adding the term
σin, j = αeiθ j√

N
δ(ω − ωd ) where θ j represents the phase of the

driving field for molecule j. The driving is scaled so that
the total input power spectral density is given by Iin =
|α|2δ(ω − ωd ). Then, we solve Eq. (3b) with Fourier trans-
form and convolution theorem. The spectra ST/R are found
from Eq. (5) when the output fields are changed to �

T/R
out =∑

j (
√

κ
T/R
m σ j + δ

T/R
R σin, j ). Here, the “reflected” field should

not be understood literally, but rather as the field that contains
the driving field. The “transmitted” field is fully from the
molecular fluorescence. Since σ j = Q†

jσ
S
j and the solution

σ S
j of Eq. (3b) depends on Qj , we encounter a four-point

correlator 〈Q†
j (ω1)Qj (ω2)Q†

k (ω3)Qk (ω4)〉 in the calculation of

ST/R. Here, Q†
j (ω) refers to the Fourier transform of Q†

j (t ). As-
suming that the vibration modes are independent and identical
in different molecules, the correlator factorizes into two-point
correlators when j �= k. These resulting two- and four-point
correlators are related to P(E ) by

〈Q†
j (ω1)Qj (ω2)〉 = P(ω1)δ(ω1 + ω2), (25a)

〈Q†
j (ω1)Qj (ω2)Q†

j (ω3)Qj (ω4)〉
= L(ω1, ω2, ω4)δ(ω1 + ω2 + ω3 + ω4), (25b)

where L(ω1, ω2, ω4) is the Fourier transform of Eq. (18) in the
general case.

When discussing the response of molecules to driving, it
is useful to introduce a frequency � = ωd − ω̃m, which is the
detuning between the driving and renormalized molecular fre-
quency. Without vibrations, the molecular response is charac-
terized by χ (�) = (i� − κm

2 )−1, which describes Lorentzian
absorption and emission spectra. However, in the presence
of vibrations, the information about the spectral properties is
contained in

A(�) =
∫

dEP(E )χ (� − E ) (26)

and

F =
∫

dω1dω2L(ω1, ωd − ω − ω1, ω2)

×χ (ω1 − �)χ (ω2 + �). (27)
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(a) (b)

FIG. 2. (a) P(E ) functions for γ = 0 showing the weights of δ-
function peaks when κm

ωv
= 0.5 and kBT

ωv
= 0.5. (b) The normalized

emission and absorption with S = 2. Emission is evaluated with the
driving frequency ωd = ω̃m. Here, we choose κT/R

m = κext
m = κm

10 .

These functions are associated with absorption and fluores-
cence of molecules, respectively, and play an important role
in the plasmon-molecule problem.

A. Incoherent limit

Let us assume that molecules are randomly arranged, so
that the phase θ j is random. Averaging over them, the resulting
spectra are

ST/R(ω; ωd )

|α|2 = κT/R
m κext

m F (�; ω − ωd )

+ δ
T/R
R

[
1+ 2

√
κ

T/R
m κext

m Re[A(�)]
]
δ(ω − ωd ).

(28)

The emission spectrum ST is determined by F , which de-
scribes inelastic scattering (output field frequency ω different
from driving frequency ωd ). In the “reflected” field SR, we
also find the input power spectral density Iin and a term
proportional to A representing absorption.

Both F and A are straightforward to determine from
Eqs. (21) and (24), i.e., when the vibrational linewidth γ →
0. Then, F is also δ peaked at frequencies ω − ωd = mωv

with an integer m. The absorption spectrum is obtained from
power conservation SA(ωd ) = Iin − ST − SR evaluated at the
driving frequency ω = ωd and it is mostly determined by A.
In Fig. 2(b), we have plotted the emission spectrum ST along
with the absorption spectrum SA. The absorption maximum
is at the bare molecular frequency ωm, while the emission
maximum is at approximately ωm − 2Sωv . The difference is
the Stokes shift. The spectra correspond to the results de-
scribing the transient response obtained with Green functions
[21]. However, in our stationary model, the absorption is not
a mirror image of the emission because the emission may also
happen from the excited vibrational states.

B. Coherent limit

Besides the experimentally more typical incoherent situ-
ation, we look at the coherent limit. Then the phase eiθ j is
fixed. This happens, for instance, when the distance between
the molecules is much smaller than the wavelength of the
driving field or the molecules are in a suitably chosen lattice.

We renormalize the input in this case to be σin, j = α
N e−iωd t

so that again the total input power is distributed evenly and
is independent of the number of molecules N . Then, the
calculation can be repeated to give

ST/R(ω; ωd )

|α|2

= δ
T/R
R

∣∣1 +
√

κ
T/R
m κext

m A(�)
∣∣2

δ(ω − ωd )

+ κT/R
m κext

m

[
F

N
+

(
δ

T/R
T − 1

N

)
|A(�)|2δ(ω − ωd )

]
.

(29)

Interestingly, we obtain an explicit dependence on the number
N of molecules for two terms. One of those terms is the inelas-
tic emission term F , which means that for large N , the spectra
are mostly elastic. However, if the vibrations are absent, i.e.,
S = 0 which leads to P(E ) = δ(E ), F = |A(�)|2δ(ω − ωd )
and the 1/N-dependent terms cancel. Therefore, this coherent
effect is not related to the sub- or superradiance of molecules
described by Dicke [28]. Rather, it is related to vibrations
and their enhanced nonradiative emission, which shows up
as a diminishing fluorescence as the number of molecules
increases.

IV. PLASMON-MOLECULE SYSTEM

With the tools developed in Secs. II and III, we can
return to the problem of a strongly coupled plasmon-molecule
system and find the polarized spectra of the system using
Eqs. (3) (with only the plasmon being driven, i.e., σin, j = 0 in
this case). We integrate Eq. (3b) from an initial time ti → −∞
to t f = t and neglect the initial condition σ S

j (ti ) which has no
role in a stationary situation. We substitute this into Eq. (3a),
which leads to

ċ = −
(

iωc + κ

2

)
c − √

κextcin

−
∑

j

|g j |2
∫ t

−∞
dt ′e(iω̃m+ κm

2 )(t ′−t )Q†
j (t )Qj (t

′)c(t ′). (30)

At this point, we average the equation over the fluctuating
vibrations and use a mean-field approximation. This leads
to the P(E ) function since 〈Q†

j (t )Qj (t ′)〉c(t ′) = P(t − t ′)c(t ′).
Consequently, the elastic response of the plasmon is given by
c(t ) = αr(ωd )e−iωd t , where

r(ωd )√
κext

=
⎡
⎣i(ωd − ωc) − κ

2
+

∑
j

|g j |2A(�)

⎤
⎦

−1

. (31)

Vibrations provide a channel of relaxation, broadening the
response which is associated with the real part of A. The
imaginary part contains information about the frequencies of
the polariton modes. When the vibrations are absent, i.e.,
S = 0 and P(E ) = δ(E ), the usual strong-coupling response
is obtained as A → χ with Rabi splitting proportional to√∑

j |g j |2 at ωc = ωm. When the vibrations are present,

especially the upper polariton branch is perturbed, as Fig. 3
shows.
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(a) (b)

FIG. 3. Response function |r(ωd )|2/ωv of Eq. (31) for a single
molecule for (a) S = 0 and (b) S = 1. The other parameters are
g/ωv = 1.5, kBT

ωv
= 0.5, κ/ωv = 0.1, κext = κ/2, and κm/ωv = 0.5.

The response function also determines the direct plasmon emission
spectrum.

Finally, σ S
j can be solved from Eq. (3b) in terms of Qj

by Fourier transformation using the convolution theorem and
c(ω) = αr(ωd )δ(ω − ωd ). Then we have all we need to eval-
uate the output spectra with Eqs. (4) and (5).

A. Incoherent polaritonic response

Let us consider a large number N of identical molecules
with random dipole moment directions n̂ j . In this case, we can
replace the sums over the molecule index with an integral over
a surface of a sphere,

∑
j → N

4π

∫
d�. Then, because g j =

gei�k·�r j (n̂ j · ûpl ) where ûpl = (0, sin β, cos β ) is the plasmon
polarization vector, the square of the Rabi splitting in Eq. (31)
is

∑
j |g j |2 = Ng2/3 ≡ g2

N . We assume that the positions of
the N molecules are random over a region that is large
compared to the wavelength of the plasmon so that we may
replace ei�k·(�r j−�rk ) → δ jk for an ensemble average. Using these
assumptions, the polarization dependence shows up in the
spectra as the coefficients

Cs/p =
∑

j,k

g jη
T/R
j,s/p

(
gkη

T/R
k,s/p

)∗ =
⎧⎨
⎩

κ
T/R
m g2

N
5

κ
T/R
m g2

N
5 [2 − cos 2β],

(32)

where the upper/lower line is for s/p. Above, only the terms
where j = k contribute in the sum, which results in four-point
correlators as in Eq. (25b).

The s- and p-polarized emission spectra are

ST
s (ω; ωd ) = |αr(ωd )|2CsF, (33a)

ST
p (ω; ωd ) = |αr(ωd )|2[κT

o δ(ω − ωd ) + CpF
]
. (33b)

The main difference between the s- and p-polarized spectra is
because the plasmon emits only p-polarized light. The molec-
ular fluorescence is also slightly enhanced in this polarization
for β �= 0.

Both the s- and p-polarized emission spectra are now rep-
resented with F and A found in molecular fluorescence given
by Eq. (28). Therefore, the emission of a strongly coupled
plasmon-molecule system is related to the properties of the
plasmon and the molecules separately with a few parameters
describing the plasmon-molecule coupling strength and their

FIG. 4. Elastic emission spectra for s and p polarization (red
and blue curves, respectively) from a plasmon-molecule system with
ωc = ωm. The different curves are offset and scaled for clarity. The
parameters are the same as in Fig. 3, except for gN

ωv
= 2, β = π

12 ,

κT
o = κ/2, κT

m = κm/3, and kBT
ωv

= 1.

intrinsic decay rates. Note also that these results hold for any
P(E ), i.e., these results are independent of the vibrational
model.

Since only the terms with F contribute to the inelastic
emission, for a given driving frequency ωd , the ratio of p- and
s-polarized emission at ω �= ωd is ST

p /ST
s = 2 − cos(2β ). For

example, for an interface of vacuum and silver in the Drude
model [34,43], β ≈ π

12 and ST
p /ST

s ≈ 1.13 at ωc = 2 eV. This
ratio is otherwise independent of the system.

In Fig. 4, we have plotted the elastic emission spectra from
Eqs. (33) using the P(E ) function (21). The s- and p-polarized
emission are similar for small S, but for larger values the com-
petition between the plasmon and molecule emission becomes
more noticeable. The ratio between elastically emitted p- and
s-polarized power is controlled by the ratio between κT

o and
Cs/p and the detuning ωc − ωm.

We find that the upper and lower polariton modes emit
asymmetrically as in other approaches [39,44–50] and exper-
iments [22–25,51]. This is caused by the asymmetry of the
effective dissipation rate � = κ/2 − g2

N Re[A(�)], which is
related to the molecule’s absorption spectrum. The number
of molecules affects the dissipation rate only via the size of
the Rabi splitting. Analytical insight can be obtained when
kBT � h̄ωv and S � 1. Then, we may consider only single-
phonon processes. When gN > ωv , we find the polariton
frequencies from the response function (31) for zero detuning
ωc = ωm to be approximately

ω± = ωm ± gN + Sωv

2

1

±gN/ωv − 1
. (34)

Thus, the vibrations affect both the position of the polariton
peaks as well as the size of the Rabi splitting. At these
frequencies, the dissipation rate in the first order of κm is
given by

�± = κ

2
+ κm

2

[
1 + Sω2

v

(gN ∓ ωv )2
+ Sω2

v

gN (gN ∓ ωv )

]
. (35)

Due to vibrations, the dissipation rate of the upper polariton
(�+) is larger than the dissipation rate of the lower polariton
(�−), which suppresses the upper polariton emission com-
pared to the lower polariton.
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FIG. 5. Comparison of experimental polarization ratio data and
corresponding theoretical fits for two different molecules. For
TDBC, ωm ≈ 2.10 eV and 2Sωv ≈ 5 meV, and for R6G, ωm ≈
2.27 eV and 2Sωv ≈ 97 meV. We estimate the plasmon linewidth to
be κ = 250 meV. The Rabi splitting for TDBC is 167 meV and, for
R6G, it is 337 meV. Our data on fluorescence of TDBC are limited
below 2.6 eV so we cannot produce an estimate for the polarization
ratio above 2.6 eV. In the legend, LP (UP) refers to lower (upper)
polariton.

An alternative method of using the equations for polarized
emission spectra (33) is to use experimental molecular absorp-
tion and fluorescence data. Then, to a good accuracy, the line
shape of absorption is related to Re(A) and fluorescence to
F , as seen in Eq. (28). From the real part of A, the imag-
inary part may be found numerically by Hilbert transform
(due to Kramers-Kronig relations). The response function is
then determined from the plasmon eigenfrequency ωc and
its linewidth κ together with the strong-coupling constant
gN . Although gN (and the magnitude of A) is unknown, it
can be fixed so that it corresponds to a given Rabi splitting.
Lastly, the coupling coefficients Cs/p and κT

o are needed to
evaluate the spectra. However, if we are only interested in the
relative magnitudes, it is enough to fix the ratios κT

o /Cs and
Cp/Cs. The latter ratio is given by the polarization angle β,
which can be evaluated with the dielectric functions of the
materials at the interface where the plasmon is excited. The
former ratio κT

o /Cs is difficult to determine directly from the
experiments, but it can be found by fitting to experimental
data.

In Fig. 5, we employ the above method to compare the
experimental results for the polarization ratio of the TDBC
and R6G molecules from Ref. [22] to our model. Here, the
polarization ratio PT

p /PT
s of the lower (upper) polariton is

defined as the ratio of the p- and s-polarized emission peak
intensity of the lower (upper) polariton. In our numerical anal-
ysis, we approximate the fluorescence data by a mirror image
of the absorption data over the zero-phonon frequency ω̃m.
We assume that the fluorescence is effectively independent
of the driving so that we can calculate and consider only the
elastic emission (see, also, Appendix C). Adding the inelastic
emission can only diminish the polarization ratio. Then we

calculate the polarization ratio using Eq. (33) and fit the
coupling rate ratio κT

o /Cs to the experimental data for each
branch separately.

For lower polariton peaks, we find reasonable agreement
with the fitted theoretical curves and the experimental data.
For upper polariton peaks, the correspondence is very lim-
ited. Theoretically, we would assume that the polarization
ratio increases for the upper polariton for positive detunings,
while for the lower polariton the ratio increases for negative
detunings. This is caused by the polaritonic state becoming
more plasmonic, which is seen from the response function
being peaked at ωd ≈ ωc in Fig. 3. While these trends can
be seen in Fig. 5, except for the R6G upper polariton branch,
some features differ from the theoretical description. From
an experimental point of view, the polarization ratio might be
affected by any external noise, especially in regions of small
s-polarized emission. In our modeling, we neglect the possible
dependence of the plasmon linewidth and coupling rate on the
plasmon eigenfrequency. Also, since we use the experimental
absorption data to determine the spectra, the line shape far
from the absorption maximum is also important.

The fitted ratio κT
o /Cs controls, generally speaking, the

magnitude of the polarization ratio. The effect of Stokes
shift seems to be important only at plasmon eigenfrequencies
below the fluorescence frequency of the molecules, while the
external coupling rates control the polarization ratio at higher
frequencies. From the fit to the experimental data, we find that
the ratio κT

o /Cs is larger for R6G than for TDBC. This implies
that if the plasmonic emission rate remains the same for the
TDBC and R6G samples, there is more molecular emission
for TDBC than for R6G.

B. Coherent polaritonic response

If we assume that the plasmon couples strongly to the
molecules and drives them coherently, the phase factor ei�k·�r j

is fixed to a constant. This leads to the introduction of two
different sums over the molecular indices,

C̃s/p =
∑

j

g jη
T/R
j,s/p =

{
0

gN

√
N
3 κ

T/R
m sin β,

(36)

where again the upper/lower line is for s/p. The sum in
C̃s vanishes because the plasmon polarization vector ûpl is
orthogonal to the s-polarization vector ûs, making the product
antisymmetric under reflection through the plane orthogo-
nal to ûs. This is what breaks the symmetry between the
polarization directions emitted from the strongly coupled
mode.

Then, we find the polarized emission spectra to be

ST
s (ω; ωd ) = |αr(ωd )|2Cs[F − |A(�)|2δ(ω − ωd )], (37a)

ST
p (ω; ωd ) = |αr(ωd )|2κT

o

∣∣∣∣∣1 + i
C̃p√
κT

o

A(�)

∣∣∣∣∣
2

δ(ω − ωd )

+ |αr(ωd )|2Cp[F − |A(�)|2δ(ω − ωd )].

(37b)

The s-polarized emission now vanishes fully when the vibra-
tions are absent. This result shows that coherence is crucial
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FIG. 6. Elastic emission spectra in the coherent case for two dif-
ferent numbers N of molecules. The curves for p-polarized emission
(only ones depending on N) are offset and scaled. Here, S = 1 and
the other parameters are the same as in Fig. 4.

to the destructive interference of emitted light [22], while
the vibrations still provide a mechanism for a partial loss of
coherence. On the other hand, the p-polarized spectrum
contains the interference terms between the plasmon and
molecular output fields. Similar to the Stokes shift case,
there are terms with different powers of the number N
of molecules. Considering the Rabi splitting (or gN ) to
be fixed, there is one term with an extra N factor from
C̃2

p and
√

N from C̃p. Increasing N leads to mostly elas-
tic p-polarized emission, as the inelastic terms and s-
polarized emission are independent of N . In contrast to the
Stokes shift case, the absence of vibrations does not re-
move the N dependence. Therefore, the result corresponds to
superradiance [28].

Figure 6 shows that the coherence and the resulting in-
terference between plasmonic and molecular emission have
a qualitative effect on the elastic spectra. The difference
between s- and p-polarized spectra becomes more evident.
While the s-polarized emission is likely to occur on the lower
polariton frequency, for the p-polarized emission, the upper
polariton frequency may be favored depending on the relative
magnitudes of κT

o , C̃p, and Cp.

V. CONCLUSIONS

To summarize, we have constructed a model that allows
one to describe the effect of vibrations on the strongly coupled
stationary response of driven coupled light-matter modes.
Depending on the case, one can either find the P(E ) function
describing the absorption and emission of vibrations in a
given model system, or relate the measured absorption and
fluorescence of uncoupled molecules to P(E ). With small
modifications, this approach can also be extended to the case
of molecule-cavity systems [4,17,51–53], plasmonic lattices
[54], and/or higher-order correlation functions of the emitted
light [16]. Our quantum Langevin equation approach allows
one to describe the stationary driven system, and hence it
complements the often-used computational methods usually
concentrating on transient response [18,45].
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APPENDIX A: GENERALIZATION TO MANY
NONIDENTICAL AND INTERACTING

VIBRATIONAL MODES

The P(E ) theory is straightforward to generalize to mul-
tiple vibrational modes when the modes couple linearly to
the molecule. A general interaction term in the Hamiltonian
is then λi jkl b

†
i jbkl + H.c., where bi j corresponds to the jth vi-

brational mode of the ith molecule. The molecule-vibrational
Hamiltonian is then diagonalized by first diagonalizing the
vibrational Hamiltonian and then using the polaron transfor-
mation. For simplicity, let us now discuss the case of a single
molecule. After the diagonalization of the vibrational part, we
may write the interaction Hamiltonian in terms of the new
diagonal vibrational modes b j as

Hm+v =
M∑

j=1

ωv, j

√
S jσ

†σ (x j + u j p j ), (A1)

where x j and p j are the position and momentum operator
of vibrations. The term u j p j follows from the fact that the
molecule couples to the bare vibrational modes. Because in
the Caldeira-Leggett model the position operator x j couples
to the position operator of an environmental (harmonic) mode,
the diagonalization is incommensurate with this model unless
u j = 0. In the single-excitation limit, we may then introduce

the operator σ S = Qσ ≡ ∏
j Q jσ , where Qj = e

√
S(b†

j−b j ). In-
troducing many molecules into the situation only adds one ex-
ternal index to each operator. When there is no coupling to the
plasmon, by following the same approximations as in the main
text, we find that the dynamics is given by the input-output
equation

σ̇ S = −
(

iω̃m + κm

2

)
σ S − √

κext
m Qσin, (A2)

with ω̃m = ωm − ∑
j S jωv, j . The equation for b j again decou-

ples from the dynamics of σ S in the single-excitation limit.
Similarly to the case of a single vibrational mode, we find
the two- and four-point correlators of Q in the calculation
of the spectra. However, since Q(t ) = ∏

j Q j (t ), the Fourier
transform of Q is always a convolution. After diagonalization,
we may treat the modes as independent so this structure shows
up as convolutions of P(E )’s and L’s defined in the earlier
sections. Thus, we have

〈Q†(ω1)Q(ω2)〉 = Ptot (ω1)δ(ω1 + ω2), (A3a)

〈Q†(ω1)Q(ω2)Q†(ω3)Q(ω4)〉 = Ltot (ω1, ω2, ω4)

× δ(ω1 + ω2 + ω3 + ω4),

(A3b)
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where Ptot (E ) = [P1 ∗ P2 ∗ · · · ∗ PM](E ) is a convolution over
M different modes, and similarly for Ltot. For example,

[L1 ∗ L2](ω1, ω2, ω3)

=
∫

dω′
1dω′

2dω′
3L1(ω1−ω′

1, ω2−ω′
2, ω3−ω′

3)L2(ω′
1, ω

′
2, ω

′
3),

(A4)

where L1 and L2 are defined for a single mode as the Fourier
transform of Eq. (16).

APPENDIX B: APPROXIMATION TO THE
POLARON EQUATION

We discuss the consistency of the approximation that al-
lows us to simplify the input-output equation of σ S

j . The full
dynamical equation of σ S

j for the strongly coupled plasmon-
molecule system, using the approach of [36], is given by

σ̇ S
j = − iω̃mσ S

j + ig jQjσz, jc − κ j

2
σ S

j + √
κ̃ jQ jσz, jσin,j

+ γ j

√
S

2
σ S

j (b j − b†
j ) + √

γ jSσ S
j (bin, j − b†

in, j ). (B1)

In the main text, we assumed the single-excitation limit in
which σz, j ≈ −1. In addition, we neglect the thermal fluc-
tuations and set σin, j = 0. Next we discuss when we can
neglect the two last terms that are generated by the coupling
of σ S

j to the vibrational baths. This approximation effectively
uncouples the vibrational dynamics from the dynamics of
the polaron operator σ S

j . As this approximation is related to
the molecule-vibration system, the coupling to the plasmon
may also be neglected, i.e. g j = 0. For notational brevity, we
omit the molecular index j. Let us consider an expansion
σ S = σ S

0 + σ̃ S
1 , where σ S

0 is the solution of

σ̇ S
0 = −

(
iω̃m + κm

2

)
σ S

0 − √
κext

m Qσin, (B2)

on Eq. (B1) with the above simplifications. Consequently, the
dynamics of σ̃ S

1 is given by

˙̃σ S
1 = −

(
iω̃m + κm

2

)
σ̃ S

1 + γ
√

S

2

(
σ S

0 + σ̃ S
1

)
(b − b†)

+
√

γ S
(
σ S

0 + σ̃ S
1

)
(bin − b†

in ). (B3)

We may now construct the next order of the expansion by
setting σ̃ S

1 = σ S
1 + σ̃ S

2 and fixing σ S
1 to be the solution of

σ̇ S
1 = −

(
iω̃m + κm

2

)
σ S

1 + γ
√

S

2
σ S

0 (b − b†)

+
√

γ Sσ S
0 (bin − b†

in ). (B4)

This equation can be solved with the solution of σ S
0 . The

dynamics of σ̃ S
2 is then determined by an equation similar

to Eq. (B3), where σ̃ S
1 is replaced by σ̃ S

2 and σ S
0 by σ S

1 .
Continuing this process gives then the expansion of σ S =∑∞

j=0 σ S
j . However, we focus only on the first order of the

expansion.
Consider now that the molecule is driven coherently, σin =

αe−iωd t , so that the solution of Eq. (B2) is

σ S
0 (ω) = α

√
κext

m χ (ω − ω̃m)Q(ω − ωd ). (B5)

Consequently, we obtain, from Eq. (B4),

σ S
1 (ω) =

√
Sχ (ω − ω̃m)

×
{

i
γ

2

[
σ S

0 ∗ p
]
(ω) + √

γ
[
σ S

0 ∗ (bin − b†
in )

]
(ω)

}
,

(B6)

where ∗ denotes a convolution in the Fourier space.
We are now interested in the consistency of the expansion,

but it is not straightforward to see the effect of the convolution
and the underlying dynamics of the vibrations. For this reason,
we compare the mean values of σ S

0 and σ S
1 . When the input

operators of the vibrations represent thermal noise, the bin

terms do not contribute to the average. The expectation value
of σ S

0 can be expressed as〈
σ S

0 (ω)
〉 = α

√
κext

m χ (ω − ω̃m)〈Q(0)〉δ(ω − ωd ). (B7)

For a thermal ensemble, 〈Q(0)〉 = exp[−S(nth + 1
2 )]. In the

calculation of the average of σ S
1 , we need the generalized

Wick theorem to write

S〈pn(t )p(0)〉 = nJ (t )〈pn−1(t )〉, (B8)

where J (t ) is the function defined in Eq. (12) and we define
its Fourier transform by J (t ) = ∫

dωe−iωt J (ω). We obtain

〈σ S
1 (ω)〉
= γ

2
α
√

κext
m χ (ω − ω̃m)

×
[∫

dω′χ (ω′ + ωd − ω̃m)J (ω′)
]
〈Q(0)〉δ(ω − ωd )

= γ

2

[∫
dω′χ (ω′ + ωd − ω̃m)J (ω′)

]
〈σ S

0 (ω)〉

≡ C
〈
σ S

0 (ω)
〉
. (B9)

Now we have a necessary condition for the consistency of
the simplification: The parameter C should be small compared
to unity for the expansion to be sensible. It can be estimated
by using the same approximation in Eq. (19) as in the γ = 0
calculation. Then (denoting � = ωd − ω̃m),

C = γ S

2
[(nth + 1)χ (ωv + �) + nthχ (−ωv + �)]

�=−ωv≈ γ S

κ̃ + γ S

nth + 1

2
. (B10)

In the last approximation, we have written the renormalized
linewidth κm in terms of the bare linewidth of the molecule κ̃

and neglected the smaller term χ (−2ωv ) for clarity. Now, it
is clear that the consistency of the approximation is related to
the temperature and the linewidths. This condition is always
fulfilled when nth < 1 or, alternatively, ωv

kBT > ln(2) ≈ 0.69. It
should be remembered that this is only a crude estimate and
larger values of γ can diminish the value of C.

APPENDIX C: CORRESPONDENCE TO EXPERIMENTS

In the experimental Kretschmann setup, a prism is used
together with white light to excite the plasmons. The angle
θ of incoming light with respect to the normal of the interface
then determines the plasmon eigenfrequency ωc. In our model,
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which is based on a coherent single-frequency driving at ωd ,
we can introduce a distribution ρ(ωd ) for light intensity. Then
we can relate our theoretical model to the observed spectra by
an integral relation

ST/R
s/p,obs(ω) =

∫
dωdρ(ωd )ST/R

s/p (ω; ωd ). (C1)

The distribution ρ(ωd ) can include features of the driving light
as well as the prism that couples the light to the interface. We
can generally divide the theoretical spectrum into elastic and
inelastic parts by ST/R

s/p (ω; ωd ) = Selδ(ω − ωd ) + Sinel(ω; ωd ).

Now, if we assume that the distribution of light is uniform and
its bandwidth large compared to the plasmonic linewidth κ ,
we have

ST/R
s/p,obs(ω) = Sel(ω) +

∫
dωd Sinel(ω; ωd ). (C2)

The inelastic contribution is due to vibrations and molecular
fluorescence [i.e., the function F (ω �= ωd )]. In the fit for
Fig. 5, we disregard the contribution from Sinel because its
main body is clearly separated from the elastic emission
coming around the polariton frequencies.
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