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The plasmon frequency in standard electron gases with a parabolic single-particle dispersion is a purely
classical quantity that is not sensitive to electron interactions or the equation of state. We demonstrate that
this canonical result no longer holds for plasmons in three-dimensional semimetals, which can thus be used to
probe many-body effects in these systems. In particular, we show that the plasmon frequency in an external
magnetic field displays quantum oscillations, which is not the case for the electron gas. Using the random
phase approximation, results are presented for the magnetoplasmon dispersion and the loss function in Dirac
semimetals. We include a full discussion of the loss function in a magnetic field as a function of the direction of
propagation with respect to the magnetic field direction and discuss the transition from large magnetic fields to
the low-field limit.
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I. INTRODUCTION

Quasirelativistic phases of matter, such as graphene [1,2],
transition metal dichalcogenides [3], topological insulators
[4], or Dirac and Weyl semimetals [5], have been widely ex-
plored over the past decade [6]. Their Hamiltonian resembles
that of relativistic Dirac particles (with the Fermi velocity or
the band gap playing the role of the speed of light or the
Dirac mass). The continued interest in theses systems is, to a
considerable part, due to possible applications in plasmonics
[7–11]. In this paper, we point out that the Dirac plasmon
frequency in three-dimensional semimetals (3DSM) is sensi-
tive to the equation of state and, as one manifestation of this,
shows quantum oscillations. By contrast, quantum oscillations
or other interaction effects are absent for the electron gas
(which describes electrons with parabolic bands), where they
only appear as higher-order corrections in the wave number
O(q2/h̄2) [12]. Our main focus are three-dimensional gapless
Dirac semimetals, for which the single-particle dispersion is a
linear function of momentum. For these systems, the theoret-
ical study of plasmons is a flourishing subfield [13–26], and
first measurements of plasmons have recently been reported in
optical studies [27–31] and electron-loss spectroscopy [32].

To put the results of this paper in context, we recall the
plasmon frequency �p of the electron gas in three dimensions
(3DEG), which takes the universal value [12,33,34],

�2
p,3deg = 4πe2n

κm
. (1)

This result depends only on the band mass m, the electron
charge e, the background dielectric constant κ , and the density
n. Importantly, Eq. (1) does not involve the Planck quantum h̄,
i.e., it is a completely classical quantity [12]. In particular, the
electron gas plasmon frequency is not affected by electron in-
teractions or a magnetic field, hence plasmons do not provide
insight in the equation of state of other quantum properties of

the system. That Eq. (1) is exact for a charged Fermi liquid
(regardless of any many-body approximation) follows from
arguments for sum rules of the dielectric function ε(ω, q)
[12]:

mp(q) = −
∫ ∞

0
dω ωp Im[ε−1(ω, q)], (2)

where the positive quantity mp denotes the energy-integrated
sum rule with weight ωp. The dielectric function encodes the
density response (and hence the collective mode spectrum) of
the system and is related to the dynamic structure factor by
the fluctuation-dissipation theorem. The imaginary part of the
inverse dielectric function Im[ε−1(ω, q)] is known as the loss
function since it is proportional to the differential cross section
of inelastic x-ray or electron scattering off the system [35].
The loss function typically consists of a broad background
formed by particle-hole excitations (which can describe either
inter- or intraband transitions), with the plasmon showing up
as a resonance [32,36]. The long-wavelength plasmon (1) is
undamped and thus determined by the zeros of the dielectric
function ε(ω, q). Assuming then that the loss function at long
wavelengths is exhausted by the plasmon pole and neglecting
other contributions (the so-called single-mode approxima-
tion), Eq. (1) follows using the f -sum rule m1(q) = 2π2e2n

m and
the perfect screening sum rule m−1(q) = π

2 + O(q2), since
in this case �2

p,3deg = m1/m−1 [12]. Indeed, it turns out that
the single-mode approximation is exact at long wavelengths,
i.e., the plasmon pole exhausts the sum rules (2), with other
contributions such as particle-hole excitations suppressed due
to phase-space restrictions and dielectric screening [12]. In
particular, even interband excitations (for models with mul-
tiple bands) do not dominate the sum rules: In a spectral de-
composition, the continuity equation relates interband terms
at order O(q0) (the same order as the plasmon pole) to matrix
elements of the total current operator, i.e., the sum over
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velocities of all particles. However, such a contribution must
vanish for translationally invariant states, because velocity and
momentum are proportional in a parabolic system, and the
total momentum generates translations of the whole state.

The above argument breaks down for Dirac materials,
which thus admit a richer behavior of Dirac plasmons that is
sensitive to many-body interactions. In Dirac materials, va-
lence and conduction bands form linear band touching points,
Dirac points, which are described by an effective continuum
two-band Hamiltonian,

Ĥ = χvF σ · p̂, (3)

where vF is the Fermi velocity and p̂ = −ih̄∇ is the momen-
tum operator. Dirac cones appear in pairs of opposite chirality
χ = ±. The Hamiltonian (3) describes valence and conduc-
tion bands with linear dispersion Ea(p) = sχvF |p|, where we
define the band index s = ±. Different from an electron gas
system, the velocity v = vF

p
|p| has constant magnitude vF and

is not proportional to the momentum [37]. Hence, although
the effective description is translationally invariant, interband
transitions will contribute at the same order as the plasmon
mode. Indeed, they give a divergent contribution such that
the sum rules in Eq. (2) are not even well defined [38,39].
Hence, there are no universal sum rule constraints on the
Dirac plasmon frequency. Note that this is a general result for
Dirac semimetals and not an artifact of the low-energy model
(3). While the f -sum rule m1(q) would be finite in a lattice
model [37], it would not be exhausted by the plasmon pole,
but interband transition would contribute at the same order, so
that there is still no exact constraint on the plasmon frequency.

For an extrinsic system with doping density n, a calculation
using the random phase approximation (RPA) that takes into
account intraband excitations gives a plasmon frequency [40],

�2
p,3dsm = 4πvF e2n

κ h̄kF
, (4)

where kF = ( 3π2n
g )2/3 is the Fermi wave number and we allow

for a multiplicity g of Dirac cone pairs. Taking into account
interband transitions gives an effective electronic contribution
to the dielectric constant κ , which results in logarithmic
corrections to the scaling of the plasmon frequency with
density [13,39] or temperature [16]. Intuitively, the intraband
contribution (4) is related to the electron gas plasmon (1)
by a density-dependent effective Dirac mass m = h̄kF /vF .
Most importantly, since the plasmon frequency (4) contains
an explicit factor of h̄, it is said to be a “quantum plasmon,”
which does not admit a classical limit h̄ → 0 [40]. Given this
explicit dependence on h̄ and the lack of universal sum rule
constraints, an immediate question is if these quantum plas-
mons show more general properties compared to the electron
gas and if they probe the equation of state.

In this paper, we answer this question in the affirmative by
showing that Dirac magnetoplasmons display quantum oscil-
lations. We compute within the RPA the dielectric function of
a Dirac semimetal in a constant external magnetic field and
obtain an analytical result for the long-wavelength plasmon,

�2
p,3dsm(B) = 4πv2

F e2n

κμ(B)
. (5)

FIG. 1. Longitudinal plasmon frequency for gα = 1 as a function
of h̄ω′/EF ∼ √

B. The red dashed line indicates the zero-field plas-
mon frequency, and the dot-dashed orange line the high-field limit
discussed in the main text.

Distinct from the known electron gas plasmon, this frequency
depends explicitly on the chemical potential μ and will thus
show quantum oscillations of the de Haas–van Alphen type
as the magnetic field B is varied. To illustrate this, Fig. 1
shows the plasmon frequency (5) as a continuous blue line as
a function of the Dirac cylotron frequency ω′ = √

2vF /	, with
	 = √

h̄/eB the magnetic length. The quantum oscillations are
clearly visible. Intuitively, our result is related to the zero field
case (4) by replacing the Fermi energy EF = h̄vF kF with the
chemical potential. We include a full discussion of features of
plasmons and the loss functions.

It turns out that the quantum oscillations in Eq. (5) are due
to intraband transitions in the dispersing 3DSM Landau lev-
els (LL). By contrast, magnetoplasmons in two-dimensional
semimetals (2DSM) like graphene consist of interband tran-
sition between adjacent Landau levels. For comparison, we
include a discussion of the 2DSM case in this paper. For
collective modes in 3DSM that propagate at an angle to the
external field, both mechanisms play out, which is discussed
as well.

This paper is structured as follows: We will work on the
level of the random phase approximation to determine the
dynamic structure factor and the collective mode spectrum.
For Dirac semimetals, the RPA is a very reliable and accu-
rate many-body technique that represents the exact leading
order for a large multiplicity of Dirac cones. To this end,
Sec. II discusses single-particle properties of Dirac semimet-
als (Sec. II A) in a magnetic field and introduces the RPA
(Sec. II B). Results of this calculation are presented in Sec. III,
with a main focus on 3DSM in Sec. III A. We present analytic
results for the long-wavelength response and derive the central
result for the longitudinal plasmon frequency, Eq. (5). We also
present a detailed discussion of the RPA loss function at all
momenta and frequencies as a function of the magnetic field
as well as the alignment between the field and the direction
of the excitation. The section also contains a discussion of the
3DEG, which is the canonical model for interacting electrons
used to discuss plasmons. The comparison with the 3DEG
serves to highlight the markedly distinct and richer new be-
havior of Dirac plasmons. In Sec. III B, we discuss plasmons
in 2DSM as well as 2DEG as a function of a perpendicular
magnetic field. The paper is concluded in Sec. IV.
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II. ELECTROMAGNETIC RESPONSE AND RANDOM
PHASE APPROXIMATION

This section sets up the random phase approximation for
Dirac materials in a constant magnetic field. We begin by
summarizing the single-particle properties of Dirac particles
in two and three dimensions in Sec. II A. The RPA calculation
of the dielectric function and density response is presented in
Sec. II B.

A. Single-particle properties

The Dirac Hamiltonian in an external magnetic field is
obtained by substituting p̂ → p̂ − eÂ in Eq. (3), where we
choose the Landau gauge for the vector potential 〈r|Â|r〉 =
(0, Bx, 0) that describes a constant magnetic field in the z
direction. Eigenstates are given by [41–43]

|n, s, χ, py, pz〉 =
(

unsχ (pz )|n, py, pz〉
vnsχ (pz )|n − 1, py, pz〉

)
, (6)

where |npy pz〉 is the single-particle eigenstate of the three-
dimensional electron gas in a magnetic field,

〈r|npy pz〉 = eipyy/h̄+ipzz/h̄√
LyLz

1√
	
φn

(
x + 	2 py/h̄

	

)
, (7)

and φn is the dimensionless wave function of the harmonic

oscillator in one dimension, φn(s) = e−s2/2√
2nn!

Hn(s), where Hn is
a Hermite polynomial. The coefficients in Eq. (6) are

unsχ (pz ) =
{

1 n = 0√
1
2 + sχvF pz

2|Ena(pz )| n 	= 0
, (8)

vnsχ (pz ) =
{

0 n = 0

sχ
√

1
2 − sχvF pz

2|Ena(pz )| n 	= 0
. (9)

The eigenstates (6) have energy,

Ensχ (pz ) =
{

χvF pz n = 0

sχ
√

(h̄ω′)2n + (vF pz )2 n 	= 0
, (10)

where we introduce the Dirac cyclotron frequency ω′ =√
2vF /	 with 	 = √

h̄/eB the magnetic length. Landau level
(LL) states with n = 0 have linear dispersion with a slope
set by the chirality of the Weyl point. We will compare
results with the three-dimensional electron gas, for which
the single-particle spectrum is bounded from below with

energy En(pz ) = h̄ωc(n + 1
2 ) + p2

z

2m , where ωc = h̄
ml2

B
= eB

m is
the 3DEG cyclotron frequency.

We determine the chemical potential (choosing μ > 0)

requiring the doping density n = gk3
F

3π2 to be independent of the
magnetic field,

n = g

2π2	2

[
μ

h̄vF
+ 2

∞∑
n=1

Kn �

(
μ

h̄ω′ − √
n

)]
, (11)

with Kn = 1
h̄vF

√
μ2 − (h̄ω′)2n. The first term in square brack-

ets in Eq. (11) is the zeroth Landau level (0LL) contribu-
tion, and the prefactor accounts for the degeneracy of states

FIG. 2. Chemical potential at zero temperature as a function
of magnetic field strength (continuous blue line) in (a) 3D and
(b) 2D. For comparison, we show the chemical potential of a normal
Fermi gas as a red dashed line. ω′ denotes the respective cyclotron
frequency of the semimetal and the electron gas.

(2π	2)−1 per unit area perpendicular to the magnetic field.
The results of this calculation for the chemical potential as
a function of the magnetic field is shown in Fig. 2(a) as a
blue continuous line. In the low-field limit, using the Euler-
MacLaurin formula in Eq. (11), we find μ

EF
= 1 as expected.

In the opposite high-field limit only the zeroth Landau level
contributes such that μ

EF
= 4

3 ( EF
h̄ω′ )

2, which vanishes with the
inverse of the magnetic field. As the magnetic field changes,
the chemical potential shows quantum oscillations with cusps
at field values h̄ω′

n = √
nEF whenever a Landau level is

fully depopulated. For comparison, we include in Fig. 2(a)
the chemical potential of the 3DEG as a red dashed line.
The results are qualitatively similar, the noticeable difference
being the different frequency of cyclotron oscillations as well
as a different high-field behavior that arises from the field
dependence of the 3DEG lowest Landau level.

Note that the frequency of oscillations in Figs. 1 and 2
in a Dirac semimetal will receive corrections due to electron
interactions [37,44,45]. This is different for an electron gas,
where the frequency of quantum oscillations is set by the
cyclotron frequency, which is fixed at ωc = eB/m and is not
renormalized (this is Kohn’s theorem [46]). The failure of
Kohn’s theorem is linked to the specific form of the electron
velocity, which is no longer proportional to the momentum
[37], and is thus closely related to the failure of the single-
mode approximation for the plasmon mode discussed in the
introduction. Intuitively, it accounts for the fact that in a Dirac
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material, the collective motion of many electrons cannot be
separated from the relative internal motion.

In two-dimensional Dirac semimetals (2DSM), there is a
discrete single-particle Landau level spectrum with energy
[47,48],

Ena(pz ) =
{

0 n = 0
χsh̄ω′√n n 	= 0

, (12)

with s = ± the band index and χ = ± the chiral index and
eigenstates,

|n, s, χ, py〉 =
(

un|n, py〉
sχvn|n − 1, py〉

)
, (13)

where un=
√

(1 + δn,0)/2, vn = √
(1 − δn,0)/2, and 〈r|npy〉 =

1√
Ly

eipyy/h̄ 1√
lB

φn
( x+l2

B py/h̄
lB

)
is the single-particle eigenstate of

the two-dimensional electron gas (2DEG). The density is

n = gk2
F

π
= k2

F

2π
× 2g

(
h̄ω′

EF

)2 n0∑
n=0

νn, (14)

where the 0LL has occupation ν0 = 1/2. The result for the
chemical potential as a function of magnetic field is shown in
Fig. 2(b) as a blue continuous line. The chemical potential is
fixed at the energy of the highest occupied Landau level, the
energy of which increases linearly with the cyclotron energy
h̄ω′. As the magnetic field increases, so does the degeneracy
of states per Landau level. Above a critical field, the Landau
level is depleted, upon which the chemical potential jumps
discontinuously to the energy of the next-lowest Landau level.
In the low-field limit, the chemical potential is equal to
the Fermi energy. In the high-field limit, it is at the 0LL.
For comparison, we include the corresponding result for the
2DEG as a red dashed line.

B. Random phase approximation

The collective plasmon mode is set by the zero of the
dielectric function, which is given by

ε(ω, q) = 1 − V (q)�(ω, q), (15)

where V (q) = 4π h̄2e2/q2 is the Coulomb interaction
(V (q) = 2π h̄e2/q in 2D) and �(ω, q) is the screened
density response that is irreducible with respect to the
Coulomb interaction. In the RPA, we take �(ω, q) as the
noninteracting density response function:

�(ω, q) = g

2π	2

∑
n, n′
s, s′
χ, χ ′

∫
d pz

2π h̄

∣∣F ss′,χχ ′
nn′ (pz, q)

∣∣2

× f0(En′s′χ ′ (pz + qz )) − f0(Ensχ (pz ))

En′s′χ ′ (pz + qz ) − Ensχ (pz ) + h̄ω
, (16)

with f0 the Fermi-Dirac distribution and F ss′,χχ ′
nn′ the density

matrix element,

F ss′,χχ ′
nn′ (pz, q) = unsχ (pz )un′s′χ ′ (pz + qz ) fnn′ (qx, qy)

+ vnsχ (pz )vn′s′χ ′ (pz + qz ) fn−1,n′−1(qx, qy).

(17)

Here, fnn′ (qx, qy) = 〈n|eiq⊥·r̂|n′〉 (where q⊥ = (qx, qy)) is
the matrix element of the density operator between
one-dimensional harmonic oscillator states |n〉. It can be ex-
pressed in closed analytical form in terms of Laguerre polyno-
mials [34]. The matrix element |F ss′,χχ ′

nn′ (pz, q)|2 only depends
on the magnitude of q⊥, but the full response will still depend
on the direction of propagation q with respect to the magnetic
field in z-direction. We denote the angle between q and B by
θ . We will be mostly interested in the long-wavelength limit
q → 0, where the plasmon is undamped.

In two dimensions, the density response takes the form
[47,48],

�(ω, q) = g

2π	2

∑
n,n′

∑
s,s′

f0(En′s′ ) − f0(Ens)

En′s′ − Ens + h̄ω

∣∣F ss′
nn′ (q)

∣∣2
,

(18)

with

F ss′
nn′ (q) = unun′ fnn′ (q) + ss′vnvn′ fn−1,n′−1(q). (19)

Note that for Dirac systems, the RPA is the leading order
in an expansion in large orders of g, the multiplicity of Dirac
cones. As such, it is a nonperturbative method valid for any
value of the Dirac Coulomb interaction strength α = e2

κ h̄vF
.

Since g is large for typical Dirac semimetals (for example,
g = 12 in TaAs [49–51] or pyrochlore iridates [52]), we
expect the RPA to be quantitatively predictive. Note that the
RPA provides an accurate description of many-body effects in
graphene (for which g is as low as 2) [53].

III. RESULTS

In this section, we use RPA set up in Sec. II B to derive
the plasmon mode and the loss function of Dirac semimetals.
Section III A presents results for the 3DSM. We derive an
analytical expression for the longitudinal plasmon frequency
and obtain the complete loss function as a function of fre-
quency and momentum for different magnetic fields and
propagation directions. Since the results of this paper are
qualitatively distinct from the standard model of interacting
electrons, the electron gas, we include a discussion of the
3DEG and compare with the 3DSM results. An additional
point of comparison as already discussed in the introduction
are 2DSM such as graphene, and Sec. III B discusses both
2DSM and 2DEG plasmons and loss functions.

A. Three-dimensional semimetals

Consider first modes propagating along the magnetic field
[i.e., q = (0, 0, qz )]. In this case, fnn′ (q⊥) = δnn′ + O(q2

⊥),
hence the long-wavelength limit of the polarization function
is determined by transition between Landau levels with equal
n quantum number. These are intraband excitations within
occupied conduction band levels, and interband excitations
between opposite valence and conduction band levels. The
contribution of intraband excitations (the “Dirac plasma”) can
be evaluated in closed analytical form. It consists of a zeroth
Landau level part and a contribution from higher Landau
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FIG. 3. Loss function Im ε−1
RPA(ω, q) of a Dirac semimetal with gα = 1 for various magnetic field strengths EF /h̄ω′ = 0.9, 1.2, 2, 3 and ∞

(left to right) and different angles θ of propagation q with respect to the magnetic field direction (top to bottom). At the very top we indicate the
position of the chemical potential for both Dirac cones with opposite chirality. The rightmost panels correspond to the zero field limit and are
the same for all angles. The continuous white line marks the plasmon dispersion and dashed white lines indicate the continuum particle-hole
boundaries.

levels, �(ω, qz ) = �0LL(ω, qz ) + �HLL(ω, qz ), with

�0LL(ω, qz ) = vF

2π2h̄	2

q2

(h̄ω)2
+ O(q4), (20)

�HLL(ω, qz ) = q2

(h̄ω)2

v2
F

μ

[
n − 1

2π2	2

μ

h̄vF

]
+ O(q4), (21)

which is obtained from Eq. (16) expanding f0(Ena(pz+qz ))−
f0(Ena(pz )) = ∂ f0(Ena )

∂ pz
qz and Ena(pz + qz ) − Ena(pz ) = ∂Ena

∂ pz
qz

and using Eq. (11). The result (20) for the zeroth Landau level
agrees with [14]. Substituting this result in Eq. (15), we obtain
the plasmon frequency (5), which can be recast in the form,

�2
p = 4πv2

F e2n

κμ
= 4π h̄v3

F αn

μ
= E2

F

h̄2

4gα

3π

EF

μ
. (22)

Figure 1 shows the plasmon frequency for gα = 1 as a
function of magnetic field. The quantum oscillations are
clearly visible. The red dashed line indicates the low-field
limit of Eq. (4), limB→0 �p = √

4gα/3πEF /h̄. The orange
dot-dashed line marks the high-field limit limB→∞ �p =
ω′√gα/π , which agrees with the results of previous works
on the magnetoplasmon mode for very large magnetic fields
[14,54–56].

The crucial point about the results (5) and (22) is that the
Dirac plasmon mode depends on the equation of state through
the chemical potential and thus shows quantum oscillations
as the magnetic field changes. This is a main result of this
work. By contrast, the plasmon frequency of the electron gas
is constant and independent of the magnetic field [57], as
required by the sum rule arguments discussed in the intro-
duction. We stress that these quantum oscillations are a very
general effect in that they are tied to the linear dispersion
of Dirac or Weyl materials, they do not require anomalous
electrodynamics. More broadly, the sensitivity of plasmon
modes to many-body physics should be present for systems
with a general nonparabolic dispersion E (p) ∼ p2+β (β 	= 0)
or E (p) ∼ p2

2m∗ + γ p4.
For comparison, Fig. 1 also shows the plasmon frequency

for the full dielectric function including interband transitions.
In the long-wavelength limit, only interband excitations be-
tween Landau levels with equal quantum number n contribute
to the polarization function (16), such that the excitation
energy is large compared to the plasmon frequency. As can be
seen from Eq. (16), interband transitions will thus contribute
at order O(q2/ω0) to the polarization function [compared to
O(q2/ω2) for intraband terms, Eqs. (20) and (21)]. Hence,
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FIG. 4. Loss function of a 3DEG for various ratios EF /h̄ωc. θ denotes the angle of the propagation q with respect to the magnetic field
direction. The rightmost panel is the same for all angles. The continuous white line marks the plasmon dispersion and dashed white lines
indicate the continuum particle-hole boundaries. As soon as the propagation in no longer parallel to the magnetic field, there are multiple
plasmon modes and a tower of particle-hole continua (corresponding to inter-LL transitions) that coalesce at the Kohn mode frequency.

from Eq. (15), they provide an effective electronic contri-
bution to the dielectric constant κ . This lowers the value
of plasmon frequency compared to the value for the Dirac
plasma. This result is in excellent agreement with the full cal-
culation presented in Fig. 1. In order to compare calculations
performed at different magnetic fields, we choose a magnetic-
field dependent cutoff such that the density of electrons in the
valence band remains unchanged (i.e., the chemical potential
of the intrinsic system remains at the Dirac point). This
illustrates that interband transitions do not qualitatively affect
the quantum oscillations.

Note that the quantum oscillations in the magnetoplasmon
mode presented in Fig. 1 are not affected by internodal scatter-
ing [29,55]. Internodal scattering corresponds to a momentum
transfer between different Dirac points that is typically much
larger than the Fermi momentum. It does not affect the long-
wavelength physics.

We now turn to a full discussion of the loss function
Im[ε−1(ω, q)]. Figure 3 shows the RPA loss function for five
different values of the magnetic field (left to right) EF /h̄ω′ =
0.9, 1.2, 2, 5 and ∞ (the latter is the zero-field limit) and
three different angles (top to bottom) θ = 0, π/8, and π/4
between the direction of the wave number and the magnetic
field. At the very top, we show the single-particle spectrum
of a pair of Dirac cones and indicate the position of the
chemical potential for comparison. Where undamped, the

plasmon mode is shown by a continuous white line. As is
apparent from the figure, the loss functions cross over to
the zero-field limit (shown in the right-most panel, which is
independent of the magnetic field) [13]. Dashed white lines
indicate the particle-hole boundary of the zero-field system.
These boundaries follow from energy- and momentum con-
servation and describe the kinematic threshold for particle-
hole excitations. For intraband transitions, the particle-hole
continuum exists for max(0, h̄vF q − 2εF ) < h̄ω < h̄vF q, and
interband transitions exist for h̄ω > max(2εF − h̄vF q, h̄vF q).
The interband contribution to the loss function of the Dirac
system is nonzero at long wavelengths, which leads to the
divergence of the sum rules discussed earlier.

The first row with θ = 0 corresponds to the case discussed
previously where the direction of propagation is aligned with
the magnetic field. Only transitions between Landau levels
with equal quantum number n contribute to the loss function.
There is an intraband contribution stemming from transition
within a single Landau level and interband contributions from
transitions between opposite valence band and conduction
band Landau levels. The particle-hole continuum formed by
intralevel transitions in nonzero Landau levels is characteristic
of a one-dimensional system, where zero-frequency excitation
at finite momentum are only possible if the two Fermi points
are connected [34]. Particle-hole excitations in the zeroth Lan-
dau level do not form a continuum, but are linear h̄ω = h̄vF q
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due to the linear dispersion of this Landau level. An important
results of our calculations is that the plasmon is undamped
even at higher momenta and should hence dominate the loss
function even at large momentum transfer.

When the magnetic field is tilted with respect to the
direction of propagation, transitions between Landau levels
with any quantum number are permitted. In particular, the
plasmon mode merges with the particle-hole continuum and
is Landau damped at larger wave numbers. At larger magnetic
fields, the plasmon hybridizes and we numerically find two
separate collective modes, which is qualitatively similar as for
the electron gas [57]. It is important to note, however, that the
Dirac magnetoplasmons show quantum oscillations even in a
tiled magnetic field, whereas the electron gas plasmons never
show such oscillations.

For comparison, Fig. 4 shows the RPA loss function of
the 3DEG for five different values of magnetic field (left
to right) EF /h̄ωc = 1.2, 2, 3, 5 and ∞ (the zero-field limit)
and three different angles (top to bottom) θ = 0, π/8, and
π/4 between the direction of the wave number and the
magnetic field. The collective plasmon mode is indicated by
a white continuous line where undamped. The white dashed
lines show the intraband particle-hole boundary of the zero-
field system at frequencies h̄ω± = max(0,

h̄2q2

2m ± h̄vF q). The
longitudinal plasmon mode (top panels) is independent of
the magnetic field and fixed at the zero-field value, Eq. (1).
For excitations with a transverse momentum component with
respect to the magnetic field (θ 	= 0), there are two collective
long-wavelength modes with angle-dependent frequency [57],

ω2
± = �2

p + ω2
c

2
± 1

2

√(
�2

p + ω2
c

)2 − (2�pωc cos θ )2. (23)

The splitting is apparent in the collective mode dispersion in
the second row of Fig. 4. The splitting can be understood as
the hybridization of the zero-field bulk plasmon mode and the

cyclotron motion [57]. Note that while these modes have a
magnetic field dependence through the cyclotron frequency, it
is trivial and does not show quantum oscillations or contains
information about the equation of state.

B. Two-dimensional semimetals

The quantum oscillations for longitudinal Dirac magneto-
plasmons are due to intraband transitions in the dispersing
3DSM Landau level. By contrast, in 2DSM with a perpen-
dicular magnetic field, the plasmon mode gaps out where
the gap corresponds to interband transitions between different
graphene Landau levels. For comparison, this section presents
a discussion of the 2DSM and 2DEG magnetoplasmon mode.
There is extensive previous literature on graphene magneo-
plasmons [47,48], which consider Landau levels with integer
filling.

First, consider the long-wavelength limit. To order O(q2),
only terms with n′ = n ± 1 will contribute in the polarization
function (18). Denote the index of the partially occupied LL
by m and consider m � 0. To leading order in q, there are two
magnetoplasmon modes, which are given by

(h̄ω1)2

(h̄ω′)2
= (

√
m + 1 − √

m)2

+
√

2α(
√

m + 1 − √
m)

|F++
m,m+1(q)|2

lBq/h̄
νm, (24)

(h̄ω2)2

(h̄ω′)2
= (

√
m − √

m − 1)2

+
√

2α(
√

m − √
m − 1)

|F++
m−1,m(q)|2

lBq/h̄
(1 − νm).

(25)

The residue of the first mode is proportional to the filling frac-
tion of the highest occupied Landau level νm, and the residue

FIG. 5. (Top panels) Loss function of a 2DSM for various ratios EF /h̄ωc. The white lines indicate the magnetoplasmon. (Bottom panels)
Loss function of a 2DEG with rs = 0.5 for various ratios EF /h̄ωc. The white lines indicate the magnetoplasmon.
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of the second mode is proportional to 1 − νm. Hence, there
is a splitting of the long-wavelength magnetopolasmon for
fractional filling. This splitting vanishes for a fully occupied
LL, for which only the first mode has nonzero weight. This
result is different from the electron gas, where there is no split-
ting of the plasmon mode for fractional filling owing to the
equal energy spacing between LL. While the magnetoplasmon
excitation in graphene systems has been considered before,
previous studies consider fully filled Landau levels [47,48],
where the mode splitting of the long-wavelength plasmon
discussed here is not apparent. Note that this behavior is also
distinct from the 3DSM, and while there is a discontinuous
jump in the plasmon frequency for certain magnetic fields,
there is no quantum oscillation.

Results for the full 2DSM loss function are shown in
Fig. 5(a) for five values of the magnetic field EF /h̄ωc = 0.9,

1.2, 2, 3, and ∞. As before, the collective mode dispersion
is indicated by the white continuous line, and the particle-
hole zero-field boundary is marked by white dashed lines.
The splitting in the long-wavelength limit is clearly visible
in Fig. 4, most notably for EF /h̄ω′ = 1.2. It is absent for
the first panel with EF /h̄ω′ = 0.9, where the chemical po-
tential is in the zeroth LL, for which the excitations from
occupied to empty bands have the same energy. In the low-
field limit, the excitation gap vanishes, and the plasmon
dispersion at long wavelength with the square root of the
momentum.

Again, we compare with the corresponding results for the
2DEG. Figure 5(b) shows the loss function of the 2DEG
for five values of the magnetic field EF /h̄ωc = 1.2, 2, 3, 5,
and ∞. The notation is the same as in Fig. 5(a). The

long-wavelength RPA plasmon dispersion is obtained as

h̄�p =
√

(h̄ωc)2 + 2πe2nq

m
. (26)

The second term is the zero-field plasmon mode. The mag-
netic field-dependence is trivial in the form of an offset
at long wavelengths, which corresponds to direct interband
excitations. Since the electron gas Landau levels have equal
energy spacing, there is no splitting of the collective mode as
noted above.

IV. CONCLUSION

In conclusion, we have discussed collective magnetoplas-
mon excitations in Dirac semimetals. The main result is that
Dirac plasmons show quantum oscillations, and are thus an
important new probe of many-body physics in semimetals.
Our findings are in contrast to the canonical system of
many-body theory, the electron gas with parabolic bands,
where the plasmon is a purely classical quantity that is not
sensitive to the many-body physics. The unusual proper-
ties of Dirac plasmon provide a direct experimental signa-
ture of Dirac semimetals. With first experiments on three-
dimensional Dirac plasmons appearing recently [27–32], the
results of this paper should be accessible in current experi-
ments. Going forward, the dependence on the magnetic field
provides a novel way to tailor the Dirac plasmon frequency.
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