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Photonic and polaritonic lattices were recently theoretically proposed and experimentally realized as many-
body simulators due to the rich behaviors exhibited by such systems at the macroscale. We show that the
networks of polariton condensates encapsulate a large variety of behaviors of systems of coupled oscillators. By
eliminating spatial degrees of freedom in a nonresonantly pumped polariton network, we establish that depending
on the values of experimentally tunable parameters the networks of polariton condensates may represent
Kuramoto, Sakaguchi-Kuramoto, Stuart-Landau, or Lang-Kobayashi oscillators and beyond. The networks of
polariton condensates are therefore capable of implementing various regimes acting as analog spin Hamiltonian
minimizers, producing complete and cluster synchronization, exotic spin glasses, and large-scale secondary
synchronization of oscillations. We suggest that the recently implemented control of the system parameters
for individual sites in polariton lattices allows addressing the interaction of sublattices that belong to different
oscillatory classes.
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I. INTRODUCTION

For a long time, two pervasive topics of modern science—
the dynamics of coupled oscillators and simulations of many-
body solid-state systems—have barely crossed each other’s
paths. Complex dynamic behavior of networks of coupled
oscillators arises in various scientific disciplines ranging from
biology, physics, and chemistry to social and neural net-
works as well as in established and emerging technological
applications. Such networks served as paradigmatic models
for understanding the mechanism of various collective phe-
nomena. For instance, Kuramoto oscillators [1,2] have been
successfully used to represent, study, or even predict a wide
variety of pattern formation in spatiotemporal systems, such
as biochemical systems, neural networks, convecting fluids,
and laser arrays. The reason for such power of networks
of coupled oscillators in describing vastly different systems
lies in the underlying symmetries of the system: these are
described by similar universal order parameter equations that
share similar characteristics [3]. Such symmetries make it pos-
sible to divide systems into various universality classes that
differ only by the nature of the dynamics [4] and allow one
not only to draw similarities between very different physical
systems but also to predict the behavior of the new systems
that fall into previously known universality class [5].

Traditionally, at the other end of the spectrum of nonlin-
ear dynamical studies lie the complex many-body solid-state
systems that are often considered powerful platforms for sim-
ulating various elaborate Hamiltonians. A number of systems
were realized implementing lattices of various physical ori-
gins: neutral atoms, ions, electrons in semiconductors, polar
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molecules, superconducting circuits, nuclear spins, etc. [6].
These are typically equilibrium systems that realize ground
or excited states of their structure Hamiltonians. Recently,
photonic and polaritonic lattices have emerged as promising
platforms for many-body quantum and classical simulations
[7,8]. These systems are typically of a gain-dissipative nature,
are capable of symmetry breaking and spontaneous pattern
forming, and have constant nonzero particle fluxes even in
the steady state. Furthermore, we argue in this paper that
if the lattice elements have a photonic component and the
gain-dissipative nature, then the complex amplitudes charac-
terizing such elements evolve, interact, and synchronize in
close resemblance to the coupled oscillators that are gov-
erned by the universal order parameter equations. Therefore,
on the one hand, many classical phenomena found in such
lattices can be explained or predicted by the behavior of the
corresponding system of coupled oscillator networks from
the same universality class; on the other hand, strong non-
linearities, spin polarization, sensitivity to magnetic fields,
and individual site control greatly enrich possible states and
dynamical regimes that can be generated in such lattices. In
this paper, we propose and theoretically justify the use of
networks of exciton-polaritons (polaritonic networks) as a
flexible universal platform to realize a vast array of known and
extensively studied systems of coupled oscillators to probe
exotic dynamical regimes and to create states of matter that
may result from hybridization of several different networks
on one platform. In particular, we find the states that suggest
possible practical implementations towards optical transistors
and clarify the requirements for such a network to minimize
classical spin Hamiltonians.

In the last decade, it has emerged that strong light-matter
interactions in semiconductor microcavities offer a versatile
platform to realize nontrivial states, dynamics, and localized
structures. They consist of exciton-polaritons (polaritons) that
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are bosonic quasiparticles with a tiny effective mass which is
typically 10−4 − 10−5 of the bare exciton mass. Their energy-
momentum dispersion curves can be controlled by appropriate
detuning, and their properties and dynamics can be readily
accessed by angular-resolved photo- or electroluminescence
spectroscopy. A wealth of experimental results has been
demonstrated with these systems, including Bose-Einstein
condensates (BECs) [9], polariton lasers [10], polariton
parametric amplifiers [11], and cavity quantum electrody-
namics [12]. The polariton BEC or lasing has been demon-
strated in various materials such as CdTe [9], GaAs [13,14],
GaN [15], and organic polymers [16] and using optical pump-
ing or electrically pumped exciton-polariton emitters [17].

We are interested in networks of N polariton condensates
created at lattice sites: the vertices of a two-dimensional graph
at positions ri, i = 1, . . . , N. Many techniques are available
to engineer a variety of the potential landscapes of polari-
tons [18,19]. Polaritons can be confined by strain-induced
traps [14], surface acoustic waves [20], direct fabrication
with the gold deposition technique [21], using hybrid air
gap microcavities [22], or coupled mesas etched during the
growth of the microcavity [23], by micropillars [24], and in
various geometries: square [21], triangular [25], hexagonal
[26], a fully etched honeycomb [27], kagome [28], and even
quasiperiodic potentials [29]. However, the potential traps in
a gain-dissipative system lead to complicated dynamics as
the flow dynamics present in gain-dissipative systems even
in the steady state is highly nontrivial in this geometry. To
avoid such complications, polariton lattices can be optically
engineered by exploiting the interactions between polaritons
and reservoir excitons that can be injected in specific areas
of the sample. Excitons barely move from the point where
they are excited as they are orders of magnitude heavier than
polaritons. Experimentally, the lattice is achieved by using
a spatial light modulator that creates polariton condensates
at the vertices of any prescribed graph [30–34]. This tech-
nique also allows controlling the pumping intensities pi of
individual sites indexed by i depending on the density of the
polariton condensate at this site, if needed. In what follows
we derive and discuss the network behavior bearing in mind
this technique of the lattice formation; however, other ways
to create polariton lattices affect the parameters but not the
universality of the derived coupled oscillators equations.

II. MEAN-FIELD MODELS OF POLARITONIC
NETWORKS AND COUPLED OSCILLATORS

The mean-field behavior of polariton condensates is
described by the generalized complex Ginzburg-Landau
equation (often also referred to as a driven-dissipative
Gross-Pitaevskii equation) coupled to the reservoir
dynamics [35–38]. Although the process of Bose-Einstein
condensation includes quantum effects, when a condensate
is formed, it is accurately described by the mean-field
equations, as was shown in numerous experimental
works [33,34,39–45]. The equation on the wave function
ψ (r, t ) of the condensed system is coupled to the rate
equation on the density of the hot reservoir nR(r, t ),
so that iψt = − 1

2m (1 − iη̂nR)∇2ψ + U0|ψ |2ψ + gRnRψ +
i
2 [RRnR − γC]ψ , and nRt = −(γR + RR|ψ |2)nR + P(r, t ),

where we set h̄ = 1, U0 and gR are the polariton-polariton
and polariton-exciton interaction strengths, respectively,
η̂ is the energy relaxation [5,46], and RR is the rate of
scattering from the hot reservoir into the condensates. The
condensate (γC) and the reservoir (γR) relaxation rates
describe photon losses in the cavity and hot exciton losses
other than scattering into condensates. The incoherent pump
source is described by the pumping intensity P(r, t ). We
nondimensionalize these equations by ψ → √

γC/2U0ψ ,
t → 2t/γC , r → √

1/mγCr, nR → γCnR/RR, P → Pγ 2
C /2RR

and introduce the dimensionless parameters g = 2gR/RR,
b0 = 2γR/γC , b1 = RR/U0, η = η̂γC/RR. The resulting model
yields

i
∂ψ

∂t
= −(1 − iηnR)∇2ψ + |ψ |2ψ + gnRψ

+ i(nR − 1)ψ, (1)

∂nR

∂t
= −(b0 + b1|ψ |2)nR + P(r, t ). (2)

A unique property of the exciton-polariton system is the flexi-
bility with which the parameters g, b0, b1, η can be controlled
and changed. Exciton-polaritons offer a testbed that bridges
the physics of lasers and other nonequilibrium systems with
equilibrium condensates as well as allows one to explore novel
physical regimes. The lifetime of polaritons γC is controlled
by the accuracy of the cavity distributed Bragg reflectors
and spans two orders of magnitude [9,47]. The detuning
between the cavity photon energy and the exciton resonance
determines the proportion of photon and exciton in the po-
lariton and therefore the strength of the polariton-polariton
and polariton-exciton interactions and effective mass [37,38].
The repulsive interactions between excitons and polaritons gR

can be further tuned by the pumping geometry, for instance,
considering trapped condensates separated from the pumps
[39].

The building block of our network is a single stationary
condensate described by a wave function ψ = φ(r), cre-
ated by a spatially localized radially symmetric incoherent
pumping source P = p(r). For instance, a Gaussian pump
p(r) = A exp[−wr2], where w determines the inverse width,
has been widely used in experiments [30,34]. In what follows
we assume that the pumping intensity A is chosen so that φ

is normalized, so that
∫

Q |φ|2 dr = 1, where Q is the entire
plane of the cavity. We define the corresponding station-
ary reservoir profile as the steady state of Eq. (2), so that
nR(r) = n(r) = p/(b0 + b1|φ|2). The networks of N po-
lariton condensates are created at lattice sites i using
a time- and space-varying pumping profile P(r, t ) =∑N

i=1 fi(t )p(|r − ri|). The total wave function ψ and the
reservoir density nR can be approximated by ψ (r, t ) ≈∑N

i=1 ai(t )φ(|r − ri|) and nR(r, t ) ≈ ∑N
i=1 ki(t )n(|r − ri|),

respectively. Such an approximation is valid if the distance
between the lattice sites exceeds the width of the conden-
sate and reservoir [48]. This approach is reminiscent of
the tight-binding approximation that was applied before to
the equilibrium Gross-Pitaevskii equation [49–51]. The main
difference between the equations arises from the nature of
the driven-dissipative system considered here and from the
coupling mechanism: the nearest-neighbor interactions are
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created by the kinetic term in the optical lattices of equi-
librium condensates, while in our case the couplings are
dominated by the excitonic reservoir while polariton con-
densates are spatially separated. In the derivations below,
we use the shorthand notation pi ≡ p(|r − ri|), with similar
notation for φ and n. We eliminate the spatial degrees of
freedom by multiplying Eq. (1) by φ∗

i , multiplying Eq. (2)
by |φi|2, and integrating both equations over the plane of
cavity Q. Previously, we used this approach on a single
Ginzburg-Landau equation that is relevant to the description
of polariton condensates under several stringent assumptions:
negligible blueshift due to interactions of polaritons with the
reservoir, short lifetime sample, fast reservoir relaxation, and
near-threshold pumping intensity [48]. Now we shall drop
such restrictions and show how systems of different univer-
sality classes become relevant. We use the smallness of the
overlap integrals for the wave functions of the different lattice
sites [59] so that li j ≡ ∫

Q niφ jφ
∗
i dr � ∫

Q φ jφ
∗
i dr, l = lii �∫

Q ni|φ j |2 dr, and H = ∫
Q n∇2φφ∗ dr � ∫

Q ni∇2φ jφ
∗
i dr if

i 	= j. We also assume that for sufficiently smooth condensate
profiles

∫
Q ni∇2φ jφ

∗
i dr 
 li j . The dynamical equations on

�i(t ) = ai(t ) exp[−idt] and Ri(t ) = lki become

�̇i = − i|�i|2�i − �i + hRi�i + (1 − ig)[Ri�i

+
∑
j 	=i

Ji j� j], (3)

Ṙi = b0(γi − Ri − ξRi|�i|2), (4)

where we used the notation d = ∫
Q φ∗∇2φ dr, h =

ηH/l, γi = fi
∫

Q p|φ|2 dr/b0, ξ = b1
∫

Q n|φ|4 dr/lb0, Ji j =
(Rili j + Rjl∗

ji )/l. The energy relaxation parameter η 
 1;
therefore, |H | < l , so the term |h|Ri�i will be neglected in
comparison with Ri�i, whereas the imaginary part of h will be
assumed to be absorbed by g. As a result, the time-dependent
Eqs. (3) and (4) approximate the original Eqs. (1) and
(2) with each site in a network of condensates being
described as a complex number �i, i.e., the condensate’s
amplitude and phase. For each node we consider nonlinear
polariton-polariton interactions (−i|�i|2�i), linear losses
(−�i), the exciton conversion rate to polaritons (Ri�i),
exciton-polariton interactions (−igRi�i), and coupling
coefficients between network sites ((1 − ig)

∑
j 	=i Ji j� j). The

coupling strength Ji j is generally a complex number too, so
we write Ji j ≡ Ji j exp[ivi j] for real Ji j and vi j . In deriving
Eqs. (3) and (4) we neglected higher-order nonlinearities in �i

in view of their smallness close to the condensation threshold.
Next, we consider several special cases of Eqs. (3) and (4).

Fast reservoir relaxation limit b0 � 1. In this limit, the
reservoir dynamics can be replaced with its steady state, so
Ri = γi/(1 + ξ |�i|2) ≈ γi − ξγi|�i|2, reducing the system of
Eqs. (3) and (4) to the single equation

�̇i = i(gξγi − 1)|�i|2�i − ξγi|�i|2�i − �i

+ (1 − ig)

⎡
⎣γi�i +

∑
j 	=i

Ji j� j

⎤
⎦. (5)

For uniform pumping γi = γ this is a celebrated Stuart-
Landau system of coupled oscillators [52]. This model can
approximate a wide range of different oscillatory systems as it

represents the normal form of an Andronov-Hopf bifurcation.
Operating close to an instability threshold, lasers represent
an example of the system close to such a bifurcation. We
substitute �i(t ) = √

ρi(t ) exp[iθi(t )] into Eq. (5) and separate
the real and imaginary parts to get

1

2
ρ̇i(t ) = (γi − 1 − ξγiρi )ρi

+
∑
j; j 	=i

J̃i j
√

ρiρ j cos(θi j − vi j + α), (6)

θ̇i(t ) = (gξγi − 1)ρi − gγi

−
∑
j; j 	=i

J̃i j

√
ρ j√
ρi

sin(θi j − vi j + α), (7)

where θi j = θi − θ j, tan α = g, and J̃i j = Ji j/ cos α. Note
that for the Gaussian pumping profile and wide reservoir,
|vi j | 
 |Ji j |, so the term vi j can be neglected since li j ≈
l∗

ji [48]. For other network geometries such an assumption
may not be valid, in which case we can absorb vi j into
αi j = α − vi j .

Experimentally, the feedback can be applied to bring all the
sites to the same density ρi(t ) = |�i(t )|2 = ρth by combining
Eq. (5) with an equation on the pumping adjustments,

γ̇i(t ) = ε[ρth − ρi(t )], (8)

where the parameter ε characterizes the rate of such an
adjustment or its discrete version applied at discrete times
tn (which is more appropriate for the current experimen-
tal control techniques), so that γi(tn < t � tn+1) = γi(tn)
+ ε(tn+1 − tn)[ρth − ρi(tn)]. Under this control, close to the
threshold ρi ≈ ρth, and Eqs. (6) and (7) reduce to a single
equation,

θ̇i(t ) = (gξγi − 1)ρth − gγi −
∑
j; j 	=i

J̃i j sin(θi j + α). (9)

This is the Sakaguchi-Kuramoto model of coupled oscillators
[53], with α representing a phase lag. Synchronization and
desynchronization in this system have been extensively stud-
ied in contexts as vastly different as a network of Wien-bridge
oscillators in an experimental regime for which they can be
approximated as phase oscillators [54], power grids consisting
of many oscillating generators [55], and earthquake sequenc-
ing studies [56]. The phase lag appears as a result of synaptic
organizations in neuroscience systems, time delays in sensor
networks, or transfer conductances in power networks. The
Sakaguchi-Kuramoto model is a special case of the Winfree
model with δ-function pulse shape W1(θ ) and a sinusoidal
response curve W2(θ ), so that θ̇i = ωi + W2(θi )

∑N
i=1 W1(θ j ).

If the coupling is sufficiently weak and the oscillators are
nearly identical, the phase can be replaced by its average
over an entire period of oscillations, leading to the Sakaguchi-
Kuramoto model.

If g = 0 (α = 0), then Eq. (9) reduces to the paradigmatic
Kuramoto model [1,2] that was the first tractable mathemat-
ical model for describing how coherent behavior emerges in
complex systems. This model exhibits a phase transition at
a critical coupling, beyond which a collective behavior is
achieved. In our case, all natural frequencies are identical (and
equal to ρth) and the equation describes the negative gradi-
ent flow θ̇ = −∂U (θ )/∂θ for the smooth function U (θ ) =
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−∑
i, j J̃i j cos θi j . Therefore, by the LaSalle invariance prin-

ciple (e.g., in [57]) every trajectory converges to a minimum
of the XY Hamiltonian HXY = −∑N

i=1

∑N
j=1 J̃i j cos(θi − θ j ).

In the case of S1-synchronizing graphs all critical points are
hyperbolic, so the synchronized state is the global minimum
of U (θ ), and all other critical points are local maxima or sad-
dle points [58]. For arbitrary graphs the global minimum can
be achieved by implementing the lowest pumping intensity
that leads to the threshold ρth [48]. Polariton graphs as global
minimizers of the XY Hamiltonian were theoretically justified
and experimentally realized in our previous work [30,59].
Using a resonant pumping in addition to the nonresonant
one [adding the terms proportional to �∗

i to the right-hand
side of Eq. (1)] allows one to minimize the Ising or Potts
Hamiltonians [60]. Several other driving-dissipative platforms
exploited this idea for minimization of spin Hamiltonians:
injection-locked laser systems [61], networks of optical para-
metric oscillators [62–65], coupled lasers [66], and photon
condensates [67]. As the analogy with the coupled oscillators
we presented above suggests, the minimization of a spin
Hamiltonian is realized for the type of coupling that allows for
the flow to be represented by the negative gradient flow with
real function U . This condition is satisfied only if the coupling
matrix Ji j in Eq. (5) is self-adjoint Ji j = J ji and vi j = −v ji.
For instance, if the couplings in Eq. (5) are of a pure Josephson
type (e.g., �̇i = · · · + i

∑
j Ki j� j with real couplings Ki j) or

have a non-negligible g, such a network will not necessarily
minimize spin or any other Hamiltonian.

In addition, the parameter g has a destabilizing effect on the
fixed points of Eq. (9). Different γi that have to be maintained
to allow all densities to reach the same value ρth provide
each lattice element with its own “natural frequency,” ωi =
(gξγi − 1)ρth − gγi, and therefore favor desynchronization.
In the network described by Eq. (9) synchronization occurs
when the coupling dominates the dissimilarity introduced by
natural frequencies and the phase lag. The smaller g is, the
more likely it is the global synchronization will be achieved.
Concise results for complex networks are known for specific
topologies such as complete graphs, highly symmetric ring or
linear graphs, acyclic graphs, and complete bipartite graphs
with uniform weights. Also, the Sakaguchi phase lag parame-
ter α contributes to desynchronization as it provides attraction
and repulsion between the oscillator phases similar to the
coupling time delay. The dependence of synchronization and
desynchronization in polariton condensates on g was noted
experimentally, but the reasons have not previously been iden-
tified [31–33,68]. Such behavior, however, is easily explained
from the point of view of the dynamics of coupled oscillators.

Slow reservoir relaxation limit. Equation (5) describes the
direct coupling scheme: pumping at the mean field, calculated
algebraically from the states of all oscillators, enters the
coupling. The coupling scheme of Eqs. (3) and (4) is more
complex: the mean field acts on the reservoir densities that
obey its own nonlinear differential equations, and the acting
force is a function of the reservoir state. This is similar to
the famous example of synchrony on London’s Millennium
Bridge, where equations for the swinging mode of the bridge
are coupled to the equations on individual pedestrians [69],
or to electronic or electrochemical oscillators that are coupled

FIG. 1. The polaritonic networks described by Eqs. (3) and (4)
can lead to the Lang-Kobayashi model in the absence of the nonlinear
self-interaction term or to Kuramoto/Sakaguchi-Kuramoto/Stuart-
Landau models of coupled oscillators in the limit of fast reservoir
relaxation. The new regimes are expected to appear due to strong
polariton-polariton interactions or once the experimental controls
such as resonant excitation pump, spin polarization, and magnetic
field or a combination of different sublattices are considered in
polaritonic networks.

through the common macroscopic current or voltage, which
obeys macroscopic equations describing the coupling circuit
[70]. By tuning the photonic component of polaritons one
can change the polariton-polariton interactions up to four
orders of magnitude [68], which allows one to neglect the
term |�i|2�i, so that Eqs. (3) and (4) become similar to the
Lang-Kobayashi equations (with �i replaced by the electric
field and Ri replaced by the population inversion of the ith
laser) obtained using Lamb’s semiclassical laser theory and
are capable of describing the dynamical behavior of coupled
lasers [71,72]. We summarize all the regimes and models
described above schematically in Fig. 1.

The flexibility to tune the system parameters, the shape
and geometry of the polariton lattice [30], the existence and
tunability of the nonlocal couplings beyond the next-neighbor
interactions [73], and strong self-interactions of polariton
condensates allow one to not only recreate the intriguing pat-
terns, states, and structures that have fascinated the nonlinear
dynamics community in the last couple of decades but also to
enter novel regimes.

III. REALIZATION OF HYBRID POLARITONIC
NETWORKS

To illustrate a possibility for the exciton-polariton system
to enter hybrid regimes, we consider two polaritonic networks
configurations in which the dynamic behavior is the result of
the interplay between two or more subsystems that belong to
different types of coupled oscillators.

Triangular lattice in the fast reservoir relaxation regime
with low g, short lifetime, excitonic polariton condensate,
and constant pumping. Any finite two-dimensional polariton
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lattice with the same pumping intensity across all the sites
gives rise to an example of the interplay between Kuramoto
(for g = 0) or Sakaguchi-Kuramoto (for g 	= 0) oscillators
away from the network boundaries and the Stuart-Landau
oscillators at the sites close to the boundary. When all
the lattice sites are equally pumped, the internal sites have
the same number of neighbors and therefore receive equal
particle fluxes from them. On the boundary, however, the
number of neighbors is diminished, so fewer fluxes bring
fewer particles, decreasing the density of the oscillators. The
difference in the “natural frequency” [given by the first term
on the right-hand side of Eq. (7)] between the boundary
and bulk condensates tends to desynchronize the lattice, but
for lower pumping intensities this effect is overwhelmed by
the synchronization effect of the couplings, so the lattice
is frequency synchronized [see Fig. 2(b)]. As the pumping
intensity is increased further above the threshold, the fre-
quencies may still be synchronized, but the phases corre-
sponding to a spin glass emerge as shown in Figs. 2(c) and
2(d). The appearance of the spin glass is due to nonlocal
coupling and an increasing role of Dzyaloshinskii-Moriya
interactions (DMIs) since the density imbalance between
the sites makes the interaction directional and therefore
of the DMI type [74,75]. For even higher pumping inten-
sities the desynchronization takes place [Figs. 2(e)–2(g)],
resulting in a peculiar quasi-one-dimensional form of large-
scale collective density oscillations in the direction of the
larger axis of symmetry of the lattice. The collective density
oscillates between the left and right parts of the lattice with
the appearance (and disappearance) of the π -phase difference
between two clusters, indicating temporal formation of the
domain wall. Figure 2 illustrates these regimes using the
full spatially resolved simulations of the polaritonic networks
[Eqs. (1) and (2)] in the fast reservoir relaxation limit. These
states are robust, sustain external noise, exist for a wide range
of parameters, and are reached from random initial conditions.
The collective density oscillations also appear when larger
lattices are considered. The dimensionless parameters listed
in the caption of Fig. 2 correspond to a polariton lifetime of
2 ps, exciton reservoir lifetime of 4 ps, U0 = 7.9 μeV μm2

and gR = 0.12 μeV μm2 (the excitonic component of the
polaritons dominates over their photonic component), po-
lariton mass m = 0.4 meV ps2/μm2, and RR = 20gR. These
parameters fall into experimentally measured and numerically
used ranges [42,68,76,77].

We note that the system behavior as the pumping intensity
increases is reminiscent of the Mott metal-insulator transition.
The frequency of the collective oscillations quenches towards
the transition point [see the inset in Fig. 2(a)], after which the
oscillation frequency increases as a linear function, repeating
the linear trend of the original Mott transition. We can induce
reversible changes between these two states of the system by
increasing or decreasing pumping intensity. Such oscillations
suggest an interesting application towards implementation of
polariton transistors [78] that operate in the gigahertz range.

Triangular lattice in both fast and slow reservoir relaxation
regimes with low g, short lifetime, photonic polariton conden-
sate, and constant pumping. Our second example concerns
cluster synchronization, a particular synchronization phe-
nomenon that requires synchronization to occur in each group,

FIG. 2. The results of numerical integration of Eqs. (1) and (2)
in the fast reservoir relaxation limit for 45 polariton condensates
arranged in the regular triangular lattice with a lattice constant
d = 9 μm. (a) The total number of particles Nparticles as a function of
time t (blue line). The time-dependent pumping intensity increases
above the threshold P0/Pth, as shown in red, where Pth = 3.9. The
density distribution and phases of individual condensates are shown
in (b)–(g). (b) The density and phases of the stationary lowest-energy
state at Pth with ferromagnetic couplings. (c) and (d) The spin
configuration changes for the higher pumping intensities as the DMIs
become noticeable. (e–g) Time snapshots over the period of density
oscillations at P0 = 1.14Pth demonstrate the collective density oscil-
lations with a temporary formation of the domain wall. The inset
in (a) shows the oscillation frequency of the number of particles
Nparticles as a function of P0/Pth. The transition point between the
stationary state and the collective periodic density oscillations is at
P0 = 1.11Pth. The frequency of oscillations increases linearly for
P0 > 1.11Pth. For P0 > 1.3Pth the system exhibits chaotic density
oscillations. Random initial conditions and white noise were used
in numerical simulations with g = 0.1, b0 = 1, b1 = 0.3, η = 0.12,
w = 1.33, P(r) = ∑N

i=1 P0 exp[−w(r − ri )2].

but there is no synchronization among the different groups
[79]. The importance of cluster synchronization has been
found in various applications, including biological sciences
and communication engineering, and various control schemes
were designed to drive the network to cluster synchronization
[80]. In polaritonic networks, cluster synchronization presents
itself even in the case of equally pumped lattices. To illustrate
cluster formation, we consider regular triangular lattices and
numerically integrate Eqs. (1) and (2) in two opposite limits:
fast [Fig. 3(a)] and slow [Fig. 3(c)] reservoir relaxation times.
During a fraction of a nanosecond the system is frequency
locked into several clusters; some of them are shown in
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FIG. 3. (a) and (c) The numbers of particles Nparticles as a function
of time t − t0 calculated by numerical integration of Eqs. (1) and
(2) in (a) fast and (c) slow reservoir relaxation limits for (a) 105
and (c) 36 polariton condensates arranged in the regular triangu-
lar lattice with a lattice constant of (a) d = 13 μm and (c) d =
22.5μm. (b) and (d) The time-averaged density and instantaneous
relative phases of individual condensates. Relative phases are plot-
ted for times depicted with red dots in (a) and (c), respectively.
The clusters of synchronized condensates are indicated by dashed
circles of the same color. The numerical parameters in (a) and
(b) are the same as in Fig. 2 with P0 = 32, and the parameters in
(c) and (d) are g = 0.1, b0 = 0.05, b1 = 200, η = 0.01, w = 0.8,
P(r) = ∑N

i=1 P0 exp[−w(r − ri )2], P0 = 100; t0 is about 200 ps in
both cases.

Figs. 3(b) and 3(d) with dashed circles of the same color. The
cluster state in Figs. 3(a) and 3(b) is a long-lived transient state
that after a few nanoseconds evolves into chaotic oscillations.
However, both reported states are stable against the addition of
the random noise and against intrinsic roughness of the sample
modeled by adding the noise potential to the right-hand side
of Eq. (1) and therefore may be detected experimentally.
The dimensionless parameters listed in the caption of Fig. 3
correspond to a polariton lifetime of 10 ps, exciton reservoir
lifetime of 400 ps, U0 = 0.2 μeV μm2 and gR = 2 μeV μm2

(the photonic component of polaritons dominates over their
excitonic component), polariton mass m = 0.4 meV ps2/μm2,
and RR = 20gR. All found regimes are robust and can be
demonstrated for reasonably different sets of parameters.

The established links between polaritonic networks and
other coupled oscillators systems suggest that these two

examples are infinitely far from describing all possible dy-
namical regimes and hint that other intriguing states can be
obtained. A particular interest is in finding chimera states.
A chimera state is a spatiotemporal pattern in a network of
identical coupled oscillators in which some of the oscillators
synchronize (become frequency locked) while others remain
incoherent (desynchronized) [81,82]. The simplest model that
supports such states was reported as a pair of Sakaguchi-
Kuramoto oscillator populations in which each oscillator has
a different coupling to others in the same group than to
those in another group [83]. The type of the pattern depends
strongly on the parameter g and therefore the phase lag
α. The spiral pattern of chimeras appears when α is close
to zero, whereas the spot chimeras only appear when α is
close to π/2 [84]. The “turbulent chimeras” were observed
in some special cases of nonlocally coupled Stuart-Landau
oscillators in which regions of local synchronization appeared
and vanished randomly over time [85]. The Stuart-Landau
system equation (5) has also been shown to produce a wealth
of various stationary and dynamical behaviors, e.g., amplitude
death, Hopf oscillations, large oscillations, quasiperiodicity,
and chaos [86]. Polaritonic networks are a promising platform
to study the wealth of these phenomena.

To summarize, we proposed polaritonic networks as a
paradigm for the dynamics of disparate systems of coupled
oscillators. The dynamics of coupled oscillators often appear
in the context of lasers and other driven-dissipative systems.
It is therefore not surprising that systems of coupled oscilla-
tors are closely related to polaritonic systems. However, we
showed that depending on the system parameters and exper-
imental controls used such networks not only can reproduce
the behavior of various known coupled oscillators and allow
one to address intermediate regimes between different types of
systems but also can dramatically increase the physics of the
system by combining different types of oscillators together
in one interacting platform. This opens intriguing possibil-
ities for entering novel hybrid regimes that have not been
implemented before. The polaritonic network is a flexible and
robust platform for achieving this.
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