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We investigate numerically the problem of few (one or two) noninteracting spin-1/2 fermions in a shallow
harmonic trap coupled via contact repulsive interactions to a uniform one-dimensional bath of lattice bosons,
described by the Bose-Hubbard model. Through extensive density-matrix renormalization group calculations,
we extract the binding energy and the effective mass of quasiparticles, including dressed impurities (polarons)
and their two-body bound states (bipolarons), emerging from the effective nonlocal Casimir interaction between
the impurities. We show that the mixture exhibits rather different pairing behaviors depending on the singlet vs
triplet spin state configurations of the two fermions. For opposite spin states, bipolarons are found for any finite
value of the impurity-bath coupling. In particular, in the strong-coupling regime their binding energy reduces to
that of a single polaron, provided the boson-boson repulsion is not too weak. For equal spin states, we show that
bipolarons emerge only beyond a critical strength of the Bose-Fermi interaction and their effective mass grows

rapidly approaching the strong-coupling regime.

DOLI: 10.1103/PhysRevB.100.245419

I. INTRODUCTION

The recent experimental realization of mixtures of Bose
and Fermi superfluids in dilute cold atomic gases [1-3] has
allowed us to probe the complex many-body physics of cou-
pled interacting spin-1/2 Fermi gases and superfluid Bose
gases in a variety of parameter regimes, with the possibility
of controlling the lattice geometry with tailored potentials
and the strength of interactions using Feshbach resonances
[4]. Previous theoretical works on interacting Bose-Fermi
mixtures have uncovered a variety of different ground-state
phases [5-21]. One-dimensional Bose-Fermi mixtures, which
show peculiar properties owing to the enhanced role of quan-
tum fluctuations [22], have also received sustained interest
[23-41].

A mobile fermionic impurity interacting with a surround-
ing bath of bosons is dressed by the collective excitations in
the Bose gas, leading to the formation of a quasiparticle, the
Bose polaron, with an enhanced effective mass [42—44]. The
Bose polaron problem for a single impurity, stemming origi-
nally from the physics of electron-phonon interactions [45],
has been extensively studied in recent years with ultracold
atoms in one dimension [46—65] and above [66-72]. Recent
experiments on impurities in a one-dimensional Bose gas
[73-76] and Bose-Einstein condensates in three dimensions
[77-80] have also been performed, with successful measure-
ments of the polaron self-energy, which can be extracted from
spectroscopy measurements [78], and the effective polaronic

mass, by monitoring dipole oscillations of the impurity in a
harmonic trap [74].

The natural extension of these works on the Bose polaron
problem for a single impurity is the study of a few interacting
impurities coupled to a common bath. This longstanding prob-
lem, first addressed in *He-*He mixtures [81], was recently
studied theoretically in one-dimensional [82-86] and three-
dimensional [87-89] cold atomic gases. Static and mobile
impurities in one-dimensional quantum fluids are of particular
interest because of the emergence of an effective attractive
Casimir interaction between impurities due to the exchange
of phononic excitations in the bath [90-95]. Hence, two
impurities can form a new bosonic bound state, the bipolaron,
a quasiparticle state that has been studied in the context of
high-T7 superconductivity [96-98].

In this work, we investigate the polaron problem for
one and two fermionic impurities interacting with a one-
dimensional Bose gas in a tight optical lattice described by
the Bose-Hubbard model. Based on the density-matrix renor-
malization group (DMRG) [99,100] method, we compute
the ground-state energy of the mixture in the presence of a
shallow harmonic potential for the impurities as a function of
the trapping frequency. This allows us to extract the binding
energy and effective mass of both polarons and bipolarons
with great accuracy. For bipolarons, we show that these quan-
tities exhibit distinct properties depending on the spin config-
uration, singlet or triplet, of the two constituent fermions. Our
numerical approach goes beyond mean-field and variational
calculations and provides a competing alternative to quantum
Monte Carlo methods [63,64] to probe the Bose polaron
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was essentially due to mean-field effects of the impurities
on a trapped ideal Bose gas and not due to the exchange of
phononic modes, which were absent. Moreover, no pairing
between fermionic impurities was observed in this work.

This paper is organized as follows. In Sec. II we present the
microscopic model Hamiltonian used to describe the Bose-
Fermi mixture. In Sec. III we start by introducing our theo-
retical approach to compute the binding energy and effective
mass of a single polaron. We then present our numerical
results based on the DMRG method and compare them with
analytical predictions from Bogoliubov theory in the regime
of weak Bose-Fermi coupling. In Sec. IV we extend this
approach to bipolarons and present numerical results for the
binding energy and effective mass, distinguishing the cases of
two impurities with equal and opposite spins.

II. MODEL HAMILTONIAN

We describe the one-dimensional Bose-Fermi mixture by a
lattice Hamiltonian consisting of three parts, H = Hj, + H; +
I-?bf. The first term corresponds to the Bose-Hubbard model

. IR U,
Hb = —1 th‘bj + 7b Zﬁib(ﬁib - 1)7 (1)
(i J) i

describing bosons hopping between neighboring sites with
tunneling rate #, and subject to on-site repulsive interactions
of strength U, > 0.

Importantly, we assume in this work that the spin-1/2
fermions have no direct intraspecies interaction, while effec-
tive interactions between fermions will be generated dynami-
cally via the exchange of bosonic density fluctuations. We also
consider that fermions are trapped at the center of the chain by
a harmonic potential. In the absence of coupling to the bosons,
they obey the Hamiltonian

) . 1 L\,
Hy = —t; Z cjacja + Z Em*wz(l — 5) g, (2)
(i,)),0 i,o

where o =1, | accounts for the two spin states, #; is the
fermion hopping rate, m* = 1/(2t;) is the bare fermionic
mass in the lattice, w is the trapping frequency, and L is the
size of the chain. Here both 7 and the lattice period have been
set to unity.

Finally, boson and fermion densities are coupled by the
following Hubbard-like term:

Hyp = Uy Z Riphia 3)
1,0
where Uy is the strength of the Bose-Fermi interaction, which
we assume is always repulsive, Upr > 0.

In this work, we assume that the boson density n, = N, /L
is finite, with N, = ) ", (71;5) being the total number of bosons
in the system. The strength of boson-boson interactions in
the Bose gas can then be characterized via the dimensionless
Lieb-Liniger parameter y = U,/ (2n,tp) [22,53]. In contrast,
the total number of fermions per spin component, N, =
Zi(ﬁm), is chosen to be finite and small, corresponding to
the picture of a few (one or two) fermionic impurities moving
in a bath of correlated bosons. For simplicity, in the following
we restrict our discussion to equal hopping amplitudes of the

fermionic and bosonic components and fix the energy scale by
setting 1y = #, = 1.

The impurity trapping potential in Eq. (2) allows us to
extract the binding energy and effective mass of polarons
and bipolarons in a uniform system by carrying out DMRG
calculations of the ground-state energy of the mixture for
different values of the trap frequency and performing a scaling
analysis, as discussed in Secs. Il and I'V. The use of DMRG to
extract the polaron mass through a finite-size scaling analysis
was first investigated for the one-dimensional Holstein model
[101]. Since our DMRG method requires open boundary con-
ditions, we find that, in the absence of the trapping potential
(w = 0), the mobile impurity in its ground state binds at the
edge of the chain, where the density of the bath is lower than
its bulk value [57,82,102]. To avoid such strong finite-size
effects, we restrict our calculations to finite w values that keep
the impurities in the middle of the chain.

III. SINGLE IMPURITY

We first consider the properties of a single polaron, ob-
tained by immersing a single fermionic impurity in the
bosonic bath. For definiteness, we choose the impurity to have
spinup, ie., Ny =1,N, = 0.

A. Trap scaling approach for polarons

Let us assume, for the time being, that there is no trapping
potential, = 0, and that the length of the chain is infinite,
so that the lattice Hamiltonian of the coupled system is
translationally invariant.

Let EqT be the lowest energy of the mixture for a given
momentum ¢ of the polaron. For small g, this energy can be
Taylor expanded as

2
El ~E] + - +'¢", (4)
2m;‘,

where EOT represents the absolute ground-state energy, n1,

represents the polaron effective mass, and A" is a numerical
constant accounting for anharmonic terms in the polaron
energy dispersion. The binding energy i, of the polaron is
defined as

ny = Ef — (EL, ~2). )

where Eé’s is the ground-state energy of the interacting Bose
gas in the absence of impurities and the last term corresponds
to the ground-state energy of a free fermionic impurity with

the energy dispersion relation GZ; = —2cosgq. In the absence

of Bose-Fermi coupling, we have EqT = Eé’s + eg, implying

that the binding energy of the polaron vanishes, i.e., p, =

0. Since eg ~ —2 4 ¢* — ¢*/12, the polaron effective mass

reduces to the bare mass of the impurity, m]’; =1/2 =m* as
expected, and AT = —1/12.

Let us now consider a finite trap frequency w for the
impurity, and let EgTS be the corresponding ground-state energy
of the mixture that we compute using the DMRG method.
For small values of w, it follows from Egs. (2) and (4) that
EgTS is well approximated by the ground-state energy of the
following anharmonic quantum oscillator Hamiltonian in the
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first-quantized form:

¢ 1
5t yme +Alg, (6)
mP

Hl = EJ +

where x =i — L/2 represents the continuum spatial coordi-
nate of the impurity. By treating the anharmonic term in
Eq. (6) within first-order perturbation theory, we obtain

El ~E} +iw, + im’Alw?, @)

where w, = w,/m*/m} is the effective trap frequency for
the polaron. This corresponds to the frequency of the dipole
oscillation that can be generated experimentally by displacing
the trap center of the fermionic impurity, provided that the
boson density is kept uniform [103].

Equation (7) suggests that the binding energy and the
effective mass of the polaron can be inferred by calculating
the ground-state energy EgTS of the coupled system for several
(small) values of the trap frequency w and fitting the obtained
results via a quadratic polynomial,

plw) = ap + ajo + a0, ®)

where ag, a;, and a, are fitting coefficients. By comparing
Eq. (8) with Eq. (7), we find El = ag and m*/m; = 4af. After
this trap scaling procedure, the polaron binding energy i, is
evaluated from Eq. (5) using the fitted value of EOT as well
as the ground-state energy of the bosonic bath Eé’s (which is
independent of w). The specific range of w values to be used
for the fit depends on the system size L and the boson-fermion
coupling strength Uys. To avoid finite-size effects, the density
distribution of the fermionic impurity must decay sufficiently
fast near the edge of the chain, which yields a lower bound on
the trap frequency for a given value of L and Uyy.

B. Results

In Fig. 1, we show examples of the density profiles of
the bosonic bath [Fig. 1(a)] and of the fermionic impurity
[Fig. 1(b)] calculated for different values of the trap frequency
w. Here L = 80,n, =2, U, =2, and Uy = 6. We see that the
boson local density is strongly depleted in the center of the
chain, where the fermionic impurity is trapped. In Fig. 1(c),
we display the calculated values of the ground-state energy
of the coupled system as a function of the trap frequency,
together with the fitted polynomial (8). We see that the latter
reproduces quite accurately the numerical data in the low-
frequency regime. The fitting coefficient a; is typically small
(this will no longer be true for bipolarons; see Sec. IV). Taking
into account that the calculated ground-state energy of the
Bose gas alone is EgbS = —70.1557, we find that the polaron
binding energy for the above parameters is u, = 6.853, while
the obtained value for the inverse effective mass ratio is
m*/my, = 0.242.

We repeat the above procedure for different values of the
boson-fermion coupling Uy, and for two values of the intra-
bath interaction strength, U, = 2 and U, = 4. The obtained
results for the polaron binding energy are plotted in Fig. 2 as a
function of Uy,;. We see from Fig. 2 that the polaron binding
energy gets bigger as the coupling to the bath increases,
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FIG. 1. A single fermionic impurity immersed in a one-
dimensional Bose gas and trapped at the center of the chain by a
shallow harmonic potential of frequency w. (a) Local density distri-
bution of bosons n;, for w = 0.1265. (b) Fermionic density profile n;;
near the trap center plotted for different values of the trap frequency,
w = 0.1265 (circles), 0.1549 (upward triangles), 0.1789 (squares),
and 0.2 (downward triangles). (c) Ground-state energy EgTS of the
coupled system as a function of the trap frequency. The dashed line
is the quadratic polynomial, p(w) = ay + a,® + a,w?, with fitted pa-
rameters gy = —65.3029, a; = 0.246, and a, = 0.0123. The length
of the chain is L = 80, and the boson density is n, = 2. Tunneling
rates of bosons and fermions are set to #, =, = 1. Boson-boson
and boson-fermion interaction strengths are U, =2 and U,s = 6,
respectively.

in agreement with previous quantum Monte Carlo studies
[63,64].

For weakly interacting bosons, the numerical results can be
compared against analytical calculations based on Bogoliubov
theory by treating the Bose-Fermi interaction Uy as a small
perturbation, as previously done for the continuum [63,68].

12

\ \ \ \ \
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Ubf

FIG. 2. Binding energy u, of the polaron, Eq. (5), as a function
of the impurity-bath interaction strength Uy, plotted for two different
values of the boson-boson repulsion, U, =2 (y = 0.5, red circles)
and U, =4 (y =1, blue diamonds). The boson density is set to
n, = 2. Dashed lines correspond to the predictions from Bogoliubov
theory [see Eq. (10)].
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m*/m*p

FIG. 3. Inverse effective mass ratio m*/m), of the polaron as a
function of the impurity-bath interaction strength Uy, plotted for
two different values of the boson-boson repulsion, U, =2 (y = 0.5,
red circles) and U, = 4 (y = 1, blue diamonds). The boson density
is set to n, = 2. Dashed lines correspond to the prediction from
Bogoliubov theory [see Eq. (13)].

Up to second-order terms, one finds

1
bog = Uppnp — (Upp/15)* ~ Z (e + Uk)2—,

—k - Eg + ok
)

where the first term on the right-hand side corresponds to
the mean-field result, while the second term is the cor-
rection coming from density fluctuations in the bath. The
Bogoliubov coefficients uy, v satisfy u% =14+ v,f = (€x +
Upnyp + wr)/Qwy) and uvy = —Upny/(2wy ), where e,’(’ = e,{
and w; = (E,% + Ek2nbU;,)]/2 is the energy of the elementary
excitations, with €, = 2(1 — cosk). By taking into account
that (u; + vi)* = € /wy and replacing the sum over quasimo-
menta in Eq. (9) by an integral, we obtain

U (11 2
bog _ 1j — — | = — —arct . 10
Ky bf1b U, (2 - arctan P (10)

In the continuum limit, n,U; — 0, Eq. (10) reduces to )¢ =~

1
ERN

npUpr — Yy —=m", where m* is the bare mass of the impurity
[63].

We see from Fig. 2 that the Bogoliubov prediction repro-
duces properly our numerical results for the binding energy
in the regime of weak Bose-Fermi coupling but significantly
deviates from them in the strong-coupling regime, in par-
ticular when the boson-boson interaction strength is small.
This is not surprising, as in this limit the second term on
the right-hand side of Eq. (10) becomes dominant over the
mean-field correction, and perturbation theory ceases to be
valid.

An important effect of the coupling to the bosonic bath is
the enhancement of the effective mass m), of the fermionic
impurity compared to its bare mass m*, as shown in Fig. 3.
The corresponding Bogoliubov prediction for the inverse of

the polaron effective mass can be written as

1 1 ()
e = ot | (11)
mp m q 4=0
where
T dk 1
bog(q) Ubf}’lb — Ulffnb/ (Mk + Uk) f 7
- €k — €4 + wyg
(12)

is the generalization of the Bogoliubov prediction for
the binding energy of the impurity, Eq. (10), under
the new assumption that the impurity carries a finite
quasimomentum g.

We then differentiate twice the right-hand side of Eq. (12)
with respect to ¢ and calculate analytically the integral over
momentum for g = 0. From Eq. (11) we obtain

1 S mp 4w + 2+/2x(x — 2) — 8 arctan \/g
m*bog =2~ hfﬁ 3 ’
P
(13)

with x =nyU,. In the continuum limit, nU, — 0,
Eq. (13) reduces to m*/m*bog 1 —2n%/Bry3?), with
n = Upr/(2npty,), in agreement with previous work [63].
Since there is no mean-field correction for the polaron
effective mass, the Bogoliubov prediction works better for
weak boson-boson interactions, as shown in Fig. 3 by the
dashed lines.

IV. TWO IMPURITIES

We now investigate the formation of bound states of
two fermionic impurities, i.e., bipolarons, which are induced
solely by the exchange of density fluctuations in the bosonic
bath [5-9]. In this aim, we first generalize the trap scaling
procedure introduced in Sec. III to bipolarons. We then use
this approach to compute the binding energy and effective
mass of bipolarons for both the singlet 1| spin configuration
(corresponding to Ny = N, = 1) and the triplet 11 spin con-
figuration (Ny =2, N, = 0).

A. Trap scaling approach for bipolarons

We proceed as in Sec. III by first assuming that there is no
trapping potential [i.e., we set @ = 0 in Eq. (2)] and that the
length of the chain is infinite. Let E, be the lowest energy
level of the mixture containing a bipolaron with center-of-
mass quasimomentum Q. In analogy to Eq. (4), for small O
we can write

2

2My,,

+AQ%, (14)

Ep~Ey+

where Ej is the ground-state energy of the uniform mixture,
Mf;ip is the bipolaron effective mass, and A is a numerical
coefficient accounting for anharmonic terms in the dispersion
relation. The binding energy E, of the bipolaron is then
defined as

—E, = Ey — 2E] +EJ,

15)
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where the minus sign on the left-hand side of Eq. (15) ensures
that £, > 0.

We now discuss the effect of a shallow harmonic trap
acting on the two fermionic impurities. Let Egs be the cor-
responding ground-state energy of the mixture, and let x; =
i—L/2, x, = j— L/2 be the spatial coordinates of the two
fermions measured with respect to the center of the chain.
In the first-quantization formalism, the total external potential
acting on the impurities can be written as

1m*a)z(x2 + xz) = lZm*a)ZR2 + 1m—*a)zrz (16)
2 P17 22 ’

where R = (x; +x,)/2 and r = x| — x; represent the center-
of-mass and the relative motion coordinates, respectively. For
bound states, the mean distance between the two constituent
particles is finite, \/(r?) < +o0, implying that the effect of a
shallow trap on the relative motion is perturbative. Hence, for
a small enough trap frequency, Eg is given by the ground-state
energy of the following Hamiltonian:

1 * 272 Q2 1 *  2p2 4
Hun = Eo + ym'o (r>+2Mg}p+§2me +AQ%, (17)

where the last term can again be evaluated within first-order
perturbation theory. This yields

Egs ~ Eo + Lo + (gMgipzA + gM ) ogy, (18)

where wpi, = w_ /2m* /M[fip is the effective trap frequency

for the bipolaron. As previously done for the single-polaron
problem, we compute the ground-state energy of the mixture
for different (small) values of the trap frequency w and fit the
obtained results via a quadratic polynomial,

o) = ap + 010 + a0, (19)

where «; are fitting parameters. From this, we obtain the
ground-state energy Ey = o of the uniform mixture, as well
as the inverse effective mass ratio 2m* /My, = 4o} of the
bipolaron. The binding energy E, is then evaluated from
Eq. (15).

We emphasize that Eq. (18) relies on the assumption that
the effect of the trap on the relative motion of the two
impurities is perturbative and therefore contributes only to the
w? term in E,. As a consequence, our fitting procedure is ac-
curate only if the binding energy of the bipolaron is large com-
pared to the trap frequency, i.e., E;, > w. At the breaking point
of the molecule, the average size of the molecule diverges, and
the right-hand side of Eq. (18) becomes ill defined. In order
to satisfy the condition E, > w, we would need to consider
smaller and smaller values of the trap frequency. To avoid the
pinning of the impurities at the edge of the system, this in turn
requires simulations of larger and larger systems. Numerically
accurate results in this regime are therefore challenging.

We have benchmarked the trap scaling procedure for two
simpler one-dimensional systems: two fermions with opposite
spins obeying the attractive Fermi-Hubbard model and two
identical fermions described by the attractive -V model. In
both cases we have recovered the known analytical results
[104] for the bound state in the absence of the trap.

8 |
6 |
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o f ]
84}
4 |
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27 HUb 2 —
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FIG. 4. Binding energy E) of the 1 bipolaron [see Eq. (15)] as
a function of the impurity-bath interaction strength U,;. The two
data sets correspond to two different values of the boson-boson
interaction, U, = 2 (red circles) and U, = 4 (blue diamonds). The
boson density is set to n, = 2.

B. Results: 1] bipolaron

In Fig. 4, we show the numerical results for the binding
energy of the 1] bipolaron as a function of the impurity-
bath interaction Uy, for two different values of the intrabath
interaction, U, = 2 and 4, with the boson density fixed to n, =
2. The bipolaron binding energy is found to be always positive
for any finite value of the impurity-bath coupling. This is
consistent with the fact that in one dimension any attractive
contact interaction produces a two-body bound state, leading
to a BCS instability [105].

As shown in Fig. 4, the binding energy E, increases
monotonously with the impurity-bath coupling U,,; and tends
to saturate for U,y — +00. In the regime of weak impurity-
bath coupling, we also find that the binding energy of the
bipolaron decreases as the boson-boson interaction U, gets
larger. This is due to the fact that bosonic density fluctuations,
which mediate the effective attractive interaction between
the two impurities, are progressively reduced as the level of
correlation in the bath rises. Indeed, in the limit of large
Uy, i.e., deep in the Mott regime for integer fillings [22],
the bosonic bath acts as a uniform external potential for the
fermions, and hence, the pair binding energy vanishes in the
absence of a direct interaction between the two impurities (in
the fermionized limit U, — +o00, it was previously pointed
out that two spin-polarized fermionic impurities interacting
with the fermionized gas cannot form a bound state in the
continuum, although two bosonic impurities can [40,106]).

In the opposite limit of strong coupling with the bath, the
tendency is reversed; namely, the binding energy becomes
larger for stronger boson-boson interaction, as can be seen
in Fig. 4. This can be attributed to the fact that for U,y >
U, > 1, the | fermion can occupy the same hole as previously
created in the bosonic bath to host the 1 fermion without
any significant additional energy cost, so that £y =~ EJ . From
Egs. (15) and (5), this implies that

By~ pup—2 (20)
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FIG. 5. Inverse effective mass ratio of the 1] bipolaron as a
function of the impurity-bath interaction strength. The two data sets
correspond to two different values of the boson-boson interaction,
U, = 2 (red circles) and U, = 4 (blue diamonds). The boson density
is set to n, = 2. The dotted lines represent the corresponding effec-
tive mass ratios for the single polaron, which are reproduced from
Fig. 3. For small values of U,s, we do not display any numerical data
points as our fitting procedure to extract My;, becomes inaccurate due
to finite-size effects (see text). In this regime the mass ratios of the
polaron and bipolaron approach each other.

and thus that Ej, should increase with growing U, (see Fig. 2),
in full agreement with our numerics.

In Fig. 5, we display the corresponding results for the
inverse effective mass ratio of the 1 bipolaron for the same
set of system parameters. On general grounds, it is expected
that the effective mass of the molecule increases as its binding
energy builds up (see Fig. 4). This is indeed what we find,
as for weak Bose-Fermi coupling the effective mass My, is
reduced for increasing boson-boson repulsion, while in the
opposite regime of strong coupling, U,y > 1, the tendency
is reversed. In particular, we see by comparison between
Figs. 4 and 5 that the two curves cross at similar values of
the impurity-bath coupling (around U,y = 6).

In Fig. 5, we do not display results for small values of
Uy, where the binding energy of the bipolaron (see Fig. 4)
becomes comparable to or smaller than the trap frequency,
|Ep| < w. In this regime the effect of the harmonic trap is not
perturbative, and our fitting procedure to extract My, is no
longer accurate. As this occurs, the bipolaron effective mass
My, is already close to the sum of the mass of its constituents
2m),, ie., twice the effective mass of a single polaron, as
indicated in Fig. 5 by the dotted lines.

In the left panel of Fig. 6, we show the dependence of
the fitting coefficient o, on the coupling strength Uy, for
the case U, = 2 (U, = 4 yields similar results). Due to the
finite harmonic oscillator length of the trap, we see that o,
does not diverge as U,y approaches zero as expected from
the divergence of the bound state size (r?) but reaches a
maximum and then decreases until it turns negative. This
stems from the fact that at U,y = 0, where no bound state
exists, one is left with the problem of two noninteracting
lattice fermions in a harmonic potential. In a previous work
[107], an analytical formula was found for the perturbative

0.4
1.5+ -
r 1 02
1 —
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6 L 4
0
0.5 B
1-02
0 \ 4 \ \
0 5 10 0 5 10
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FIG. 6. Fitting coefficient a, [see Eq. (19)] as a function of the
Bose-Fermi interaction strength Uy, for the 1 bipolaron (left panel)
and for the 11 bipolaron (right panel). The system size is L = 80.
The boson-boson repulsion is set to U, = 2, while the boson density
is ny, = 2.

expansion of the single-particle energy levels of the quantum
harmonic oscillator on a lattice as a function of the trap fre-
quency w. For two fermions with opposite spins we find that
o) = 1 and ap = —1/32, whereas for equal spins o; = 2 and
op = —3/32 (in both cases «g = —4). These limiting results
are in full agreement with our numerical results displayed
in Fig. 6.

C. Results: 11 bipolaron

Let us now consider the case of two fermionic impurities
with the same spin state. Despite the Pauli exclusion principle
which forbids any contact interaction between the two im-
purities, the formation of bipolarons is nevertheless possible
owing to the nonlocal nature of the phonon-mediated interac-
tions [90-95], although the typical values of their pair binding
energy are smaller than in the spin singlet configuration.

Importantly, we find that for the 14 bipolaron formation
a finite-size scaling analysis is crucial to obtain meaningful
results. As an example, in Fig. 7 we plot the values of the
pair binding energy, calculated via the trap scaling procedure,
as a function of the inverse size of the chain 1/L for two
different values of the Bose-Fermi coupling. All the obtained
values of the pair binding energy shown in Fig. 7 are negative,
indicating the presence of strong finite-size effects. However,
both data sets show a linear dependence on 1/L, and the
intercept of the curves with the y axis yields the extrapolated
value of the pair binding energy in the thermodynamic limit,
L — +00. For Uy = 4, the y intercept is vanishingly small,
signaling the absence of bipolarons, whereas for U,y = 5 the
y intercept is finite and positive, implying that a bipolaron
has formed in the system. Hence, we find that impurities with
equal spins form a spin-triplet bound state only above a finite
critical interaction strength U ,, in sharp contrast to the singlet
case. As shown in the right panel of Fig. 6, the value of the
coefficient o, changes from negative to positive in the vicinity
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FIG. 7. Binding energy of the 14 bipolaron as a function of the
inverse system size 1/L for two different values of the Bose-Fermi
coupling, U,s =4 (triangles) and U,y =5 (squares). The bosonic
bath parameters are n, = 2 and U, = 2, and the length of the chain
varies from L = 40 to L = 100. The numerical data are well fitted
with a straight line, whose y intercept yields an estimate of E, in the
infinite system. For U,y = 4 the y intercept vanishes, signaling the
absence of a bound state at low Uy;.

of the critical point, providing a simple way to approximately
estimate its position.

In Fig. 8, we display the pair binding energy for the
M1 triplet bipolaron state as a function of the Bose-Fermi
coupling strength using the same set of parameters as for
the single-polaron case. We see that mixtures with strongly
correlated bosons require a larger value of the critical Bose-
Fermi interaction Uy, for the formation of triplet polaron
pairs to happen, in agreement with early bosonization studies
[25]. A recent theoretical study on fermionic impurities in
three-dimensional Bose-Einstein condensates found a similar

FIG. 8. Pair binding energy E, of the 14 bipolaron, extrapolated
to infinite system size (see Fig. 7), as a function of the impurity-bath
interaction for two values of the boson-boson repulsion, U, = 2 (red
circles) and U, = 4 (blue diamonds). The boson density is n, = 2.
The bipolaron is formed only beyond a finite critical value of the
impurity-bath coupling Uy, Inset: Spin energy gap A of bipolarons
[see Eq. (21)] versus Bose-Fermi coupling.
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FIG. 9. Inverse effective mass ratio of the 14 bipolaron as a
function of the impurity-bath interaction strength U,,. The two data
sets correspond to two different values of the boson-boson interac-
tion, U, = 2 (red circles) and U, = 4 (blue diamonds). The boson
density is set to n, = 2. The dotted lines represent the corresponding
effective mass ratios for the single polaron, reproduced from Fig. 3.
Close to the breaking point of the bipolaron state (see Fig. 8), where
the mass ratios of the polaron and bipolaron approach each other, our
numerical data are biased by finite-size effects and are therefore not
shown (see text).

dependence of the p-wave critical interaction strength on the
bath interaction parameter [89]. We see from Fig. 8 that, for
a fixed value of Ups, the pair binding energy is inversely
proportional to the intrabath interaction strength U,. Unlike
that for the 1 singlet bipolaron, this behavior extends in the
strong-coupling regime of large Uy, where the pair binding
energy saturates to £, >~ 2.34 and Ej, ~ 1.89 for U, = 2 and
U, = 4, respectively (not shown in Fig. 8). Since the Pauli
exclusion principle prevents the two fermionic impurities with
equal spin from sharing the same site, two different holes in
the bosonic bath have to be created at neighboring sites to
accommodate the impurities. As a consequence, the simple
relation between the binding energies of the polaron and the
bipolaron in Eq. (20) does not hold for the 11 bipolaron.

It is also interesting to investigate the spin gap associated
with the bipolaron state, which is defined as the difference
between the pair binding energies of the singlet and triplet
spin configurations:

A=EN-E 1)

Our numerical results for the spin gap are displayed in the
inset of Fig. 8. We see that A becomes nearly constant once
the 11 bipolaron formation sets in for Uy > Uy,.

In Fig. 9, we show the corresponding results for the effec-
tive mass ratio 2m* Mg‘ip of the 11 bipolaron as a function
of the Bose-Fermi coupling. Near the breaking point of the
bound state, Uy = chf, we find that the effective mass ratio
of the bipolaron approaches that of the single polaron, m* /m,.
By comparing Fig. 9 with Fig. 5, we see that the effective
mass of the bipolaron in the triplet state increases much
faster with the Bose-Fermi coupling than the effective mass
of the singlet state. This interesting effect can be understood
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from the fact that the motion of the 11 bipolaron requires a
significant rearrangement of the bosonic bath in order to shift
the two neighboring holes hosting the bound state, resulting
in increased inertia.

V. CONCLUSIONS

To summarize, we have presented a thorough numerical
study of a few noninteracting spin-1/2 fermions coupled
to a one-dimensional gas of correlated lattice bosons. We
found that despite the absence of direct attractive interaction
between the impurities, the latter can bind in pairs through the
exchange of density fluctuations in the bosonic bath. In order
to fully characterize the ground-state properties of this system,
the binding energy and the effective mass of both polarons and
bipolarons have been investigated numerically through accu-
rate DMRG calculations based on a trap scaling procedure.

For the bipolaron state, we have shown that the binding
energy and effective mass exhibit qualitatively different be-
haviors depending on the spin state of the two impurities. For
opposite spin states, a bipolaron bound state exists for any
finite value of the impurity-bath (or Bose-Fermi) coupling,
while for impurities with equal spin states, bipolarons appear
only beyond a critical value of the coupling strength to the

bath. In the 1] (singlet) spin configuration, the dependence
of the binding energy and effective mass of the bipolaron on
the bath interaction parameter exhibits opposite trends in the
weak- and strong-coupling regimes, a feature not present in
the 11 triplet spin configuration. Furthermore, we found that
for equal spin states the effective mass of the bipolaron, once
formed, grows much faster as the strong-coupling regime is
approached than in the singlet spin configuration.

Our results can be tested in future experiments on bipo-
larons in one-dimensional Bose-Fermi mixtures of ultracold
atoms. We believe that the whole parameter space that we
studied here should be accessible to experiments, as the
impurity-bath Bose-Fermi coupling can be tuned via a Fesh-
bach resonance, while the interaction parameter of the bosonic
bath can be controlled by changing the depth of the optical
lattice in the longitudinal direction.
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