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The elasto-optic effect, or photoelasticity, describes the linear change of dielectric tensor with applied strain
and is a universal material property of insulators and semiconductors. Though the elasto-optic responses for
solids can be computed directly from first principles (e.g., by using density functional perturbation theory)
and measured experimentally, these methods do not provide sufficient insight into the governing microscopic
physical principles of photoelasticity. In this work, we describe a microscopic first-principles analysis of
photoelasticity in real space and apply it to investigate the elasto-optic responses of Si, diamond, NaCl, and
MgO. By writing the random phase approximation (RPA) dielectric constant in the basis of maximally localized
Wannier functions, we show that the strain-dependent change of dipole transitions between occupied and
unoccupied Wannier functions are the main determinants of photoelasticity. By organizing the dipole transitions
into spatially localized shells, we develop a “constrained sum” method that converges both the dielectric and
photoelastic responses systematically and reveals a relatively long-ranged nature to these responses: one needs
to sum up contributions of up to third neighbor shells to converge the elasto-optic coefficient with reasonable
precision.
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I. INTRODUCTION

The elasto-optic effect, or photoelasticity, of a crystal
describes the linear response change of optical refractive
index with applied strain. By definition, only the electronic
contribution to the dielectric response is included in the elasto-
optic effect, and therefore it describes the strain dependence of
the dielectric tensor at frequencies well above those of lattice
vibrations but below the electronic band gap. The elasto-optic
effect is of interest for technological applications as well
as for fundamental science. For example, the elasto-optic
effect reduces the efficiency of fiber Bragg gratings [1]. Next,
semiconductor heterostructures in devices such as transistors
have built-in interlayer strains due to the lattice mistmatch
between their constituent layers which, via the elasto-optic
effect, modifies their electronic and optical properties. The
elasto-optic effect also gives rise to birefringence phenomena
in crystals by lowing their symmetries. For example, the
normally isotropic dielectric constant in cubic solids turns into
a rank-two tensor under strain, so that light will propagate
with different speeds along different crystallographic axes.
This effect has been used to make photoelastic modulators to
modulate the polarization of light [2]. In nanoscale systems
such as waveguides, the optical forces exerted by electro-
magnetic waves can be engineered by the elasto-optic effect
through its relation with electrostrictive forces, enabling se-
lective excitation of acoustic phonon modes in the waveguides
[3]. The coupling between electromagnetic waves and acous-
tic phonons finds applications in making photonic-phononic
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devices [4–8]. Since the magnitude and directions of the
electrostrictive forces are determined by the elasto-optic and
dielectric properties which have strong material dependences,
they can be used to enhance or suppress the photon-phonon
coupling. Hence, understanding and predicting elasto-optic
response helps with the selection or design rules for materials
for photon-phonon interactions.

Numerous computational works [9–13] have calculated the
elasto-optic tensor for insulators and semiconductors using
density functional theory (DFT) [14,15] and density func-
tional perturbation theory (DFPT) [16]. DFPT is a powerful ab
initio approach that can provide physical insight into the sepa-
rate responses of electrons and ions, and the DFPT-computed
elasto-optic tensors are in a good agreement with available
experimental data. However, as a numerical method for re-
sponse calculations, DFPT does not provide direct insight into
the underlying physical principles of elasto-optic behavior in
a localized, real-space manner in the sense detailed in Sec. II.
There also exist phenomenological models for photoelasticity.
Donadio and Bernasconi [13] developed a model to describe
the photoelasticity of silica materials. Their model assumes
that the dielectric response of silica is entirely determined
by the sum over each oxygen atom’s polarizability which is
affected by the local geometry of the crystal in response to
strain. However, the attempt to generalize the model from
silica to sodium silicate has been less successful [17]. Another
model proposed by Damas et al. [18] centralized the role
of individual chemical bonds in silicon and their response to
lattice distortion based on bond orbital theory for tetrahedrally
covalent crystals [19]. By analyzing how the bond polarizabil-
ity changes with strain in Si, Damas et al. were able to extract
the strain dependence of silicon’s dielectric tensor, i.e., the
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elasto-optic effect. However, these phenomenological models
include a variety of empirical parameters and assumptions
on locality and short-ranged electronic response which must
be verified and extracted from experimental data or ab initio
calculations.

In this paper, we aim to understand the governing physical
principles of the elasto-optic effect at the microscopic level
from first principles. We first show that comparing to state-of-
the-art DFPT calculations, the random phase approximation
(RPA) presents a simple yet as accurate enough approach
for describing the dielectric and elasto-optic reponses. By
rewriting the RPA formula for the dielectric tensor in the
basis of maximally localized Wannier functions (MLWFs)
[20], we discover that the strain-dependent dipole transitions
between occupied and unoccupied Wannier functions are the
main determinants of the elato-optic effect. We also reveal a
surprisingly long-ranged nature for the dielectric and elasto-
optic response using the Wannier basis which means the
basic assumptions of many semi-empirical approaches to pho-
toelasticity should be reconsidered carefully. Four insulating
materials from two distinct material classes are considered in
this work: the covalent semiconductors Si and diamond, and
the ionic crystals NaCl and MgO.

The structure of this paper is as follows. Section II de-
scribes the basic philosophy of this paper. Section III de-
scribes our computational methods. Section IV presents the
state-of-the-art DFPT calculations for elasto-optic responses
done in this work that are in good agreement with prior first-
principles calculations and experiments. Section V is devoted
to understanding the elasto-optic effect in silicon. Section V A
compares the RPA and DFPT methods for calculating the
photoelasticity of silicon and suggests that a promising venue
to describe the elasto-optic effect is to use Wannier func-
tions. It is also discovered in Sec. V A that the change of
dielectric constant with strain is dominated by the dipole
matrix elements rather than the eigenenergies of the Bloch
states. Section V B furthers the discussion about the dipole
transitions by rewriting the matrix elements into the Wannier
basis. We then develop a “constrained sum” method in real
space by partitioning dipole transitions into shells according
to their distances. This “constrained sum” method reveals
the long-ranged behavior of the dielectric and elasto-optic
response of silicon which can be only understood intuitively in
a localized basis set like Wannier functions. Sections VI–VIII
apply the tools developed for Si to diamond, NaCl, and MgO.
Similar conclusions about the locality of the photoelasticity
can also be drawn for these three materials. We summarize
the main findings, their implications and the relation of our
work to the prior literature in Sec. IX.

II. PHYSICAL INSIGHT AND BOND-ORBITAL MODELS

As we will see in Sec. IV, fully ab initio approaches
such as DFPT provide reliable tools for numerical computa-
tion of dielectric and photoelastic responses. However, such
approaches do not provide sufficient insight in terms of a
compact localized picture of the response that allows intuitive
understanding and development of simple rules of thumb.
More precisely, an ideal model would describe the materials
response in terms of highly localized orbitals centered on the

atoms or bonds constituting the material. Prior work in this
area has been based on Harrison’s bond orbital model [21]; in
the simplest approximation, the linear dielectric susceptibility
of a tetrahedral covalent solid (e.g., bulk silicon) can be
written as

χ1 = Ne2γ 2d2α2
c /(12V2),

where N is the mean valence electron density, e is the el-
ementary charge, d is the equilibrium bond length between
neighboring atoms, αc is a parameter that describes the cova-
lency of the bonds in the solid (in nonpolar materials such as
Si, αc = 1), twice V2 is equal to the energy splitting between
the bonding and antibonding orbitals on the same chemical
bond, and γ is an adjustable scaling parameter that is used
to compensate for the discrepancies between the model and
experimental data. All the parameters in the above expression
for χ1 relate to the physical properties of one single chemical
bond. Therefore such a model possesses extreme locality,
is straightforward to interpret, and, if accurate, provides an
excellent starting point for materials design. Finding the strain
dependencies of these parameters describes the photoelastic
response within the bond-orbital picture. A recent example
of this approach for elasto-optic response can be found in
Ref. [18]. Despite the simplicity and easy interpretation of
such models, the fact that the adjustable parameters such as
γ can only be found by fitting to known materials properties
limits their predictive power. Ideally, one would prefer to
approach the problem using first principles in order to have
predictive power for new materials.

Our fundamental aim in this paper is to answer two basic
questions. First, how short-ranged is the photoelastic response
when described in a localized bond-orbital type model de-
veloped from first principles? In other words, is this physical
property short-ranged enough so that a simple physical picture
emerges? Second, can the key parameters in the localized
model be computed from first principles? Below, we will
succeed in developing an ab initio real-space approach based
on localized Wannier functions to compute the photoelastic
response and find that the responses are longer ranged than
assumed in the standard bond-orbital picture.

III. COMPUTATIONAL METHODS

The elasto-optic tensor pi jkl is defined by the expression

�ε−1
i j = pi jkl ekl , (1)

where εi j is the dielectric tensor of the crystal and ekl is the
strain tensor. Therefore, the elasto-optic tensor pi jkl is a rank-4
tensor with i, j, k, l being one of the x, y, z axial directions.
The notation �ε−1 describes the linear response change of
ε. Since both the inverse dielectric tensor ε−1 and the strain
tensor e are symmetric, the elasto-optic tensor possesses a
number of permutation symmetries: (i ↔ j) and (k ↔ l )
[22]. In this work, we use Voigt’s notation to compactify:
1 = xx, 2 = yy, 3 = zz, 4 = yz, 5 = xz, and 6 = xy. All the
crystal structures studied in this paper (Si, diamond, NaCl, and
MgO) have cubic symmetry at equilibrium which makes their
elasto-optic tensors have only three independent components,
i.e., p11, p12, and p44.
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TABLE I. Elasto-optic coefficients for bulk crystals (Si, diamond, NaCl, and MgO) obtained using DFPT. For Si, the results are provided
for both equilibrium and strained lattices. For diamond, NaCl, and MgO, the elasto-optic coefficients based on one-sided (unparenthesized)
and two-sided (parenthesized) finite differences using 1% strain are tabulated.

DFPT (this work) Prior first-principles calculation Experiment

Si (unstrained)
ε 12.986 13.200 [10], 10.468 [9] 11.830 [37]
p11 −0.101 −0.098 [10], −0.111 [9] −0.094 [37]
p12 0.010 0.007 [10], 0.020 [9] 0.017 [37]
p44 −0.050 −0.046 [10], −0.056 [9] −0.051 [37]
Si (2.0% uniaxial strain along x)
ε 13.356 − −
p11 −0.113 − −
p12 −0.010 − −
Diamond
ε 5.801 5.668 [9] 5.819 [38]
p11 −0.263 (−0.262) −0.264 [9] −0.248 [39]
p12 0.061 (0.063) 0.076 [9] 0.044 [39]
NaCl
ε 2.508 2.615 [9] 2.380 [40]
p11 0.058 (0.055) 0.077 [9] 0.115 [41]
p12 0.153 (0.153) 0.157 [9] 0.161 [41]
MgO
ε 3.127 3.160 [13], 3.077 [9] 3.020 [42]
p11 −0.299 (−0.301) −0.310 [13], −0.218 [9] −0.259 [42]
p12 −0.042 (−0.041) −0.050 [13], 0.013 [9] −0.011 [42]

In this work, we use density functional theory (DFT)
[14,15] to compute the electronic structure of bulk crystals
using the QUANTUM ESPRESSO software package [23] with
periodic boundary conditions and a plane-wave basis. We
use the local density approximation (LDA) [24–26] for ex-
change and correlation and employ norm-conserving pseu-
dopotentials [27,28] to describe the ionic cores. The four
bulk crystals in this paper are all simulated using two-atom
primitive unit cells with their experimental lattice constants of
a0 = 5.43, 3.57, 5.64, and 4.21 Å for Si, diamond, NaCl,
and MgO, respectively [29]. A 6 × 6 × 6 uniform k-point
grid sampling with appropriate energy cutoff (35 Ry for Si,
60 Ry for diamond, 30 Ry for NaCl, and 65 Ry for MgO)
achieves total energy convergence within 1 meV/atom. To
calculate the static dielectric constant of solids, we use density
functional perturbation theory (DFPT) [16] as implemented
in QUANTUM ESPRESSO. Since we are interested in describing
the change of the dielectric response with strain rather than
the dielectric response itself, further analysis reveals that a
12 × 12 × 12 uniform k grid sampling is needed to converge
the change of dielectric constant to 0.01 in absolute value with
1% uniaxial strain.

We also use the random phase approximation (RPA) to
compute dielectric response [30,31]. The RPA is very useful
because it is written as an explicit analytical formula. Our
results will show that the RPA provides a highly satisfactory
approximation to the more accurate DFPT results for both the
dielectric tensor and its strain dependence. We use the expres-
sion for the longitudinal RPA dielectric constant given by

ε = 1 + 16π

V
× 1

|q|2
∑

k

∑

c,v

|〈ψc,k|e−iq·r|ψv,k+q〉|2
Ec,k − Ev,k+q

, (2)

where V = Nk	 is the volume of the super cell which is equal
to number of k points Nk multiplied by the volume of the prim-
itive cell 	. The summation ranges over all pairs of valence
(v, occupied) and conduction bands (c, unoccupied) and also
the whole Brillouin zone (k). The wave vector q is that of the
external electric field applied to the material, but since photoe-
lasticity is a long-wavelength response (i.e., uniform imposed
electric field), we let |q| approach zero (|q| is set to be 1% of
a primitive reciprocal lattice vector in our calculations).

We aim to use an accurate first-principles real-space repre-
sentation for dielectric response in solids, especially for the
〈e−iq·r〉 dipole matrix elements in (2). A natural choice is
to utilize maximally localized Wannier functions (MLWFs)
[20,32,33] as the basis set. For a selected set of energy bands,
MLWFs span the same Hilbert space as Bloch states since they
are constructed by unitary transformation of the Bloch states.
MLWFs are exponentially localized in real space [34], which
is a desired feature when describing a system’s locality. The
mathematical expression for MLWFs is

Wn,R(r) = 1√
Nk

∑

k

J∑

m=1

e−ik·Rψm,k(r) × U (k)
m,n. (3)

where U (k) are rectangular J × Nwann unitary matrices repre-
senting the gauge freedom in building Wannier functions, J
is the number of bands targeted to make Wannier functions
whereas Nwann is the number of Wannier functions wanted per
unit cell. The U (k) are determined to achieve the maximal
locality criterion [32]. Wannier functions in this work are
generated using the WANNIER90 software package [35,36].

Wannier functions in this work are generated separately for
valence and conduction bands so that we can describe dipole
transitions between filled (valence) and empty (conduction)
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Wannier functions in real space. The spatial characters of the
generated Wannier functions are determined by the chemistry
of the solids (detailed in Secs. V–VIII). For example, for each
two-atom primitive unit cell of silicon, we generate four bond-
ing Wannier functions for the four valence bands and then
disentangle the low lying conduction bands to generate four
antibonding Wannier functions. The eight Wannier functions
basis per cell form a “minimum basis set” in a tight-binding
model for silicon crystal. By substituting the relation between
MLWFs and Bloch states from Eq. (3) into Eq. (2), we arrive
at an expression for the RPA dielectric constant in the MLWF
basis:

ε = 1+ 16π

V
× 1

|q|2 ×
∑

a,b,R

∑

a′,b′,R′
M∗

a′,b′,R′

× Ma,b,R × Fa′,b′,R′;a,b,R, (4)

where

Ma,b,R = 〈Wa,R|e−iq·r|Wb,0〉, (5)

Fa′,b′,R′;a,b,R = 1

Nk

∑

c,v,k

e−ik·(R−R′ ) × U (k)∗
ca′ U (k)

ca U (k)
vb′ U (k)∗

vb

Ec,k − Ev,k+q
.

(6)

The summation over R, R′ in Eq. (4) ranges over all lattice
vectors in the supercell. Equation (5) is the Wannier dipole
matrix element connecting a bonding state in the “home”
unit cell (at R = 0) to an antibonding state in unit cell R.
Equation (6) is the Fourier transform of the energy difference
denominator in the Bloch representation, and U (k)

ca and U (k)
vb

are the unitary matrices mixing conduction and valence bands
to make antibonding and bonding Wannier functions, respec-
tively. Equation (4) is a sum over all pairs of dipole transitions
in the supercell modulated by the Fourier transform of the
energy denominator.

Making the unitary transformation of the basis from Bloch
states in Eq. (2) to Wannier functions in Eq. (4) permits us
to analyze the spatial behavior (e.g., locality) of the dielectric
response. While it is hard to guess the behavior of ε versus
increasing size of the k-point mesh in Eq. (2), the real-space
version of Eq. (4) is more transparent to analyze since we
are increasing the size of the supercell by including longer R
vectors. As R grows, Ma,b,R will decrease since it involves the
overlap of two Wannier functions that are at growing separa-
tions: we expect the sum in Eq. (4) to converge as successively
larger R vectors are included. In addition, we can make a
reasonable guess (verified numerically below) on the type of
convergence that will be seen. Since Fa′,b′,R′;a,b,R in Eq. (6)
is the unitary transform of the energy difference denominator

1
Ec,k−Ev,k+q

(which is a positive definite quantity), Fa′,b′,R′;a,b,R is
also a positive-definite matrix. We can compactify and rewrite
Eq. (4) via the inner product of M with itself through F ,
M† × F × M, as

ε = 1 + 16π

V
× 1

|q|2 × M† × F × M, (7)

where we have compactified the indexing of the vector Ml

and the matrix Flm using collective indices l = (a, b, R). The
Fourier-transform nature of F indicates that it is diagonally

dominant (i.e., largest when R = R′) so that as we add
longer R to the sum to achieve convergence, we can expect
the convergence to be monotonically increasing since we are
adding more contributions from of a positive-definite matrix.
We will build on this idea below to understand the spatial
locality of dielectric constant in the Wannier basis (detailed
in Secs. V–VIII).

As will become evident below, the RPA approach to com-
puting dielectric and photoelastic response is not as numer-
ically accurate as DFPT; the RPA is missing a number of
physical effects including local field corrections as well as the
effects of exchange and correlation on screening. However,
the primary utility of the RPA lies in its simplicity in the form
of an analytical formula that can then be used to derive a
localized form ab initio for the dielectric response; in addition,
the numerical results below show that the RPA approach is
quantitative (for Si, diamond, and MgO) or at least semiquan-
titative (for NaCl) when computing photoelastic response.

IV. DFPT

We begin by presenting computed results for the dielectric
and elasto-optic tensors of bulk Si, diamond, NaCl, and MgO
using DFPT which lay the groundwork for the results that we
wish to understand using a more detailed analysis.

Cubic crystals, like the ones studied in this work, have only
three independent components in their elasto-optic tensors,
namely, p11, p12, and p44. Elasto-optic coefficients computed
from DFPT for these materials at the experimental lattice
constant are reported in the first column of Table I. We use
a 12 × 12 × 12 k-point grid (unless otherwise specified) for
the calculations in this work. We impose uniaxial strain along
the x direction on the bulk to compute p11 and p12 and
off-diagonal shear strain (with e23 being the only nonzero
component in the strain tensor) to compute p44. For uniaxial
strain, we move the atoms proportionally with strain. For
off-diagonal e23 strain, we strain the unit cell first and then
relax the atoms inside the strained cell. For silicon, for each
independent deformation, we compute the inverse dielectric
tensor for several different strain values and then interpolate
them using third order polynomials (in strain) to obtain the
elasto-optic tensor. Results are also benchmarked against
higher order polynomial interpolations (up to fifth order) and
finite difference formulae to ensure numerical stability to
within the quoted number of digits in Table I. For diamond,
NaCl, and MgO, only the elasto-optic responses related to
uniaxial strain are computed. In these three materials, we
compute the inverse dielectric tensor at equilibrium and 1%
uniaxial strain along the x axis and use the finite difference
formula to extract the p11 and p12 components. We have
checked explicitly that 1% strain is small enough to give
precise enough results for further analysis below: the table
shows that using simple one-sided versus the higher order
two-sided finite differencing makes very little difference for
the computed p11 and p12 values.

From Table I, we observe that our results for both the
static dielectric constant and the elasto-optic tensor are in
semiquantitative agreement with experiments and prior first-
principles calculations except for MgO’s p12 component from
Ref. [9]. The effect of finite wavelength λ of the electric field
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TABLE II. Elasto-optic coefficients for bulk Si obtained using the RPA compared with DFPT.

DFPT RPA (100 bands) RPA (12 bands) RPA (8 bands)

Si (unstrained)
ε∞ 12.986 13.823 13.805 13.629
p11 −0.101 −0.094 −0.094 −0.099
p12 +0.010 +0.008 +0.008 +0.010
Si (2.0% uniaxial strain along x)
p11 −0.113 −0.106 −0.106 −0.111
p12 −0.010 −0.011 −0.011 −0.010

on photoelasticity in MgO has been investigated by Erba and
Dovesi [9] and is reported to change the sign of p12 when
λ goes from 400 to 1400 nm. The experimental values of
p12 for MgO are scattered; e.g., the measurement of Giardini
and Poindexter [43] has a different sign of p12 compared
to the other measurements [42,44]. The discrepancies of the
sign of p12 reported from experiments also suggest that the
accurate determination of p12 in MgO is also a nontrivial
task and requires future work. Overall, we find that DFPT
is a reliable tool for predicting or computing the elasto-optic
tensor of solids. We also report the elasto-optic tensor for
silicon in a strained configuration in Table I. It is worth noting
that one can tune the elasto-optic response of silicon crystal
by deformation. Interestingly, the p12 elasto-optic coefficient
even changes sign from +0.010 to −0.010 when silicon is
strained uniaxially by 2%. In addition, Table I also shows
the intriguing fact that NaCl and MgO, which have the same
crystal structure and similar chemical properties, have the op-
posite elasto-optic response in both p11 and p12 components.
These surprises, found in both computations and experiments,
provide further motivation for studying the microscopic basis
of photoelasticity.

V. SILICON

A. RPA

We use the RPA formula Eq. (2) to compute the dielectric
response of bulk Si using the same procedure as for DFPT.
We can see from the tabulated data that the RPA provides p11

and p12 coefficients that are very close to the DFPT values.
In addition, the RPA offers a simple mathematical expression
[Eq. (3)] that allows us to do further analysis below. Table II
shows that both the static dielectric constant and the elasto-
optic tensor converge quickly with total number of bands.
Using only eight bands, i.e., four valence and four lowest
conduction bands, the results are good enough to capture
the main features of the elasto-optic response. In addition,
eight bands also represent the minimal sp3 basis needed for a
tight-binding model for bulk Si which allows further analysis
of the photoelasticity.

To study the convergence of the dielectric response versus
k sampling, we separate out the contribution to ε from each k
point:

ε = 1 +
∑

k

D(k), (8)

where

D(k) = 16π

V
× 1

|q|2
∑

c,v

|〈ψc,k|e−iq·r|ψv,k+q〉|2
Ec,k − Ev,k+q

(9)

in Eq. (2) is a delocalized quantity in momentum space:
we can see from Fig. 1 that the cumulative sum of D(k)
slowly converges to ε − 1, meaning that one cannot single
out a small subset of k points that can account for most of
the contribution to dielectric response. Figure 1 also shows
that the change of dielectric constant �ε due to strain is
somewhat more localized in k space than ε, but we still need a
significant fraction of the total number of k points to converge
the cumulative sum of �D(k).

We find that the changes of dipole matrix elements 〈e−iq·r〉
with strain plays a more important role than the changes of
Bloch eigenergies En,k in determining a material’s photoe-
lasticity. We can separate the impacts of these two factors in
this way: we compute the dielectric constant εxx at a strained

FIG. 1. Cumulative sum of D(k) and �D(k) with 1.0% uniaxial
strain along x axis in bulk Si. The horizontal axis is the fraction
of k-points in the total 12 × 12 × 12 = 1728 k-point mesh. In the
upper plot of the cumulative sum of D(k), the k points are sorted
by magnitude of D(k) in decreasing order; in the lower plot of the
cumulative sum of �D(k), which is the change in D(k) due to
the imposed 1.0% strain along x axis, the k points are sorted by
magnitude of �D(k) in decreasing order.

245204-5



XIN LIANG AND SOHRAB ISMAIL-BEIGI PHYSICAL REVIEW B 100, 245204 (2019)

TABLE III. Dielectric constant for bulk Si using RPA. The first and second columns are the dielectric constant at equilibrium and its
change with 1% uniaxial strain along the x-axis. In the third and fourth columns, �εxx is computed by calculating the dielectric constant at
the strained configuration with either the dipole matrix elements 〈ψc,k|e−iq·r|ψv,k+q〉 or eigenenergies En,k in Eq. (2) fixed to their equilibrium
values.

ε �εxx �εxx (fixed 〈e−iq·r〉) �εxx (fixed En,k)

13.823 0.188 −0.027 0.083

configuration using Eq. (4) with either the dipole matrix
elements 〈ψc,k|e−iq·r|ψv,k+q〉 or eigenenergies En,k fixed at
their equilibrium values. Table III shows that the change of
dielectric constant in Si is dominated by the dipole matrix
elements rather than the eigenenergies. In fact, evaluating
the dielectric constant for strained silicon while keeping the
〈e−iq·r〉 at the equilibrium value will give a change of dielec-
tric response �εxx in the wrong direction. This also agrees
with Detraux and Gonze’s assessment about the influence
of the deformation potential (i.e., the change of electronic
eigenenergies with lattice deformation) on the photoelasticity
[45]. These observations warrant our continued investigations
of elasto-optic response while focusing on the role of the
dipole transition matrix elements.

While the delocalization of the dielectric response in k
space is not helpful, it does point to a possible path forward.
The adequacy of eight energy bands combined with the de-
localized nature of dielectric response in k space strongly
suggests that using a basis set localized in real space may be
more fruitful for understanding the photoelasticity of Si.

B. Wannier analysis and unexpected convergence behavior

We begin by generating four bonding and four antibond-
ing Wannier functions for each two-atom primitive cell in
bulk Si. These Wannier functions come in pairs: each pair
consists of a bonding and an antibonding Wannier function
centered on the same chemical bond between two nearest-
neighbor silicon atoms. (The bonding/antibonding pair on
a bond are physically identical to those on other bonds by
appropriate translations and rotations.) Figure 2 shows one
bonding/antibonding pair. The description of the electronic
structure given by these Wannier functions is consistent with
the localized chemical picture where two sp3 hybrid orbitals
from neighboring silicon atoms overlap and form a chemical
bond. The interpolated band structure (Fig. 3) using these
Wannier functions shows that they reproduce the DFT bands
accurately for both valence and conduction bands around the
Fermi energy.

FIG. 2. Wannier functions in bulk Si: (a) bonding and (b) anti-
bonding. Red and blue correspond to positive and negative values
in these isosurface plots, respectively. These isosurface plots demon-
strate that the bonding and antibonding maximally localized Wannier
functions are localized in real space about the center of a Si-Si bond.

We compute the dielectric tensor of bulk Si in the Wannier
function basis using Eq. (4) for bulk Si at equilibrium and with
1% uniaxial strain and 1% shear strain. Table IV shows that
the Wannier function method with the four bonding and four
antibonding orbitals agrees well with RPA results with eight
bands for both the dielectric constant and its change under
uniaxial strain. The small differences between the eight-band
RPA method and the Wannier method are a consequence
of the disentanglement procedure used in building the anti-
bonding Wannier functions: the disentanglement procedure
selects the subspace of Bloch states that are “smoothest”
across k space [33], which is not equivalent to reproducing
the four lowest energy-sorted conduction bands (see Fig. 3).
Our method for computing the full dielectric tensor is detailed
in the Appendix. The changes �εxx, �εyy, and �εyz are shown
in Table IV since they are related directly to the computation
of the p11, p12, and p44 photoelastic components. The small
nonzero value of the εyz component at zero strain (equilib-
rium) is due to the fact that standard Monkhorst-Pack k grid
used for the two-atom primitive cell does not obey the full
crystalline symmetry of Si (but the grid is dense enough to
give only small numerical asymmetries).

Having established the sufficient accuracy of the Wannier
method, we now analyze the spatial locality of the dielectric
response of bulk Si using Wannier functions. We begin by
investigating the decaying behavior of the Wannier dipole

FIG. 3. Band structure of bulk Si. Black solid lines are the DFT-
LDA bands; red dashed lines are the Wannier interpolated bands.
Since the frozen window [33] ranges from below the valence band
to a few eV above the Fermi energy, the valence and low-lying
conduction bands are reproduced exactly; as shown in the text,
the differences at higher energies only lead to small errors in the
computed dielectric response in the Wannier basis.
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TABLE IV. The dielectric constant and its change with 1% uniaxial strain along the x axis (first three rows of the table) and the εyz

component of dielectric tensor and its change with e23 = 1% shear strain (last two rows of the table) for Si. The results in the table are based
on a 12 × 12 × 12 grid and are obtained using DFPT, using the RPA with Bloch states from Eq. (2), and using Wannier functions from Eq. (4)
(see the Appendix for the equations used to compute the full dielectric tensor).

DFPT RPA (100 bands) RPA (12 bands) RPA (8 bands) Wannier

ε (0.0%) 12.985 13.823 13.805 13.629 13.553
�εxx (1.0%) 0.178 0.188 0.188 0.194 0.199
�εyy (1.0%) −0.008 −0.006 −0.006 −0.008 −0.004
εyz (0.0%) 0.000 0.005 0.005 0.005 0.005
�εyz (1.0%) 0.081 0.093 0.093 0.093 0.094

matrix element M [Eq. (5)] as a function of distance (see
Fig. 4) with q aligned along the x axis. Figure 4 shows
that the dipole matrix element has a rather “long tail”, i.e.,
the magnitude is still non-negligible even when the centers
of bonding and antibonding Wannier functions are many
bond lengths apart. This means the dielectric response in the
Wannier basis has relatively long-ranged behavior, which is
unexpected since maximally localized Wannier functions are
expected to be quite compact. We infer that the dipole matrix
element becomes longer-ranged than the Wannier functions
themselves due to the long-ranged nature of the position
operator: the lowest order contribution for small q is e−iq·r ≈
1 − iq · r, and due to the orthogonality of Wannier functions,
M ≈ −〈Wa,R|iq · r|Wb,0〉 which highlights how the long-
ranged position operator r can give rise to long-ranged dipole
matrix elements.

Such long-ranged behavior also manifests itself in the
convergence of the dielectric constant with increasingly dense
k-point meshes or equivalently larger real-space supercells.
In k space, a periodic supercell is represented by a uniform

FIG. 4. Magnitude of the Wannier dipole matrix elements |M|
[Eq. (5)] vs distance between Wannier functions. Wave vector q
is aligned with x axis. The distance is between the center of Wb,0

(the bonding Wannier function in the home unit cell) and Wa,R (the
antibonding Wannier function R lattice vectors away). For reference,
the bond length between nearest-neighbor Si atoms is 2.35 Å. The
two sets of results are for Wannier functions generated in two
different supercells.

Born-von Karman k-point sampling of the Brillouin zone; in
real space, the supercell is represented by a large volume of
material on which periodic boundary conditions are imposed.
The diagonal entries of Table V represent a “standard” conver-
gence calculation: we increase the size of the supercell, gen-
erate Wannier functions, and compute the dielectric response
using the full supercell’s worth of data. We can see that the εxx

is not quite converged even for a 12 × 12 × 12 supercell. In
the k-space view, slow convergence with the density of the k-
point sampling represents a “long-ranged” quantity. However,
based on the equivalence of k-point mesh in the RPA method
[Eq. (2)] and the size of supercell in the Wannier method
[Eq. (4)], the monotonically decreasing dielectric constant
(see blue dashed line in Fig. 5) with increasing k-point mesh
is counterintuitive since, as discussed in Sec. III, we might
expect that by including dipole transitions between Wannier
functions further apart in a larger supercell, the dielectric
constant should increase.

To shed further light on this unexpected convergence be-
havior, we employ Eq. (4) in a different manner as a “con-
strained sum.” We generate Wannier functions for a large
supercell but constrain the sum over lattice vectors R, R′ in
Eq. (4) to range over a smaller subset centered on the origin
that represents a smaller supercell. In this way, we can disen-
tangle the change of the spatial form of the Wannier functions
themselves with supercell size from the actual locality of the
dipole matrix elements and energy denominators [Ma,b,R and
Fa′,b′,R′;a,b,R in Eq. (4)]. Namely, we only include the dipole
matrix elements Ma,b,R [Eq. (5)] whose bonding Wannier
function Wb,0 and antibonding Wannier function Wa,R both
fall inside the smaller x × x × x supercell centered around
origin. For example, in the last column of Table V, we vary
x from 6 to 12, and the dielectric constant convergences in
an increasing manner (see Fig. 5). Similar convergence is
also observed in the 8 × 8 × 8 and 10 × 10 × 10 columns
in Table V. Despite the more sensible convergence behavior,
we confirm the long-ranged nature of the dielectric response
within this “constrained sum” method. In fact, for Wan-
nier functions generated in 12 × 12 × 12 supercell, includ-
ing the dipole transitions between Wannier functions on the
same, nearest-neighbor, and second-nearest-neighbor chemi-
cal bonds together only accounts for 50% of the total dielectric
response when using the subset x = 2 (see last column of
Table V).

The above results provide the following physical picture.
For a fixed sets of Wannier functions generated in a large
supercell, one sees sensible convergence from below for the
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TABLE V. Convergence of dielectric constant in bulk Si using the Wannier RPA method. The columns represent the size of supercell used
to generate the Wannier functions. The rows represent the subset of the supercell whose dipole transition are summed up to obtain the dielectric
constant. The numbers without parentheses are the dielectric constant εxx of bulk Si at equilibrium; the numbers in parentheses are the change
of dielectric constant �εxx = εxx (1.0%) − εxx (0.0%) of Si strained uniaxially by 1.0% along the x axis.

Size of supercell used to generate Wannier functions
6 × 6 × 6 8 × 8 × 8 10 × 10 × 10 12 × 12 × 12

2 × 2 × 2 5.94(0.10) 5.53(0.08) 5.43(0.08) 5.41(0.08)
4 × 4 × 4 11.89(0.19) 10.62(0.15) 10.34(0.16) 10.27(0.16)

Subset of 6 × 6 × 6 16.87(0.23) 13.11(0.17) 12.55(0.19) 12.43(0.18)
Wannier functions used 8 × 8 × 8 − 14.59(0.18) 13.36(0.19) 13.16(0.19)

10 × 10 × 10 − − 13.81(0.20) 13.41(0.20)
12 × 12 × 12 − − − 13.55(0.20)

dielectric response upon adding more distant contribution in
real space: this is physically what we expect for a localized
real-space representation. Hence, the unexpected behavior of
dielectric response versus supercell size in the “standard”
computations must be due to the Wannier functions them-
selves changing as they are generated in progressively larger
supercells. In fact, the Wannier functions generated in smaller
supercells must be longer ranged so that they lead to overes-
timation of the dipole elements and the dielectric response.
This behavior also makes sense: Wannier functions generated
in a periodic supercell are necessarily periodic as well because
of the overall Born-von Karman periodic boundary condi-
tion; when the supercell is not large enough, the periodized
Wannier functions will include the periodic images of the
true (infinite supercell) Wannier functions in the tail regions
summed from adjacent supercells. While the errors in the
Wannier function tails are small, they are sizable enough
to lead to the misleading convergence with supercell size.
Figure 4 shows how the 6 × 6 × 6 and 12 × 12 × 12 super-
cells differ quantitatively for the same dipole matrix elements
M due to the Wannier functions themselves changing with
supercell size. We conclude that the artificial periodicity of
the supercell Wannier functions is the root of the convergence
behavior in the “standard” calculation.

We build on the constrained sum method to further analyze
the spatial locality of the change of the dielectric constant

with strain. First, the Wannier dipole transition matrix ele-
ments can be spatially grouped into shells: each shell includes
the dipole transitions that are related to each other through
crystal symmetry. Hence, dipole transitions belonging to the
same shell have the same distance between the bonding and
antibonding Wannier functions, and we sort them by distance.
We focus on the first three shells of the dipole transitions with
largest matrix element from Fig. 4 and show them graphically
in Fig. 6. Table VI displays the matrix elements from the
three shells and how they change with applied strain. Table VI
shows that increasing distance reduces the dipole transition
strength, but the rate of decrease is modest: matrix elements
between the same chemical bond, nearest-neighbor bonds,
and second-nearest-neighbor bonds still have the same order
of magnitude. The change of the matrix elements with strain is
more complicated: Table VI shows that |M| can either become
larger or smaller depending on the type of imposed strain.

Now we analyze the locality of the change of the dielec-
tric constant using the constrained sum method. Table VI
shows that all three shells are required to reach a reason-
able convergence of �εxx for 1% uniaxial strain along the
x or y axis where �εxx = εxx(strained) − εxx(equilibrium).
When the strain is along the x axis, the change is directly
proportional to the elasto-optic coefficient p11, while strain
along the y axis describes p12; the data for �εyz is generated
by 1% shear strain and is proportional to p44. Our conclusion

FIG. 5. Convergence of εxx and �εxx with 1.0% uniaxial strain along the x axis in bulk Si using the Wannier function method.
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TABLE VI. Three transition dipole matrix elements |M| with the largest magnitude and their changes with different strain are listed in
the second to fourth columns; the shell indices in the first column are those described in Fig. 6. The wave vector q is along the x axis for the
calculation of the matrix elements, so that |M| is the magnitude of dipole transition vector projected on the x axis. In the last three columns,
each row reports the cumulative contribution from the listed and preceding shells.

Dipole transition |M| (Å) Cumulative contribution Cumulative contribution
to �εxx to �εyz

matrix elements 0% strain exx = 1% eyy = 1% exx = 1% eyy = 1% eyz = 1%

“1” → “1” 0.443 0.448 0.443 0.041 −9.4×10−3 0.025
“1” → “2” 0.174 0.176 0.175 0.083 2.8×10−3 0.048
“1” → “3” 0.169 0.171 0.168 0.152 −3.5×10−3 0.039
All shells − − − 0.199 −3.5×10−3 0.094

is that the change in dielectric constant with strain is rather
delocalized. First, the convergence with added shells is either
slow (for strain along x) or nonmonotonic (for strain along y
where the sign of the cumulative sum changes twice between
the second and third shell). Second, although transitions on the
same bond are the strongest, only including them does not pro-
vide quantitative accuracy. Third, while reasonable accuracy
is obtained by summing up to the third shell of transitions, this
involves a sum over nineteen independent transitions and, in
our mind, is too complicated a physical picture to give insight
for materials design in terms of photoelasticity. Hence, while
the dielectric and elasto-optic response are spatially localized
in Si, the length scale of the locality is too large and involves
too many transitions for us to extract simple rules of thumb or
provide simple guidance for designing elasto-optic response.

We now build upon this analysis protocol to analyze other
materials with a primary focus on the degree of locality of the
elasto-optic effect.

FIG. 6. The three shells of dipole transitions with the largest
matrix elements in Wannier basis visualized in real space. Arrows
are drawn from a bonding Wannier function (the initial state) to an
antibonding Wannier function (the final state) of the dipole transition
matrix elements. Given that the initial state is the bonding Wannier
function on bond “1”, the arrow “1” → “1” illustrates the dipole
transitions to the same bond (there is only one such type of transition
per chemical bond), the arrow “1” → “2” illustrates the dipole tran-
sitions to the nearest-neighbor bonds (there are six such transitions
per chemical bond), and the arrow “1” → “3” illustrates the dipole
transitions to the second-nearest-neighbor bonds that are parallel to
bond “1” (there are six such transitions per chemical bond).

VI. DIAMOND

Diamond, which shares the same crystal structure as sil-
icon, serves as another example of a tetrahedral covalent
insulator for our study of photoelasticity. The larger band gap
and more localized atomic orbitals of diamond compared to
Si give us hope that the elasto-optic response may be shorter
ranged. We use the same methodology as we do for bulk Si.

The Wannier functions for bulk diamond are generated in
a very similar manner as in Si, i.e., there are four bonding-
antibonding Wannier function pairs per two-atom unit cell.
Each pair consists of a bonding and an antibonding or-
bital centered around the same chemical bond between the
neighboring carbon atoms. The computed band structure (see
Fig. 7) shows that the four lowest conduction bands of dia-
mond form an isolated group. Therefore the Wannier basis can
describe both the valence bands and lowest four conduction
bands exactly in diamond as shown in Fig. 7.

The dielectric constant for bulk diamond at equilibrium and
its change with 1% strain along x axis are computed using
Eq. (4). Table VII shows that the Wannier function method
with a basis of four bonding and four antibonding agrees
well with the RPA method with only eight bands included.
Table VII also demonstrates the qualitative similarity of pho-
toelasticity between bulk diamond and bulk Si. Namely, the
dielectric constant changes in the same direction with 1%
strain along x in both materials.

FIG. 7. Band structure of bulk diamond. Black solid lines are
the DFT-LDA bands; red dashed lines are the Wannier interpolated
bands. Both of the four valence and four lowest conduction bands
form an isolated group of bands.
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TABLE VII. Bulk diamond dielectric constant and its change
with 1% uniaxial strain along the x axis obtained using DFPT,
RPA with Bloch basis and with Wannier basis. The methods used
are the same as Table IV. The results in the table are based on a
12 × 12 × 12 k grid.

DFPT RPA (100 bands) RPA (8 bands) Wannier

ε(0.0%) 5.801 5.964 5.746 5.735
�εxx (1.0%) 0.090 0.094 0.096 0.098
�εyy(1.0%) −0.020 −0.020 −0.023 −0.022

To further examine the spatial locality of diamond’s di-
electric response and to compare it with that of Si, the
dipole transition matrix elements |M| are computed using
the Wannier basis. Figure 8 shows that, as expected, |M|
in diamond decays faster as a function of distance than Si.
In addition, 6 × 6 × 6 and 12 × 12 × 12 supercells generate
Wannier functions giving dipole transitions that are much
closer in magnitude compared to Si (compare Figs. 4 and 8).
Based on the physical picture developed above for bulk Si,
this means that the Wannier functions in bulk diamond are
more compact than in bulk Si, as expected due to diamond’s
wider band gap [34]. The superposition of the periodic images
of the Wannier functions in the 6 × 6 × 6 supercell still leads
to dipole matrix elements that are quite accurate compared to
those of the larger 12 × 12 × 12 supercell. This indicates that
the Wannier functions with their exponentially decaying tails
are well contained in the 6 × 6 × 6 supercell in diamond.

The compactness of the Wannier functions in diamond
is also evident in the convergence calculation of the di-
electric constant. The bulk diamond dielectric constant con-
verges faster in both of the “standard” and “constrained sum”
convergence calculation comparing to bulk Si (see Figs. 5
and 9). The increasing behavior of the dielectric constant
(detailed above in the bulk Si results) is also observed using
the “constrained sum” method (see the columns of Table VIII
and Fig. 9 left panel). However, the change of the dielectric
constant εxx along the x axis in diamond converges at a similar
rate using the “constrained sum” method to Si. In fact, in
both materials, the dipole transitions between the bonding
and antibonding orbitals whose distance is within a 4 × 4 × 4
supercell account for 80%–90% of the change in εxx due to
uniaxial strain along the x axis.

Finally, just like Si, a “shell” analysis can be performed
for bulk diamond. The diamond dipole transitions are first

FIG. 8. Magnitude of the bulk diamond Wannier dipole matrix
elements |M| Eq. (5) versus distance between Wannier functions.
Wave vector q is aligned with x axis. The distance is between the
center of Wb,0 (the bonding Wannier function in the home unit cell)
and Wa,R (the antibonding Wannier function R lattice vectors away).
For reference, the bond length between nearest-neighbor C atoms is
1.55 Å. The two sets of results are for Wannier functions generated
in two different supercells.

grouped into shells that are defined in exactly the same way
as bulk Si. Then, we identify the three different near-neighbor
shells of dipole transitions that are largest in magnitude and
also give the largest contribution to the dielectric constant
(see Table IX). The cumulative contribution to the change
of the dielectric constant using these three shells are also
computed in Table IX. Though the Wannier functions are
more compact in diamond than Si, our characterization of the
spatial locality of the elasto-optic effect in diamond is to a
great extent the same as silicon: one needs to sum up at least
three shells’ contribution to achieve reasonable accuracy for
photoelasticity in bulk diamond.

VII. NaCl

The NaCl crystal serves as the first example of an ionic
material for our study. It is a rocksalt structured, electronically
closed-shell band insulator with the valence electrons filling
bands of primarily Cl character. We use this chemical descrip-
tion to construct atom-centered Wannier functions for the va-
lence bands, making one Wannier function have Cl s character
and three Wannier functions have Cl p character. These four
occupied Wannier functions can accommodate all the eight

TABLE VIII. Convergence of dielectric constant in bulk diamond using the Wannier RPA method. The table is in the same nomenclature
as Table V.

Size of supercell used to generate Wannier functions
6 × 6 × 6 8 × 8 × 8 10 × 10 × 10 12 × 12 × 12

2 × 2 × 2 3.38(0.05) 3.34(0.05) 3.34(0.05) 3.33(0.05)
4 × 4 × 4 5.38(0.09) 5.25(0.08) 5.23(0.09) 5.23(0.09)

Subset of 6 × 6 × 6 6.04(0.10) 5.67(0.09) 5.64(0.09) 5.64(0.09)
Wannier functions used 8 × 8 × 8 5.79(0.10) 5.72(0.10) 5.71(0.10)

10 × 10 × 10 5.75(0.10) 5.73(0.10)
12 × 12 × 12 − 5.74(0.10)
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FIG. 9. Convergence of εxx and �εxx with 1.0% uniaxial strain along the x axis in bulk diamond using the Wannier function method. The
figure adopts the same notation as Fig. 5.

valence electrons (from both spin channels) in the two-atom
fcc primitive unit cell. Though the conduction band edge is
expected to have primarily Na 3s atomic orbital character, a
quantitative description of the low-lying conduction bands is
more complex. After examining the atomic projections of the
low-lying conduction bands, we have decided to use one s-like
and three p-like orbitals centered on the Na and five d-like
orbitals centered on the Cl to construct the unoccupied Wan-
nier basis. Figure 10 illustrates these occupied and unoccupied
Wannier functions. The four occupied and nine unoccupied
Wannier functions per unit cell can span the Hilbert space of
the valence and lower part of the conduction bands. The band
interpolation using the Wannier basis and its comparison to
the DFT bands are shown in Fig. 11. The valence and five
lowest conduction DFT bands are well reproduced by the
Wannier basis but the four highest Wannier-derived conduc-
tion bands deviate from the corresponding DFT bands. Such
discrepancy is normal and unavoidable: first, the Wannier dis-
entanglement procedure hybridizes DFT bands to achieve the
“smoothest”subspace across the Brillouin zone which tends to
lead to narrower Wannier bands; second, higher conduction
bands contain larger plane wave (free electron) character
which becomes progressively harder to describe with any
localized basis set leading to further discrepancies. We also
point out that the choice of the Wannier representation of
the conduction bands is not unique. Other sets of unoccupied

Wannier orbitals, e.g., the set of five d states on the Cl and one
s state on Na or the set of five d states on Cl and two s states
on the two interstitial sites half way between the Na and Cl

FIG. 10. Wannier functions in NaCl: occupied Wannier functions
(a) Cl s orbital and (b) a Cl p orbitals, unoccupied Wannier functions
(c) Na s orbital, (d) a Na p orbitals, (e) a Cl d orbitals. Red and blue
correspond to positive and negative value in these isosurface plots,
respectively. These plots illustrate the atomic centered maximally
localized Wannier functions. Color scheme of the atoms: Na: cyan,
Cl: green.

TABLE IX. Three transition dipole matrix elements |M| with largest magnitude and their changes with strain in bulk diamond are listed in
the second to fourth column. The shells (in the first column) are indexed the same as bulk Si (see Table VI and Fig. 6). Last two columns of
the table reports the cumulative contribution to �εxx from the listed shells. The table follows the same notation as Table VI.

Dipole transition |M| (Å) Cumulative contribution to �εxx

matrix elements 0% strain 1% x strain 1% y strain 1% x strain 1% y strain

“1” → “1” 0.299 0.303 0.299 0.032 −6.7×10−3

“1” → “2” 0.119 0.118 0.119 0.052 −5.5×10−3

“1” → “3” 0.091 0.092 0.090 0.078 −11.9×10−3

All shells − − − 0.098 −22.2×10−3
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FIG. 11. Band structure of bulk rocksalt NaCl. Black solid lines
are the DFT-LDA bands; red dashed lines are the Wannier inter-
polated bands. The valence Wannier bands are spanned by sp-like
Wannier functions centered on Cl. The conduction Wannier bands
are spanned by sp-like Wannier functions centered on Na and d-like
Wannier functions centered on Cl.

along [111] direction, can interpolate at least the five lowest
conduction bands very well. Our choice of the unoccupied
Wannier functions gives the best numerical agreement for
ε and �ε between the RPA and Wannier methods, but the
overall nature of the locality of photoelasticity in NaCl does
not depend on which one of these Wannier representations is
used.

Table X shows the comparison between the computed
values of the dielectric constant and its change with 1%
uniaxial strain using different methods. As noted above, the
Wannier method agrees well with the RPA results using either
a converged number of bands or 13 bands which is equal to the
total number of orbitals in the Wannier basis. However, NaCl
shows a qualitatively different elasto-optic response from the
two tetrahedral covalent materials. The dielectric constant in
NaCl decreases in the direction along which the tensile strain
is applied opposite to the behavior of Si and diamond. The
order of magnitude of �εxx is also much smaller in NaCl
than in Si and diamond. In fact, the change of ε is smaller
in magnitude along the strain direction (�εxx) than in the
perpendicular direction (�εyy).

Figure 12 shows that the magnitude of NaCl dipole tran-
sition matrix element |M| is a very short-ranged function
of the distance between Wannier function centers. In fact,
|M| drops to below 12% of its maximum magnitude when
the occupied and unoccupied Wannier functions are further
apart than the nearest neighbor Na-Cl distance. Furthermore,
Wannier functions generated in the 6 × 6 × 6 and the 12 ×

FIG. 12. Magnitude of the bulk NaCl Wannier dipole matrix
elements |M| versus distance between Wannier functions. The no-
tations are the same as Fig. 4. For reference, the distance between
neighboring Na and Cl atoms is 2.82 Å.

12 × 12 supercells virtually give the identical dipole matrix
elements. Using the previous physical argument concerning
Si and diamond, we conclude that the NaCl Wannier functions
are quite compact, making the dipole transitions short-ranged
between them.

The “standard” and “constrained sum” convergence results
for the dielectric response are reported in Table XI and Fig. 13
for both ε and �εxx. As expected, the compactness of the NaCl
Wannier functions leads to a rapid convergence of ε using
both the “standard” and “constrained sum” methods. The
change of the dielectric constant �εxx also converges rapidly
using the “constrained sum” method (see Fig. 13), making
the locality of the change of the dielectric constant evident.
However, the right panel of Fig. 13 shows that “standard”
calculation of �εxx converges more slowly versus supercell
size, suggesting that subtle changes of the Wannier functions
with strain can only be captured using the large 12 × 12 × 12
supercell. Therefore the previous conclusion for locality in
the elasto-optic response carries over from Si and diamond
to NaCl: a large enough supercell is needed to generate the
Wannier functions, and we should use the “constrained sum”
method to sum up the local contributions in ε and �ε in a
predictable manner.

Last but not the least, the “shell” analysis can be performed
for NaCl. Since the Wannier functions are atom-centered in
NaCl, the shells can be labeled by the atomic sites between
which the dipole transitions take place. The three shells
contributing the largest magnitudes to both ε and �ε are
illustrated with arrows in Fig. 14. The cumulative contribu-

TABLE X. Bulk rocksalt NaCl dielectric constant and its change with 1% uniaxial strain along x axis obtained using DFPT, RPA with
Bloch states in a plane wave basis and with the Wannier basis. These methods are the same as those in Tables IV and VII. The results in the
table are based on a 12 × 12 × 12 k grid.

DFPT RPA (100 bands) RPA (13 bands) Wannier

ε(0.0%) 2.51 2.81 2.77 2.79
�εxx (1.0%) −3.7×10−3 −5.4×10−3 −6.3×10−3 −5.6×10−3

�εyy(1.0%) −9.6×10−3 −10.5×10−3 −11.1×10−3 −10.7×10−3
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TABLE XI. Convergence with supercell size of the dielectric constant and its strain dependence in bulk NaCl using the Wannier function
method. This table uses the same nomenclature as Tables V and VIII.

Size of supercell used to generate Wannier functions
6 × 6 × 6 8 × 8 × 8 10 × 10 × 10 12 × 12 × 12

2 × 2 × 2 2.16(−1.8 × 10−3) 2.17(−2.7 × 10−3) 2.17(−2.4 × 10−3) 2.16(−3.4 × 10−3)
4 × 4 × 4 2.75(−3.5 × 10−3) 2.75(−6.9 × 10−3) 2.76(−5.7 × 10−3) 2.75(−5.1 × 10−3)

Subset of 6 × 6 × 6 2.79(−4.1 × 10−3) 2.79(−7.3 × 10−3) 2.79(−6.1 × 10−3) 2.79(−5.5 × 10−3)
Wannier functions used 8 × 8 × 8 2.79(−7.4 × 10−3) 2.79(−6.1 × 10−3) 2.79(−5.6 × 10−3)

10 × 10 × 10 2.79(−6.1 × 10−3) 2.79(−5.6 × 10−3)
12 × 12 × 12 2.79(−5.6 × 10−3)

tions to the change of the dielectric constant using these three
shells are found in Table XII. Since each atomic site hosts
more than one kind of Wannier functions in NaCl, there exists
multiple inequivalent dipole transitions within each shell with
differing dipole elements, and therefore the values for the
dipole matrix elements are omitted in Table XII. We can see
from the table that even in an ionic insulator like NaCl with
very compact Wannier functions, in order to converge �ε

to a satisfactory accuracy, one must still sum the first three
shells’ contribution which includes dipole transitions between
second-nearest neighbor atoms. (However, if we seek only an

TABLE XII. The cumulative contribution to �εxx of three shells
of dipole transitions are shown in the table for NaCl. The shell
indices in the first column correspond to those described in Fig. 14.
The table follows the same notation as Table VI’s last two columns.

Dipole transition Cumulative contribution to �εxx

matrix elements 1% x strain 1% y strain

“1” → “1” −1.9×10−3 −5.4×10−3

“1” → “2” −1.9×10−3 −7.7×10−3

“1” → “3” −4.4×10−3 −10.0×10−3

All shells −5.6×10−3 −10.7×10−3

order of magnitude estimate with correct sign, two shells are
sufficient.)

VIII. MgO

MgO shares the same crystal structure as NaCl and has
very similar chemical properties. It is a rocksalt structured,
closed-shell band insulator with its valence electrons filling
bands with mostly O character. In fact, after projecting the
bands onto atomic-like orbitals, we find that a Wannier basis
similar to the one for NaCl is also an appropriate choice for
MgO: for occupied Wannier functions, we use one orbital with
O s character and three orbitals with O p character to describe
the valence bands; for unoccupied Wannier functions, we
use one s-like and three p-like orbitals centered on Mg and
five d-like orbitals centered on O to describe the low energy
conduction bands. The DFT band structure and its Wannier
interpolation are shown in Fig. 15. One can see that the va-
lence bands and lowest three conduction bands are accurately
reproduced by the Wannier basis. The discrepancies between
higher conduction bands and Wannier bands are attributed
to the fact that there is more plane wave character in higher
conduction bands, making for difficulties for any localized
basis set.

FIG. 13. Convergence of εxx and �εxx with 1.0% uniaxial strain along the x axis in bulk NaCl using the Wannier function method. The
figure uses the same notations as Fig. 5.

245204-13



XIN LIANG AND SOHRAB ISMAIL-BEIGI PHYSICAL REVIEW B 100, 245204 (2019)

FIG. 14. The three shells of dipole transitions in bulk NaCl with
the largest matrix elements in the Wannier basis visualized in real
space. Color scheme of the atoms: Na: cyan and Cl: green. Similar
to Fig. 6, the arrows are drawn from the centers of the occupied
Wannier function (initial state on Cl) to the centers of the unoc-
cupied Wannier functions (final state on either Cl or Na) of the
dipole transition. Each individual atomic site corresponds to multiple
occupied and unoccupied Wannier functions in NaCl (unlike in bulk
Si and diamond where each chemical bond accommodates a unique
pair of bonding and antibonding Wannier functions). With an initial
occupied Wannier function on Cl atom “1”, the arrow “1” → “1”
illustrates the dipole transitions to the same atom (from the sp states
to the d states of the same Cl atom), “1” → “2” illustrates the dipole
transitions to the nearest-neighbor Na atoms (from the sp states of
Cl to the sp states of the neighboring Na atoms), and “1” → “3”
illustrates the dipole transitions to the second-nearest-neighbor Cl
atoms (from the sp states of Cl to the d states of its second-nearest-
neighbor Cl atoms).

Table XIII shows how the dielectric constant changes with
uniaxial strain in MgO computed using various methods. As
expected, the Wannier method agrees well with RPA method
with either converged number of bands or 13 bands which

FIG. 15. Band structure of bulk rocksalt MgO. Black solid lines
are the DFT-LDA bands; red dashed lines are the Wannier inter-
polated bands. The valence Wannier bands are spanned by sp-like
Wannier functions centered on O. The conduction Wannier bands
are spanned by sp-like Wannier functions centered on Mg and d-like
Wannier functions centered on O.

FIG. 16. Magnitude of the bulk MgO Wannier dipole matrix ele-
ments |M| vs distance between Wannier functions. The notations are
the same as Fig. 4. For reference, the distance between neighboring
Mg and O atoms is 2.11 Å.

is equal to the total number of orbitals in the Wannier basis,
just like discussed above in Si, diamond, and NaCl. However,
MgO has the opposite elasto-optic response to NaCl in both
p11 and p12 components: the dielectric constant of MgO
increases both along and perpendicular to the tensile strain
direction. In addition, the �ε has much larger magnitude
along the strain (�εxx in Table XIII) than perpendicular to
the strain (�εyy in Table XIII). This difference between NaCl
and MgO must originate from the chemistry of the different
constituting atoms of the two materials and is a subject for
future work.

The “standard” convergence calculation using different k
grid has been performed for Si, diamond, and NaCl, and
similar physical conclusions about the locality have be drawn
from the relationship between the “standard” and “constrained
sum” methods for all three materials. Hence, the calculations
for MgO are done only based a dense 12 × 12 × 12 k grid.
Figure 16 shows that the dipole transition matrix element |M|
is very short-ranged, suggesting that the Wannier basis is also
very localized in MgO.

Table XIV and Fig. 17 report the spatial locality of ε and
�εxx with 1% strain along the x axis using the “constrained
sum” method. As observed above, a spatial convergence of
ε is obtained by progressively summing the contributions
of dipole transitions with increasing distance. However, it
is critical to emphasize that despite the sensible locality of
dielectric and elasto-optic response, one must still include the
dipole transitions in the 4 × 4 × 4 supercell to achieve good
convergence in both ε and �εxx.

The “shell” analysis results are shown in Table XV. Since
MgO and NaCl both have the rocksalt crystal structure, we
can label their “shells” in exactly the same way. Although in
MgO, �ε converges versus added shells at a similar rate to
NaCl, the MgO dielectric responds to the strain in the opposite
direction to NaCl as noted above in Table XIII. In addition, the
�ε perpendicular to strain converges nonmonotonically with
shells, which makes the photoelasticity long-ranged in MgO.
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TABLE XIII. Bulk rocksalt MgO dielectric constant and its change with 1% uniaxial strain along the x axis obtained using DFPT, RPA
with Bloch states in a plane wave basis and with the Wannier basis. These methods are the same as those in Tables IV and VII. The results in
the table are based on a 12 × 12 × 12 k grid.

DFPT RPA (100 bands) RPA (13 bands) Wannier

ε(0.0%) 3.13 3.25 3.18 3.21
�εxx (1.0%) 3.0×10−2 3.0×10−2 2.9×10−2 3.1×10−2

�εyy(1.0%) 0.4×10−2 0.4×10−2 0.4×10−2 0.5×10−2

IX. SUMMARY AND OUTLOOK

In this paper, we have developed a method to calculate
the dielectric and elasto-optic response of solids within the
RPA using a maximally localized Wannier function basis.
Compared with state-of-the-art DFPT method, RPA in the
Wannier basis achieves a satisfactory numerical accuracy
while presenting a simple analytical expression that high-
lights the role of dipole transitions between the occupied
and unoccupied Wannier functions. By organizing the dipole
transitions into shells according to the distances between
the occupied and unoccupied Wannier functions, both of the
dielectric and photoelastic responses systematically converge
within the “constrained sum” method and their spatial behav-
ior is sensible. We have discovered that elasto-optic responses
are rather delocalized in the Maximally Localized Wannier
basis: in Si, diamond, NaCl, and MgO, we must sum the
cumulative contributions of at least three spatially localized
shells to converge �ε to a reasonable precision. Moreover,
the convergence with increasing shells is not monotonic in
some cases (e.g., p12 in Si and MgO). Silicon’s long-tailed
Wannier functions, which need to be generated in a relatively
large supercell, lead to the long-ranged behavior of its pho-
toelasticity. However, in spite of the Wannier functions being
quite compact in diamond, NaCl, and MgO, the locality of
their elasto-optic response is at a similar scale to bulk Si: one
must sum up to 3 shells’ contribution to converge the change
of dielectric constant with reasonable precision. The length
scale of locality in the maximally localized Wannier basis is
too large and contains too many dipole transitions for us to
extract simple material design rules for photoelasticity. This
is in contrast to the locality of the electronic polarizability in
the MLWF basis [46] where a nearest-neighbor only model

is already quantitatively accurate. However, not all is lost:
while not localized as one would like on individual atoms
and chemical bonds, the real-space Wannier description is
far more localized than the k-space description for describing
the dielectric and photoelastic response, and a reasonably-
sized nanocluster of the material (i.e., up to the third shell
of nearest-neighbors) is sufficient to describe the photoelastic
response. In addition, we have discovered some unexpected
photoelastic behaviors, e.g., Tables XII and XV show that
NaCl and MgO have opposite photoelastic responses, or that
there is a nonmonotonic convergence with increasing number
of space shells for the p12 component in Si, diamond, and
MgO. Despite significant effort, at present we are unable to
explain these unexpected behaviors and hope that future work
will elucidate the situation.

There is an existing literature that uses highly localized
bond orbital tight-binding models to compute dielectric re-
sponse in solids [19,47] that can be extended to photoelastic
response. For example, the empirical model for the strain
dependencies of dielectric response by Damas et al. [18]
assumes a nearest-neighbor tight-binding model in tetrahedral
semiconductors based on bond orbital theory for Si. They
build a 2 × 2 Hamiltonian with fitting parameters with two sp3

hybrid orbitals on neighboring atoms as the basis to describe
the bond polarizability, and the free parameters are fit to
photoelasticity experiments. Since this model only includes
the first shell of contribution for dielectric response, which
according to our work is microscopically inadequate, the
effects of higher order shells must be strongly renormaliz-
ing the values of the empirical parameters. Such a compact
description can help us understand a posteriori the photoe-
lasticity of known materials where experimental values are

TABLE XIV. Convergence with supercell size of the dielectric constant and its strain dependence in bulk MgO using the Wannier function
method. The “standard” convergence calculation is not performed for MgO. The results in the table are all based on the 12 × 12 × 12 k grid
calculation. This table uses the same nomenclature as Table. V.

Size of supercell
used to generate Wannier functions

12 × 12 × 12

2 × 2 × 2 2.10(1.4 × 10−2)
4 × 4 × 4 3.09(2.8 × 10−2)

Subset of 6 × 6 × 6 3.19(3.0 × 10−2)
Wannier functions used 8 × 8 × 8 3.20(3.1 × 10−2)

10 × 10 × 10 3.21(3.1 × 10−2)
12 × 12 × 12 3.21(3.1 × 10−2)
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FIG. 17. Convergence of εxx and �εxx with 1.0% uniaxial strain along the x axis in bulk MgO using the Wannier function method. The
figure uses the same notations as Fig. 5.

available, but it is of limited value for materials design or
prediction.

In this work, we have revealed the relatively long-ranged
nature for photoelasticity when described in real space using
Wannier functions. The questions of whether the elasto-optic
effect is intrinsically a relatively long-ranged phenomenon for
all materials and whether an alternative ab initio real-space
basis will compactify its description remain open for future
investigations.
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APPENDIX

Section III describes our method for computing the longi-
tudinal RPA dielectric constant in both Bloch and Wannier
bases, which is adequate for calculating the p11 and p12

TABLE XV. The cumulative contribution to �εxx of three shells
of dipole transitions are shown in the table for MgO. The shell
indices in the first column are defined the same as those in Fig. 14
and Table XII. The table follows the same notation as Table XII.

Dipole transition Cumulative contribution to �εxx

matrix elements 1% x strain 1% y strain

“1” → “1” +0.7 × 10−2 −0.4 × 10−2

“1” → “2” +2.1 × 10−2 +0.4 × 10−2

“1” → “3” +2.5 × 10−2 +0.1 × 10−2

All shells +3.1 × 10−2 +0.5 × 10−2

component of photoelasticity. However, the calculation of
the last nonzero component of the photoelastic tensor in a
cubic crystal, p44, requires extending our method to compute
off-diagonal components of the dielectric tensor such as εyz.
We summarize our approach here.

We compute the full dielectric tensor using the following
expression:

εi j = δi j + 16π

V
× 1

|q|2
∑

k

∑

c,v

× 〈ψc,k|e−iqi ·r|ψv,k+qi〉∗ × 〈ψc,k|e−iq j ·r|ψv,k+q j 〉
Ec,k − Ev,k+q j

(A1)

where the small wave vectors qi and q j are aligned with the
i and j axes (i.e., two perpendicular Cartesian axes); other
aspects of the notation follow the nomenclature of Eq. (2).
In our calculations, the length of the q vectors are equal to 1%
of that of a primitive reciprocal lattice vector.

Substituting the relation between MLWFs and Bloch states
leads to the following expression for the dielectric tensor in
the Wannier basis:

εi j = δi j + 16π

V
× 1

|q|2 × Mi † × F × M j . (A2)

We have used a compactified representation of the summation
notation similar to Eq. (7) where Mi

a,b,R = 〈Wa,R|e−iqi ·r|Wb,0〉
and M j

a,b,R = 〈Wa,R|e−iq j ·r|Wb,0〉 are the dipole matrix ele-
ments along the i and j axes, respectively.

One technical issue with the above equations concerns
the fact that two separate sets of k point grids are used to
compute the dipole matrix elements: the conduction bands are
evaluated on the usual �-centered k grid, while the valence
bands are evaluated on two separate k grid shifted by the
small vectors qi and q j from �. A correct calculation of the
dielectric tensor requires that the Bloch states on two sets of k
grids obey the “natural” gauge: 〈ψm,k|ψn,k+q〉 −→ δmn when
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q −→ 0, which is not guaranteed by numerical diagonaliza-
tion procedures used in standard electronic structure calcula-
tions (e.g., when using QUANTUM ESPRESSO). Generally, the
computed Bloch states on two k point grids are related to each
other through a unitary transformation:

〈ψm,k|ψn,k+q〉 = Q(k)
mn ,

where Q(k) × Q(k)† = Q(k)† × Q(k) = I when q −→ 0. The
“natural” gauge can be restored easily by performing a
unitary transformation (only needed for the shifted valence

bands):

ψ̃v,k+q =
∑

v′
ψv′,k+q × Q(k)†

v′v ,

where v, v′ range over valence band indices. We use such
unitary rotated valence bands ψ̃ when computing off-diagonal
dielectric tensor components such as εyz (for diagonal compo-
nents, there is only a single shifted k grid so the issue of the
natural gauge does not arise).
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