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Counting statistics of dark-state transport through a carbon nanotube quantum dot
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In a recent experiment [A. Donarini et al., Nat. Commun. 10, 381 (2019)], electronic transport through a
carbon nanotube quantum dot was observed to be suppressed by the formation of a quantum-coherent “dark
state.” In this paper we consider theoretically the counting statistics and waiting-time distribution of this
dark-state-limited transport. We show that the statistics are characterized by giant super-Poissonian Fano factors
and long-tailed waiting-time distributions, both of which are signatures of the bistability and extreme electron
bunching caused by the dark state.
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I. INTRODUCTION

In quantum optics, coherent population trapping is a phe-
nomenon in which coherent illumination drives an electron
into a particular superposition of orbital states—a dark state—
that is decoupled from the light fields [1–3]. In Ref. [4],
it was suggested that an all-electronic analog of this effect
should exist in the transport through nanoelectronic systems
such as a triple quantum dot. In this scenario, it is coherent
tunneling between electronic states that permits the formation
of a trapped state, and the “darkness” of this state is man-
ifested as the suppression of electronic current through the
system. Recently, Donarini et al. [5] reported the observation
of current suppression in the transport through a carbon
nanotube quantum dot (CNT-QD) and explained this effect
as arising through the presence of a dark state formed by the
superposition of longitudinal-orbital-momentum states in the
nanotube.

In this paper we report on calculations of the counting
statistics [6–12] and waiting-time distribution [13] of the
nanotube model introduced in Ref. [5]. The counting statistics
is a well established tool for obtaining information about
transport processes beyond that which is available from mea-
surements of the mean current alone [14–16]. Here we use the
counting statistics formalism to investigate the current noise
and skewness in particular. The waiting-time distribution,
i.e., the distribution of times between consecutive electron-
tunneling events, gives insight that is complementary to that
obtained with the counting statistics [17].

The counting statistics of other transport dark-state mod-
els such as the triple quantum dot have previously been
reported [18–25], with the dark state generally leading to
super-Poissonian statistics associated with electron bunching.
For the CNT-QD model here, we also obtain super-Poissonian
statistics. However, the degree of this effect depends very
strongly on a parameter �φ which describes the phase differ-
ence between tunneling states of the source and drain leads.
Indeed, for small �φ, we report a diverging noise and a
skewness that both diverges and changes sign. In this regard,
we conclude that the behavior of the model is similar to

that of the Aharonov-Bohm interferometer models discussed
in Refs. [26,27]. We also study in detail the effect on the
counting statistics of two mechanisms that break the coherent
population trapping, namely, relaxation and a Lamb-shift
precession.

Concerning the waiting-time distribution, we show that the
presence of the dark state gives rise to distributions with ex-
tremely long tails. Moreover, under certain conditions, we find
that the waiting-time distribution shows oscillations when the
Lamb shift is the dominant dark-state unblocking mechanism.
This gives, in principle at least, a means though which the
dark-state-breaking mechanism could be identified.

Finally, by using the parameters and voltage dependence
of the Lamb shifts from the CNT-QD experiment of Ref. [5],
we outline how the above features would appear in this exper-
iment. We discuss how noise measurements can be useful in
estimating critical model parameters, especially �φ, and pro-
vide an additional test of whether dark-state physics is indeed
responsible for the current rectification in the experiment of
Donarini et al.

II. MODEL

Our starting point is the model derived by Donarini et al. to
describe transport within the N = 0, 1 sector of the CNT-QD
spectrum [5]. This sector consists of the many-body ground
state |0〉 and two degenerate states |±l〉, each with a single
excess electron of longitudinal orbital momentum ±l . The
spin of the electron serves only to provide degeneracy factors
and is otherwise neglected here. The Coulomb blockade [28]
prevents the system from being occupied by more than one
excess electron in the bias window considered.

In a high-bias regime, electrons tunnel into the CNT-QD
from the left and out to right (see Fig. 1). The respective
tunneling rates are 4�L and �R, with the factor of 4 coming
from degeneracy. Due to off-diagonal elements in the tunnel
coupling, electrons do not tunnel directly into or out of states
|±l〉, but rather into and out of superpositions of them. Cru-
cially, the relevant basis for tunneling out of the dot consists
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FIG. 1. Sketch of the CNT-QD transport model. Electrons enter
the system from the left (source) lead with total rate 4�L into either
the coupled state (CS) or dark state (DS). Electrons exit the system
into the right (drain) lead at rate �R from only the CS. Without
anything further, an electron entering the dark state thus becomes
trapped, blocking current flow. However, Lamb-shift precession (fre-
quency ωL) and relaxation (rate �Rel) transfer electrons between DS
and CS, unblocking the system and leading to current flow.

of the states

|CS〉 ≡ 1√
2

(eiφR |l〉 + e−iφR |−l〉),

|DS〉 ≡ 1√
2

(eiφR |l〉 − e−iφR |−l〉),

(1)

where phase φR is a parameter characterizing the coupling to
the right (drain) lead. Here CS denotes the “coupled state,”
and electrons in this state can leave the CNT-QD to the
drain. Conversely, DS stands for “dark state,” and this state
is decoupled from the drain lead such that electrons entering
it cannot tunnel out. There exists a similar basis for tunneling
into the CNT-QD from the left lead. This is of the same form
but with parameter φL instead of φR.

The current blocking by the dark state is then driven by
the overlap of these two sets of states, and this is governed by
the phase difference �φ = φL − φR. When �φ = 0, the bases
for tunneling through left and right leads are the same. Thus,
electrons tunnel from the left into the coupled state |CS 〉 and
then tunnel directly out to the right. There is then no dark-state
effect in the current flow. However, when �φ �= 0, the left and
right tunneling bases are different, and electrons from the left
tunnel into both coupled and dark states. Once they enter the
dark state, electrons cannot tunnel out of it and thus remain
permanently trapped, and current is blocked.

Aside from tunneling, two further mechanisms are taken
into account in the model, both of which serve to unblock the
dark state. The first is the precession of the internal states,
arising from Lamb shifts due to the coupling of the leads. In
Ref. [5], the frequencies ωL and ωR of these shifts were found
to be functions of applied voltages. In Secs. III–V, we take
them as freely adjustable parameters to explore the model and
set ωR = ωL for convenience. In Sec. VI, we consider the volt-
age dependence of these quantities. The second unblocking
mechanism is relaxation caused by inelastic processes such
as phonon emission and absorption. This drives the internal
state of the CNT-QD into the completely mixed state with a
rate �Rel.

(a)

(b)

FIG. 2. Mean current 〈I〉 of the CNT-QD as a function of the
tunnel-basis phase difference �φ with �L = 0.4�R. (a) shows the ef-
fect of increasing relaxation rate �Rel with ωL = 0. (b) shows the
effect of increasing precession frequency ωL with �Rel = 0. With
ωL = �Rel = 0 the current is exactly zero for all �φ �= 0 as the
DS blockade is complete. Increasing the strength of either of the
unblocking interactions increases the current with the largest values
for �φ −→ 0.

In the weak-coupling regime, the transport properties of
this system can be determined from a quantum master equa-
tion of the form

ρ̇ = Wρ, (2)

where ρ is the reduced density matrix of the CNT-QD and
W is the Liouville superoperator describing all relevant dy-
namical processes. Appendix A shows the Liouvillian for the
problem at hand in matrix form. In Appendix B we outline the
counting-statistics formalism for calculating the cumulants of
the current 〈Ik〉c (for k = 1, 2, 3 here) as well as the waiting-
time distribution w(τ ) from master equation (2).

III. CURRENT

The impact of the DS on transport through the CNT-QD
is immediately seen in the mean current 〈I〉. The results we
obtain are consistent with those of Ref. [5], but here we
separate out the influence of the two unblocking mechanisms.

Figure 2 shows the mean current as a function of the phase
difference between tunneling states of the left and right leads,
�φ ≡ φL − φR. For any nonzero phase difference, electrons
have a finite probability of tunneling into the DS. In the
absence of unblocking mechanisms, this state is decoupled
from the right lead, and an electron entering it becomes
permanently trapped. This in turn results in complete current
suppression since no further electrons may tunnel into the
system due to the Coulomb blockade.
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This entrapment is lifted, however, by the relaxation and
precession mechanisms. A finite relaxation rate allows for
electrons to move from the DS to the CS and then escape
into the right lead. Similarly, the Lamb-shift precession causes
electrons to oscillate between the CS and DS at a frequency
of ωL, and this allows electrons to escape. As seen in Fig. 2,
increasing the strength of either of these processes results in
less suppression. The efficacy of the precession mechanism in
unblocking the system is dependent on the phase difference.

Two special points are evident from these graphs. The
first is �φ = 0, where, in the absence of relaxation, the
DS is completely decoupled from both the left and right
leads. In this case, the part of the system involved in trans-
port is essentially a single-level system. The counting statis-
tics of this model are then fully known, as recounted in
Appendix C. The second special point occurs at �φ = π/2,
where electrons from the left lead tunnel directly into the DS.
With unblocking mechanisms present, the maximum current
always occurs at �φ = 0, and the minimum always occurs
at �φ = π/2. Furthermore, at these points, the current is
unchanged by the precession frequency.

IV. SHOT NOISE AND SKEWNESS

The second and third current cumulants are the shot noise
and skewness, respectively. It is often more useful to discuss
the cumulants in terms of their Fano factors, defined as the
ratio of the kth cumulant to the first: Fk = 〈Ik〉c/〈I〉. The
second Fano factor is often just referred to as the Fano factor.

Figure 3 shows the (shot noise) Fano factor F2 as a function
of the phase difference for a range of relaxation rates and

(a)

(b)

FIG. 3. Shot noise Fano factor F2 as a function of the phase
difference �φ for (a) increasing relaxation rate �Rel with ωL = 0
and (b) increasing precession frequency ωL with �Rel = 0. The most
striking feature here is the giant super-Poissonian values assumed by
the Fano factor as �φ −→ 0. Tunnel rates are set as �L = 0.4�R.
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FIG. 4. The shot noise Fano factor of the CNT-QD as a function
of the precession frequency with varying relaxation rate �Rel. Param-
eters were �L = 0.4�R and �φ = π/4. At low relaxation, the Fano
factor shows a transition from low to high values as the precession
frequency is decreased. For both low precession frequency and
relaxation rate, the Fano factor tends to a value of F2 = 3 here. With
a high relaxation rate, the system is sub-Poissonian for all precession
frequencies.

precession frequencies. Figure 3(a) shows that F2 increases as
relaxation decreases for all values of the phase difference. The
most striking thing about this plot is that, provided �Rel � �R

and the phase difference is not near ±π/2, the Fano factor
assumes a value way in excess of the Poisson value F2 = 1.
And, indeed, as both �φ −→ 0 and �Rel −→ 0, the Fano factor
is observed to diverge.

Figure 3(b) shows the effect on F2 of changing the pre-
cession frequency. Once again, for finite ωL, giant super-
Poissonian values of F2 are observed, with divergence occur-
ring for �φ −→ 0. For values of �φ away from the origin,
the change in F2 is less drastic than in the case with changing
�Rel. In Fig. 4 we plot F2 as a function of precession frequency
for several relaxation rates with a fixed phase difference
of �φ = π/4, far away from the diverging limit. Figure 4
shows that, provided �Rel is small enough, as the precession
frequency is decreased, the Fano factor undergoes a transition
from a value close to 1 to a value significantly in excess
of it (here F2 → 3 as ωL → 0 for �Rel = 0). This transition
to the higher F2 value is an indication that the blocking of
the DS is starting to play a significant role. For large �Rel

the statistics are sub-Poissonian irrespective of ωL. This is
as expected because under such circumstances the internal
quantum structure of the system becomes irrelevant and the
system essentially becomes a single (degenerate) level system.

The third (skewness) Fano factor is plotted in Fig. 5
as a function of �φ. Once again, we observe giant super-
Poissonian values, even larger than those seen with F2 for the
same parameters. As �φ −→ 0, F3 becomes negative and for
�Rel → 0 or ωL → 0 diverges as F3 → −∞.

V. EFFECTIVE MODELS

We now discuss two effective models that allow us to
explain many of the features of the foregoing results, as
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(a)

(b)

FIG. 5. The same as Fig. 3, but here we plot the skewness
Fano factor F3. As is the case for F2, the third Fano factor is
massively super-Poissonian. In addition, for �φ −→ 0, F3 becomes
negative (which translates as the curves leaving the bottom of these
logarithmic plots).

well as to connect with previous studies in the literature.
We concentrate on the ωL = 0 case with relaxation being the
dominant unblocking mechanism.

Instead of using the quantum master equation, Eq. (2),
we can alternatively describe the system with a rate equation
involving the populations of the three states |0〉, |CS〉, and
|DS〉. In this picture, electrons tunnel into the CS with a
rate 4�L cos2(�φ) and into the DS with a rate 4�L sin2(�φ).
Without relaxation, tunneling to the right lead occurs only
from the CS with rate �R. However, when �Rel is finite, elec-
trons can leave the system by first relaxing into the coupled
state and then tunneling out. When �Rel 	 �R, the speed of
this process is limited by the relaxation step, and we can write
this unblocking step as an effective out tunneling from the DS
to state |0〉 at a rate �eff ≈ �Rel. Thus, we describe the system
with a χ -resolved rate equation Ṗ = W (χ )P, where

W (χ ) =

⎛
⎜⎝

−4�L �Reiχ �effeiχ

4�L cos2(�φ) −�R 0

4�L sin2(�φ) 0 −�eff

⎞
⎟⎠

and where, in the χ → 0 limit, P is the vector of populations
of the |0〉, |CS〉, and |DS〉 states.

With this simplified model, exact expressions for the cur-
rent cumulants are possible. Reporting results in the large-�R

limit, we obtain

〈I〉 = 4�eff�L csc(�φ)2

4�L + �eff csc(�φ)
(3)

and

F2 = �2
eff + 10�2

L − 2�2
L[4 cos(2�φ) + cos(4�φ)]

[�eff + 2�L − 2�L cos(2�φ)]2
. (4)

The corresponding expression for the skewness is rather cum-
bersome and not especially illuminating. Good agreement is
found between the full numerics and these expressions in the
appropriate regime.

This effective model then permits us to make an immediate
connection with the dynamical channel blockade models of
Belzig and coworkers [29,30]. Indeed, with �φ = π/4 as in
Fig. 4, the rates of tunneling into each of the CS and DS
become equal, and the model here becomes identical to that of
Ref. [30]. This then explains the Fano factor value of F2 = 3
in the limit ωL −→ 0 for �Rel = 0 as arising from electron
bunches with multiples of three electrons per bunch. This
then also matches with the Fano factor found by Groth et al.
[18] for the triple-quantum-dot model. For �φ �= π/4, the
tunnel rates into the two states become unequal, and this then
significantly changes the bunching properties of the current
flow.

Our second effective model provides a simple explanation
of the diverging Fano factors, as well as their signs. For
�Rel ≈ 0, our transport system is essentially bistable [31]:
in one of its steady states (the DS) the system does not
conduct; in the other, it does and admits a mean current,
〈I〉0, say. The probability distribution for the number of
transferred charges will therefore be approximately P(n, t ) =
(1 − p)δn,0 + pδn,n0 , where p is the probability that we find
ourselves in the conducting channel and n0 = 〈I〉0t is the
mean number of transferred charges in time t if we do. If t is
large, we are justified in ignoring the small fluctuations in the
charge numbers of zero and n0. The cumulant generating func-
tion for this model reads F (χ, t ) = ln(1 − p + pein0χ ), which
means we have a Bernoulli distribution with “payoff” n0.
The mean current is 〈I〉 = t−1∂F/(∂ (iχ ))|0 = p〈I〉0, which
is the mean current of the conducting state multiplied by the
probability of obtaining that state. Then, the first two Fano fac-
tors read F2 = 〈I〉0t (1 − p) and F3 = 〈I〉2

0t2(1 − p)(1 − 2p).
In the asymptotic limit, t → ∞, the Fano factors diverge
as Fk ∼ t k−1. Moreover, while the sign of F2 is manifestly
positive (since 1 − p > 0), the skewness will be positive for
p < 1/2 and negative for p > 1/2 due to the factor (1 − 2p).
Indeed, this simple model suggests that negative skewness is
associated with a bistable situation when the probability of
finding the conducting channel is large and that the skewness
will transfer to being positive as the weight of the blocking
channel increases. This is the behavior observed in the DS
model here.

VI. WAITING-TIME DISTRIBUTION

The waiting-time distribution ω(τ ) gives the probability of
waiting a time τ between consecutive “jumps” of an electron
out of the system. Figure 6 shows the waiting-time distribution
for the same parameters as Fig. 2(a) with the phase difference
fixed at �φ = π/4. While on a linear scale the distribution
w(τ ) looks similar to that which would be obtained from a
single-level quantum dot [13], on a log scale (Fig. 6, inset), we
see that the distribution possesses an extremely long tail, and
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FIG. 6. Waiting-time distributions for various �Rel with ωL = 0,
�L = 0.4�R, and �φ = π/4. The inset shows the same data on a
logarithmic scale, which highlights the long tail of the distribution
induced by the dark state.

the lower the relaxation rate is, the longer the tail becomes.
This tail is due to the presence of the DS, which results in
an electron being trapped for a long time before exiting the
system. The separation of timescales can be extreme. For
�Rel/�R = 0.01, for example, the main peak of the tunneling
dynamics is over after τ ≈ 5�−1, whereas the bulk of the tail
extends out to a time of τ ≈ 103�−1. We note that the waiting-
time distribution shows no particular trace of the change in
sign of the third Fano factor.

Figure 7 shows the waiting-time distribution when the
precession frequency is finite. In the regime when �L > �R,
the precession of the electrons oscillating between the CS
and DS imprints oscillations on the waiting-time distribu-
tion. As the precession frequency increases, the observed
oscillation frequency increases, but the amplitude decreases.
Under these conditions, the waiting-time distribution still

0 0.5 1 1.5 2 2.5 3 3.5 4
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1.5

101 103
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FIG. 7. Waiting-time distributions for �Rel = 0, �L = 100�R,
and �φ = π/4 on both linear and logarithmic scales. For these
parameters, oscillations due to the Lamb-shift precessions are clearly
visible.

maintains the extended tail, indicating the continued influence
of the DS.

VII. EXPERIMENTAL SIGNATURES

We now consider the appearance of some of the above
features in the experimental setup of Ref. [5]. In the gated
CNT-QD setup, the Lamb shifts are determined by the applied
bias VB and gate VG voltages via [5] (e = 1)

ωα = �α

π

[
pα (−VG) − pα

(
U − J

2
− VG

)]
, (5)

with

pα (E ) = −Re ψ[1/2 + i(E − μα )/(2πkBT )]. (6)

Here ψ is the digamma function, U is the QD charging
energy, J is the exchange interaction strength, and kBT is the
thermal energy. The chemical potentials of the leads are set as
μL = −ηVB on the left and μR = (η − 1)VB on the right, with
η being a parameter to account for an asymmetric bias drop at
the two leads.

The model we have hitherto considered is valid for large
reverse bias, specifically, when |VB| is larger than all other rel-
evant energy scales, i.e., kBT , h̄ωα , etc., and also ηVB < VG <

(η − 1)VB such that transitions lie within the bias window.
The corresponding model for forward bias can be obtained by
swapping all “left” and “right” quantities in Liouvillian (A1).
This forward-bias calculation is then valid at high bias with
(η − 1)VB < VG < ηVB.

Figure 8(a) shows the mean current through the CNT-
QD as a function of gate voltage for both forward- and
reverse-bias configurations. We plot results for a typical value
of VB = ±3 mV and for three different phase differences:
�φ = (0.5, 1, 2) × �φexp, where �φexp = 0.11π is the value
extracted from experiment [5]. Our results for �φ = �φexp

agree with those of Donarini et al. and show the rectifi-
cation that arises from the combination of dark-state trap-
ping and asymmetry in the coupling of the CNT to the
leads.

Figure 8(b) shows the predicted shot noise Fano factor for
the same parameters. We again see a clear distinction between
forward- and reverse-bias results, with the reverse-bias Fano
factor significantly in excess of that with forward bias. For the
experimentally determined phase difference, �φ = �φexp,
the Fano factor at VG = 0 is strongly super-Poissonian, F2 =
15.5, showing the effect of the dark state. In forward bias,
the VG = 0 value is also super-Poissonian, F2 = 5.0, albeit
reduced relative to the reverse-bias value. This difference
reinforces that the dark-state trapping is more active in reverse
than forward bias.

More significant than the exact value of F2 is its sensitivity
to changes in the phase difference �φ. Reference [5] states
that experimentally, most of the model parameters can be
extracted from the Coulomb diamond properties, and of those
that cannot, the phase difference �φ and the ratio �L/�R (for
fixed total rate �L + �R) have the greatest effect in determin-
ing the current. Figure 8(a) shows, however, that changing
�φ by a factor of 2 either way leads to only relatively small
changes in the mean current. In contrast, the Fano factor
changes dramatically with a change in �φ, as can be seen

245414-5
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(a)

(b)

FIG. 8. (a) Mean current and (b) shot noise Fano factor F2 for
the CNT-QD experiment as a function of gate voltage VG. Results are
shown for three values of the phase difference �φ/�φexp = 0.5, 1, 2
(blue, red, and yellow curves, respectively), where �φexp = 0.11π is
the value found in experiment. Solid lines show reverse-bias results;
dashed lines are those for forward bias. Strong asymmetry in both
current and noise is observed due to the difference in efficacy of the
trapping mechanism in the two bias directions. The Fano factor is
seen to be sensitive to changes in the phase difference �φ. The bias
voltage was set as VB = ±3 mV, with other parameters taken from
Ref. [5]: U = 20 meV, J = 10 μeV, kBT = 50 μeV, �L = 4 μeV,
�R = 10 μeV, �rel = 0.1 μeV, and η = 0.55.

from Fig. 8(b). At VG = 0 the reverse-bias Fano factor drops
to F2 = 4.0 at �φ = 2�φexp but increases to F2 = 45.3 at
�φ = 1/2�φexp. This dramatic change is due to the strong
nonlinearity of the diverging Fano factor as described in
Sec. IV.

This sensitivity of F2, compared with that of the current,
should mean that the addition of noise measurements will
enable �φ to be estimated more robustly from experiment
than would be the case from current measurements alone.

In Fig. 9 we investigate the current and noise characteristics
as a function of gate voltage with changes in the ratio of
�L/�R with total rate �L + �R fixed. We find that both quanti-
ties change significantly with �L/�R and that the dependence
of F2 on �L/�R is less marked than in its �φ dependence.
The difference between forward and reverse properties with
�L/�R = 1 stems from the inclusion of asymmetry factor
η �= 1/2, such that a small degree of rectification persists in
this limit.

Although the shot noise is the most readily accessible
cumulant with current technology, we also plot in Fig. 10
the predicted skewness Fano factor F3 as a function of gate
voltage. As can be anticipated from the noise, the skewness
Fano factor shows large values (F3 ≈ 275 at VG = 0) for
experimentally relevant parameters, and the results are very

(a)

(b)

FIG. 9. The same as Fig. 8, but here we plot results for different
values of �L = 2, 4, 7 μeV (blue, red, and yellow curves, respec-
tively), with the total rate �L + �R = 14 μeV fixed at the experimen-
tally observed value. Significant dependence of both quantities on the
ratio �L/�R is observed, but not as marked as the �φ dependence.

sensitive to small changes in the phase difference �φ. Also of
interest is that, for the parameters found in Donarini et al., the
forward-bias skewness is predicted to be negative throughout
large parts of the gate-voltage range.

VIII. DISCUSSION

In summary we have calculated the first three current
cumulants of a CNT-QD containing a dark state. These
cumulants are characterized by giant super-Poissonian Fano
factors brought about by electron bunching induced by the
dark state. The Fano factors show a strong dependence on

FIG. 10. Skewness Fano factor F3 for the CNT-QD setup as
a function of gate voltage VG. Parameters and the legend are the
same as in Fig. 8. With reverse bias, large positive values of F3 are
observed, whereas at forward bias, the skewness is negative across
large portions of the gate-voltage range.
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the phase difference �φ, and for �φ → 0 with vanishing
relaxation, the Fano factors diverge with F2 > 0 and F3 < 0.
This behavior can be explained by noting that, in this limit,
the system is essentially bistable with a very long (in the
limit, diverging) switching time between the states. The phase
dependence, including the periodic divergence of the Fano
factors, is very similar to that reported Urban and König [26]
(see also Li et al. [27]) for an Aharanov-Bohm interferometer
with quantum dots in the arms. In that context, the decisive
phase is the flux through the interferometer, and as the flux
varies, quantum dot states couple and decouple from the leads,
similar to the behavior of the dark state here.

The bunching and bistability caused by the dark state
are also responsible for giving the waiting-time distributions
the characteristic form found here. These are composed of
an initial peak, corresponding to the conducting channel,
followed by an extensive tail corresponding to long times that
the system spends trapped in the dark state.

Using the parameters obtained for the CNT-QD measured
in Ref. [5], we predict that large Fano factors (of the order of
F2 ≈ 16 and F3 ≈ 275) should be observable in experiment,
with a marked dependence on bias direction. We also predict

that both signs should be apparent in the measurement of
the skewness Fano factor. The predicted sensitivity of the
noise Fano factor means that its measurement will be able to
more robustly determine the critical parameter �φ. Finally,
we point out that measurements of noise, and higher-order
statistics, provide a more detailed test of the mechanisms at
play in electron transport [12,16], and comparison with the
predictions made here might reveal the need for modifications
to this dark-state model of CNT-QD transport.
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APPENDIX A: CNT-QD LIOUVILLIAN

For the CNT-QD model, the density matrix has five rel-
evant entries, which we organize into the vector |ρ〉〉 =
(ρ00, ρll , ρ−l−l , ρl−l , ρ−ll )T, with transpose T. In this basis,
the Liouvillian for our problem reads

W (χ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−4�L �Reiχ �Reiχ e−2iφR+iχ�R e2iφR+iχ�R

2�L −�R − �Rel
2

�Rel
2 −(

�R
2 e−2iφR − iω̃∗) −(

�R
2 e2iφR + iω̃

)
2�L

�Rel
2 −�R − �Rel

2 −(
�R
2 e−2iφR + iω̃∗) −(

�R
2 e2iφR − iω̃

)
2�Le2iφL −(

�R
2 e2iφR − iω̃

) −(
�R
2 e2iφR + iω̃

) −(�R + �Rel ) 0

2�Le−2iφL −(
�R
2 e−2iφR + iω̃∗) −(

�R
2 e−2iφR − iω̃∗) 0 −(�R + �Rel )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

where ω̃ = ωLe2iφL + ωRe2iφR . Anticipating Appendix B, we
include here the counting-field factor eiχ on all tunnel terms
to the right lead.

APPENDIX B: COUNTING STATISTICS METHOD

Here we follow the full counting statistics formalism for
Markovian master equations as described in, e.g., Refs. [8,32–
35]. With the relevant density-matrix elements written into
length-N vector |ρ(t )〉〉, master equation (2) can be written
as d

dt |ρ(t )〉〉 = W|ρ(t )〉〉, where W is the Liouville super-
operator in matrix form. Transport is then described by the
χ -resolved master equation

d

dt
|ρ(χ, t )〉〉 = W (χ )|ρ(χ, t )〉〉, (B1)

where W (χ ) = W0 + eiχJ is the Liouvillian decomposed
into jump (J ) and nonjump (W0) parts and where χ is
the counting field. We have limχ→0 W (χ ) = W = W0 + J .
The stationary state of the system is given by W|ρstat〉〉 = 0,
which we assume to be unique. The left null vector of W ,
denoted 〈〈1|, is normalized such that 〈〈1|ρstat〉〉 = 1. Mul-
tiplication with this vector corresponds to taking the trace
of the density matrix. The expectation value of a general
Liouville space operator A acting on state ρ is thus given by
〈〈A〉〉 = 〈〈1|A|ρstat〉〉. We also define P = |ρstat〉〉〈〈1| as the

stationary-state projection matrix and R as the pseudoinverse
of W .

The generating function of the cumulants of transferred
charge is given by F (χ, t ) = λ0(χ )t , where λ0 is that eigen-
vector of W (χ ) which reverts to zero in the χ → 0 limit. The
current cumulants are then given by

〈Ik〉c = 1

t

∂k

∂ (iχ )k
F (χ, t )

∣∣∣∣
0

. (B2)

Practically, however, finding the eigenvalues of W (χ ) is chal-
lenging for all but the simplest models, and an alternative ap-
proach is to expand the generating function to obtain explicit
expressions for a finite set of cumulants. The expressions for
the first three current cumulants read (e = 1)

〈I〉c = 〈〈J 〉〉,
〈I2〉c = 〈〈J + 2JRJ 〉〉,
〈I3〉c = 〈〈J + 3JRJ + 3JRJ

+ 6JR[JR − RJP]J 〉〉. (B3)

The waiting-time distribution for a master equation can
be expressed in this same language [13]. In the case of the
carbon nanotube quantum dot we are concerned with only
consecutive jumps of one type (transfer to the right lead),
and the system is of the “single-reset” type. In this case, the
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waiting-time distribution is given by

ω(τ ) = 〈〈J eW0τJ 〉〉
〈〈J 〉〉 . (B4)

APPENDIX C: SINGLE-LEVEL MODEL AT �φ = 0

At �φ = 0 and with �rel = 0, transport through the system
can be described by the χ -resolved Liouvillian

W (χ ) =
(−4�L �Reiχ

4�L −�R

)
, (C1)

written in the basis of empty state |0〉 and coupled state
|CS〉 populations. The resulting cumulant generating function

is [9,10]

F (χ ) = �t

2

(
− 1 +

√
a2 + 4

〈I〉
�

eiχ

)
, (C2)

in terms of the total rate � = 4�L + �R, asymmetry a =
(4�L − �R)/�, and mean current

〈I〉 = 4�L�R

4�L + �R
. (C3)

The second and third Fano factors of this model read

F2 = 1 + a2

2
, F3 = 1 + 3a4

4
. (C4)

Interestingly, whereas the current expression (C3) is also valid
for �Rel �= 0, the higher cumulants differ significantly from
the above.
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