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Dynamical conductivity in the multiply degenerate point-nodal semimetal CoSi
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We theoretically investigate the dynamical conductivity in the multiply degenerate point-nodal semimetal
CoSi. The dynamical conductivity is calculated as a function of photon energy by using the first-principles band
calculation and the linear response theory. In the nodal semimetal, the band structure holds point nodes at the �

and R points in the Brillouin zone and more than three bands touch at the nodes. Around the nodes, electronic
states are predicted to be described as the multifold chiral fermion, a class of fermion in condensed matter.
We show that the dynamical conductivity exhibits a characteristic spectrum corresponding to the band structure
and the chiral fermionic states. The chirality leads to the prohibition of transition between the lower and upper
bands of threefold chiral fermion and thus the transition between the middle and lower bands is relevant to
the dynamical conductivity. This transition property is different from the Dirac and Weyl semimetals, the other
point-nodal semimetals, where the excitation between the upper and lower bands is relevant to the dynamical
conductivity. We show the prohibition causes the reduction of dynamical conductivity in the low-photon energy
region.
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I. INTRODUCTION

Topological nodal semimetals have attracted much atten-
tion in condensed-matter physics due to the electronic struc-
ture and the unique phenomena associated with them. In
point-nodal semimetals, the conduction and valence bands
touch each other at points, called nodes, in the Brillouin
zone [1]. Dirac and Weyl semimetals are the first genera-
tion of topological point-nodal semimetals [2–6]. In these
semimetals, electronic states around the nodes are described
by Dirac equation in high-energy physics and have provided
a test ground for studying the property of Dirac and Weyl
fermions in condensed matter. Recently, a type of point-nodal
semimetals has been proposed theoretically and predicted to
have multiply degenerate electronic states, so-called multifold
chiral fermions, which cannot be described by Dirac equation
[7–11]. The chiral fermion can emerge in some crystals as
a robust electronic state topologically protected [12]. Such
topological nodal semimetals have been expected to show
novel electronic properties beyond Dirac fermions. For in-
stance, the unique surface states [13–15] and the quantized
photogalvanic response [13,16,17] have been studied theoret-
ically and experimentally.

CoSi is a strong candidate of novel topological semimet-
als according to the first-principles band calculation
[10,12,18,19]. Angle-resolved photoemission spectroscopy
(ARPES) is one of the experimental techniques for identifying
the band structure of topological semimetals [5,6]. Recently,
a few groups have reported the band structure of CoSi by
using ARPES and shown nodes and topological surface states,
one of the characteristic features of the topological semimetal
[20,21]. However, there is a restriction in the visible electronic
energy for ARPES because it is able to detect electronic states
up to the Fermi level. In the pristine crystal of the semimetal,
the Fermi level is pinned at the charge neutral point, and it is
slightly under one of the nodes in CoSi.

In this paper, we theoretically investigate the dynamical
conductivity of CoSi by using the first-principles calculation
and the linear response theory. The dynamical conductivity
is associated with interband transitions between the occupied
and unoccupied bands, and thus it provides information about
electronic bands above the Fermi level. The photon energy
dependence of dynamical conductivity is strongly affected by
the band structure. In Ref. [22], Habe and Kohino showed
that the numerical result by using the first-principles band
calculation agrees well with the experimental measurement of
dynamical conductivity for a topological nodal-line semimetal
[23]. By using the method, in this paper, we provide the
realistic numerical result comparable to experimental data
and reveal the relation between the spectrum of dynamical
conductivity and the electronic states in CoSi. Especially
below 250 meV, we find that the spectrum is ascribable to
not only the band structure but also the property of multifold
chiral fermions; a prohibition of electronic transition between
a specific pair of bands. The multifold chiral fermion im-
poses the reduction of dynamical conductivity and causes a
dip structure in the spectrum around the photon energy of
200 meV.

II. FIRST-PRINCIPLES BAND STRUCTURE

We calculate the electronic band structure of CoSi by
using QUANTUM ESPRESSO, a first-principles calculation
code [24], and show it in Fig. 1(c). The cubic unit cell and
the Brillouin zone are schematically depicted in Figs. 1(a) and
1(b), respectively. The lattice constant and the atomic position
are computed within the same code by relaxing the lattice to
the stable structure. Then, the lattice constant is estimated to
be 4.432 Å and the atomic position is given in Table I. The
crystal structure is classified into P213, the symmetry group
(SG) 198, and represented by two parameters of xCo = 0.144
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FIG. 1. The unit cell and the Brillouin zone for CoSi in (a) and
(b), respectively. The band structure of CoSi calculated by the first-
principles calculation, including the spin-orbit coupling in (c). The
band structure within different energy ranges is depicted in the upper
and lower panels. The dashed line in the upper panel indicates
the band calculated by using the tight-binding model discussed in
Sec. III. In the lower panel, arrows A, B, and C indicate the transition
processes corresponding to the characteristic structure of dynamical
conductivity in Fig. 3(a). The highlighted region is associated with
the first peak around 650 meV in Fig. 2. In (d), the band is calculated
without the spin-orbit interaction.

and xSi = 0.843 for Co and Si, respectively. We apply a pro-
jector augmented-wave method to the first-principles calcu-
lation with a generalized-gradient approximation functional,
including spin-orbit coupling (SOC). The cutoff energy of the
plane-wave basis and the convergence criterion are adopted as
50 Ry and 10−8 Ry, respectively.

TABLE I. The list of atomic positions in the unit cell of CoSi,
which is shown in Fig. 1(a). The positions are represented in units of
the lattice constant.

x y z

Co(1) 0.144 0.144 0.144
Co(2) 0.644 0.356 0.856
Co(3) 0.356 0.856 0.644
Co(4) 0.856 0.644 0.356
Si(1) 0.843 0.843 0.843
Si(2) 0.343 0.657 0.157
Si(3) 0.657 0.157 0.343
Si(4) 0.157 0.343 0.657

We show the first-principles band structure of CoSi in
Fig. 1(c), where is presented within the different energy
ranges in the upper and lower panels. Nodal points appear
at two high-symmetry points: The � point and the R point.
At the � point, electronic states are quadruply degenerated
at the upper node and doubly degenerated at the lower node,
where the slight energy split between nodes is due to SOC
[25]. In the absence of SOC, a single node appears with
triply degenerated electronic states for each spin as shown
in Fig. 1(d). The fourfold degenerated node is slightly above
the Fermi level, and a doubly degenerate node emerges under
the level. At the R point, a single node appears with sextuple
degeneration 175 meV below the Fermi energy. Four cones
and a single quadratic band are crossing at the node. In
the band structure without SOC, a fourfold degenerate node
emerges for each spin at the R point.

III. DYNAMICAL CONDUCTIVITY

The dynamical conductivity σ (ω) is the response function
to the oscillating electric field with the frequency ω and is
related to the optical property of materials. The real part
σ1(ω) = Re[σ (ω)] is proportional to the optical absorption.
In experiments, σ1(ω) is obtained from the reflectivity of a
single crystal with the polish surface under the normal inci-
dent photon by Kramers-Kronig analysis. The photon-energy
dependence of σ1 shows the unique spectrum depending on
the band structure of nodal semimetal; a flat spectrum for
graphene [26–28], a linear dependence for Dirac and Weyl
semimetals [29–31], and a nearly flat spectrum for nodal-line
semimetals [22,32,33]. These spectra have been observed in
some experimental fabrications [23,34,35].

In general, σ1(ω) is associated with the electronic transition
corresponding to the frequency of applied electric field, i.e.,
the photon energy. We represent the electronic states in CoSi
by using a multiorbital tight-binding model defined on the
basis of Wannier orbitals. We adopt five d orbitals in Co
and three p orbitals in Si as the basis and compute the
spin-dependent hopping integrals and on-site potential from
the first-principles bands in Fig. 1 by using WANNIER90,
a code for calculating maximally localized Wannier func-
tions and the hopping matrix [36]. This tight-binding model
reproduces the first-principles band structure as shown in
Fig. 1. We calculate the dynamical conductivity in the linear
response theory where, for a linearly polarizing photon, it is
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FIG. 2. The dynamical conductivity as a function of photon
energy plotted for several relaxation times, h̄/τ = 1, 2.5, 5, 10, and
20 meV, at 5 K in the upper panel and at 300K in the lower panel.

represented by

σ (ω, T ) = 2i

ω

e2

h̄

∑
m�n

∫
BZ

d3k
(2π )3

|〈nk|v̂α|mk〉|2
h̄ω − (Enk − Emk) + ih̄/(2τ )

× (nF (Enk, T ) − nF (Emk, T )), (1)

where nF (E , T ) is Fermi distribution function at temperature
T and energy E with respect to the Fermi level. Here, ω

is the frequency of photon and the velocity is defined by
the commutation of the position and the Hamiltonian, v̂α =
(1/ih̄)[xα, H], where α indicates a parallel direction to the
polarizing direction of photon. The eigenstate |mk〉 and the
energy Emk are calculated by using the multiorbital tight-
binding Hamiltonian. The effect of impurity is included in
Eq. (1) as the relaxation time τ .

We consider the dynamical conductivity for linearly polar-
ized photons in the (100) direction and show the relaxation
time dependence of σ1(ω) at T = 5 K and 300 K in Fig. 2.
The low-frequency spectrum is sensitive to τ in ω < 500 meV
because the tail of the Drude peak around ω = 0 spreads
with the increase in the impurity density, i.e., the decrease of
relaxation time τ . When the material is clean, the interband
transition is relevant to the spectrum in the low-frequency
region. In the nearly ballistic condition, h̄/τ = 1 meV, the
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FIG. 3. The dynamical conductivity plotted at several temper-
atures, T = 5, 10, 50, 100, and 300 K, for h̄/τ = 1 meV and 10
meV in (a). A, B, and C correspond to the excitation energies in
the transition processes indicated in Fig. 1(c). In (b), the dynamical
conductivity calculated with and without the spin-orbit coupling. The
vertical dashed line indicates the minimal excitation energy at the M
point.

dynamical conductivity linearly increases with ω up to ω ∼
150 meV at both the temperatures. The linear dependence
is a characteristic feature of three-dimensional point-nodal
semimetals and attributed to the density of states [14,29]. This
characteristic structure disappears with the increase in h̄/τ ,
i.e., the increase of disorder, due to the broadening of the
Drude peak, but it is stable in a clean sample even at the room
temperature.

In Fig. 3, we show the temperature dependence of σ1(ω)
up to the room temperature with h̄/τ = 1 meV in a narrower
energy window. The numerical result exhibits that the linear
slope is unchanged with the increase in temperature. In what
follows, we investigate the structures of spectrum in this en-
ergy region and characterize them by the electronic transition
in the band structure.

First, we find a dip structure emerging around h̄ω ∼
250 meV in the spectrum of σ1(ω) below 200 K. The step-
like upward slope and the downward slop are attributed to
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different chiral fermions at the � point and the R point in the
Brillouin zone. This dip structure is different from a similar
structure associated with a single chiral fermion in a recent
work [14]. The dip structure in the previous work appears
at the photon frequency corresponding to the energy of the
node with respect to the Fermi level, h̄ω ∼ 10 meV. In the
present paper, however, the dip structure appears at much
larger photon energy, h̄ω < 100 meV. In what follows, we
discuss the upward and downward slopes of the dip structures
separately.

The upward slope emerges with a steplike structure at
the photon energy B in Fig. 3(a). The photon energy is
corresponding to the excitation energy to electronic states in
the Fermi level around the R point, where the transition is
depicted as B in Fig. 1. In general, the dynamical conductivity
is a linear function of photon energy in the case of three-
dimensional linear dispersion with the Fermi level crossing
the node [29]. When the upper (lower) cone is partially filled,
there is no transition to electronic states, which are occupied,
in the upper (lower) cone below (above) the Fermi level. Thus
the dynamical conductivity is zero below the photon energy
corresponding to the transition to the Fermi level and shows
a steplike upward slope at the energy [37]. Therefore, the
upward slope is attributed to the partially filled multifold cone
at the R point.

The downward slope and the lower spectrum, on the other
hand, are ascribable to the multifold chiral fermion at the �

point. Since the excitation energy is smaller than that of B, the
multifold cone at the R point has no contribution. To confirm
the relation to the chiral fermions, we consider an effective
Hamiltonian describing electronic states around the � point
and compare the dynamical conductivity in two models. Here
we omit the SOC in the effective Hamiltonian because the
low-energy dynamical conductivity is nearly unchanged with
the presence of SOC. The effective Hamiltonian is represented
by a 3 × 3 matrix on the basis of three degenerated electronic
states � j for j = 1–3 at the � point. The constant element
gives the energy of the node at the � point and thus it is
proportional to the identity matrix. We consider only the ma-
trix element linearly depending on the wave number kμ in the
effective model. Such a kμ-linear element can be represented
by {H3×3}i j = ∑

μ kμ〈�i|Vμ|� j〉, where Vμ is defined by the
derivative of the full Hamiltonian h̄−1∂H/∂kμ and |� j〉 is the
wave function at the � point. Here Vμ and |� j〉 are calculated
numerically by using the Fourier transformed multiorbital
tight-binding Hamiltonian.

We show the band structure and the dynamical conductivity
calculated by using the effective Hamiltonian in Figs. 4(a) and
4(b), respectively. The wave vector is confined in a cubic re-
gion kα ∈ [−2π/(10a), 2π/(10a)] for α = x, y, and z where
the middle band can be approximated to be a flatband and
unoccupied. The dynamical conductivity is also calculated by
using the effective Hamiltonian and shown at h̄/τ = 1 meV
and T = 50 K in Fig. 4(b). The structure of the spectrum
qualitatively agrees with that in Fig. 3(a). The spectrum has a
peak at ω = 170 meV (A′) and vanishes around 300 meV ().
In Fig. 4, we indicate two transition processes corresponding
to A′ and . Both transitions occur at the edge of the cubic
region and the excitation energy is minimum (maximum) at
A′ () in the edge.
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(b) calculated by using the effective model. The dashed line indicates
the band structure calculated by using k-linear effective Hamiltonian.
The Drude peak is eliminated in the calculation. Here, 
Eα is the
excitation energy in the transition α = A′ and B′.

The spectrum of dynamical conductivity is associated with
the number of states contributing to the electronic transition.
In Fig. 5, we schematically depict the wave vector at which the
electronic transition between the middle and lower bands oc-
curs for the photon energy h̄ω. The square region corresponds
to the slice of cubic region for the effective Hamiltonian. Since
the energy dispersion of the effective Hamiltonian is isotropic,
the corresponding wave vectors appear on a spherical shell
with the radius k = h̄ω/v, where v is the gradient of lower
band. The area of spherical shell, the number of electronic
states contributing to the dynamical conductivity, increases
with ω as far as h̄ω � 
EA′ , where 
EA′ is the excitation
energy in the transition A′. For 
EA′ < h̄ω, on the other hand,
the area decreases with ω because the diameter of sphere
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FIG. 5. The distribution of electronic states corresponding to the
relevant transition for the dynamical conductivity in the effective
model. Three panels schematically represent the case of different
photon energy h̄ω. The wave numbers (k1, k2, k3) are any permu-
tation of (kx, ky, kz ). Here pj is corresponding to those in Fig. 4(b).
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exceeds the side of the cubic region. Since the square region
simulates the wave vectors at which the middle band is unoc-
cupied, the peak structure A′ is dominated by the electronic
transition between the lower cone and the middle band.

The spectrum calculated by using the effective model
implies the absence of transition between the upper and lower
cones. The excitation energy between the two cones is larger
than that between the lower and middle bands, and it is also
within the high frequency region 
EB′ < h̄ω but the dynami-
cal conductivity vanishes for 
EB′ < h̄ω. Here, 
EB′ is the
maximum excitation energy between the lower and middle
bands. Thus, this result means the prohibition of transition
between the lower and upper bands. This prohibition is a
unique feature of the chiral fermion and essentially different
from the case of the Dirac fermion, where the intercone
excitation is relevant to the dynamical conductivity [26]. In the
next section, we confirm the prohibition for threefold chiral
fermions analytically.

Second, we focus on a peak with a flat top around ω �
650 meV. This flat-top peak is attributed to the parallel struc-
ture of bands and exhibits the effect of SOC to the nodal
band structure around the R point. We represent the electronic
states associated with the relevant transition to the dynamical
conductivity as a shaded line in Fig. 1(c). The occupied and
unoccupied states are distributed in the aligned lines of band
structure. In the aligned occupied and unoccupied bands, elec-
tronic states show the resonant transition at nearly the same
photon energy and produce a peak structure similar to the case
of the nodal-line semimetal [22]. Moreover, the spin split of
the upper band affects the structure of the peak. In practice, the
peak structure changes with the presence of SOC, as shown in
Fig. 3(b). In general, the spin split of the band leads to the split
of the peak in the spectrum of dynamical conductivity because
the spin split leads to two resonant states. However, the spin
split in the parallel bands does not split the peak structure.
Since the split gradually decreases to zero with the wave
number toward the R point, electronic states have different
excitation energies distributed in a range corresponding to
the SOC split and they produce a flat-top peak consisting
of a series of peaks with the energy continuously changing.
Therefore, the flat-top peak exhibits the SOC split in the band
of multifold chiral fermion at the R point.

Finally, in a higher-frequency region, we find the other
peaks at ω � 1.6 eV and 1.9 eV. The two peaks are attributed
to the enhancement of density of states at the local maximum
and minimum of energy dispersion at high symmetry points.
The peak at 1.6 eV is corresponding to the electronic transition
between the lowest conduction band and the second highest
valence band around −1 eV at the M point in Fig. 1(c).
Another peak emerges at 1.9 eV due to the excitation between
the highest valence band and the band slightly above 1.5 eV
at the X point. However, the electronic transition between
the lowest conduction band and the highest valence band is
absent at both the X and M points. This is because electronic
states at these points have the same eigenvalue for twofold
rotation operator R1/2 along the x, y, and z axes where twofold
screw rotation is equivalent to twofold rotation at these high-
symmetry momenta. The eigenvalue of the twofold rotation
operator is ±1 because of R1/2

2 = 1. The states with the
eigenvalue 1 (−1) consist of Wannier orbitals with even (odd)

angular momenta. Thus, electronic transition between the
states with the same eigenvalue is prohibited because photons
change the angular momentum by one.

IV. EFFECTIVE THEORY

In this section, we analyze the electronic transition prob-
ability around the � point in the low-frequency region by
using an effective model based on the crystal symmetry of
CoSi. We ignore the effect of SOC in this analysis because
the coupling does not have a relevant contribution to the
dynamical conductivity in this energy region, according to
the numerical calculation. In this analysis, we introduce a
symmetry under the operation combining inversion and com-
plex conjugation and show that the symmetry leads to the
prohibition of electronic transition between the upper and
lower bands of multifold chiral fermion around the � point
in CoSi.

At the � point, three electronic states are degenerate and
the degenerated states are bases of an irreducible represen-
tation T because CoSi is classified into P213 (SG 198). The
crystal structure has three axes of twofold screw symmetry—
(100), (010), and (001)—and four axes of threefold rotation
symmetry—(111), (11̄1̄), (1̄1̄1), and (1̄11̄). The index of
the representation is χ = 3 for identity operation, χ = −1
for twofold screw rotation, and χ = 0 for threefold rotation.
In what follows, we consider wave functions consisting of
Wannier orbitals in the representation T .

The first-principles calculation reveals that the d orbitals in
Co atoms constitute a significant part of the electronic states
around the Fermi level. In the unit cell, there are four Co atoms
at d j , where the atomic positions are given by

d (1) = (xCo + 1/4, xCo − 1/2, xCo),

d (2) = (xCo − 1/4,−xCo,−xCo),
(2)

d (3) = (−xCo − 1/4,−xCo + 1/2,−1/2 + xCo),

d (1) = (−xCo + 1/4, xCo, 1/2 − xCo).

Here we shift the origin of coordinate for the clear
explanation about the symmetry in comparison with
Table I. The wave function can be a superposition of Wan-
nier orbitals at the four positions and it must fulfill the
crystal symmetries of CoSi; twofold screw rotation and
threefold rotation. Twofold screw rotation about (100) di-
rection exchanges these atoms as (d (1), d (2), d (3), d (4) ) →
(d (3), d (4), d (1), d (2) ). Threefold rotation about (111) leads
to (d (1), d (2), d (3), d (4) ) → (d (1), d (3), d (4), d (2) ) with the ro-
tation angle θ = 2π/3. Then we can adopt three degenerated
states at the � point as

�1(r) = 1
2

{
ψ (111)

m (r − d (1) ) − ψ (11̄1̄)
m (r − d (2) )

+ ψ (1̄1̄1)
m (r − d (3) ) − ψ (1̄11̄)

m (r − d (4) )
}
,

�2(r) = 1
2

{
ψ (111)

m (r − d (1) ) + ψ (11̄1̄)
m (r − d (2) )

− ψ (1̄1̄1)
m (r − d (3) ) − ψ (1̄11̄)

m (r − d (4) )
}
,

�3(r) = 1
2

{
ψ (111)

m (r − d (1) ) − ψ (11̄1̄)
m (r − d (2) )

− ψ (1̄1̄1)
m (r − d (3) ) + ψ (1̄11̄)

m (r − d (4) )
}
,

(3)
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where ψν
m(r) is the d-orbital function with the quantum num-

ber of m and the polar axis ν, and it can be chosen as a
real function due to time-reversal symmetry. In this basis, the
representations of twofold and threefold rotations, Rν

1/2 and
Rν

n/3, respectively, are given by

R(100)
1/2 =

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠, (4)

R(111)
1/3 = ei(2π/3)m

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠ = {

R(111)
2/3

}−1
. (5)

The representations for the other operations can be obtained
as a matrix product of R(100)

1/2 and R(111)
1/3 .

We discuss an effective Hamiltonian describing electronic
states around the � point by using the representations. Three
functions � j are degenerated at the � point but they split into
three at nonzero wave numbers. In the vicinity of the � point,
electronic states can be described by the k-linear Hamiltonian,

Heff = v̂xkx + v̂yky + v̂zkz, (6)

where v̂μ is a 3 × 3 velocity matrix on the bases of � j and
we set the node to be the origin of energy. When we consider
electronic states in the kμ axis, the velocity matrix v̂μ repre-
sents the Hamiltonian, H (1)

eff = v̂μkμ, and thus it is invariant
under Rμ

1/2. Therefore, for instance, v̂x can be represented by

v̂x = v0x

⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠ + v1x

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠

+ v2x

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ + v3x

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠

+ v4x

⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠. (7)

In the pristine CoSi, time-reversal symmetry is preserved
besides crystal symmetries. Since all bases are chosen to be
unchanged under time-reversal operation, the time-reversal
operator for the Hamiltonian is T H (k)T −1 = H∗(−k). Thus
time-reversal symmetry requires v jx to be nonzero only for
j = 2, i.e., v jx must be real. Moreover, the velocity operators
in the other two directions are obtained by threefold rotation
in Eq. (5). Therefore, the effective Hamiltonian is written by

Heff = iv

⎛
⎝ 0 −ky kx

ky 0 −kz

−kx kz 0

⎞
⎠. (8)

Here the Hamiltonian is obtained by setting θ = π/2 in the
general k-linear Hamiltonian for threefold degenerate fermion
[9] and equivalent to a model proposed in Ref. [38]. By using
the data of the first-principles band, the velocity coefficient is
estimated to be v ∼ 6.7 × 107 cm/s around the � point. The

vector component of Bloch functions are given by

|ψ0〉 = 1

k

⎛
⎝kz

kx

ky

⎞
⎠, |ψ±〉 = 1

k
√

2
(
k2

x + k2
y

)
⎛
⎝ k2

x + k2
y

±ikky − kxkz

∓ikkx − kykz

⎞
⎠,

(9)

with energy E = 0 and ±vk, respectively. The velocity
operators in the x, y, and z directions map ψ− onto ψ0

and ψ− as

〈ψ0|
⎛
⎝v̂x

v̂y

v̂x

⎞
⎠|ψ−〉 = v

k
√

2
(
k2

x + k2
y

)
⎛
⎝ikky + kxkz

ikkx − kykz

k2
x + k2

y ,

⎞
⎠ (10)

〈ψ−|
⎛
⎝v̂x

v̂y

v̂z

⎞
⎠|ψ−〉 = v

k

⎛
⎝ kx

−ky

−kz

⎞
⎠. (11)

Any velocity operator has zero as matrix elements between
ψ− and ψ+. Therefore, the transition between the lower
band and the upper band is prohibited, and thus it has no
contribution to the dynamical conductivity and leads to the
characteristic structure in Figs. 3(a) and 4(b).

We analyze the prohibition from the point of view of
symmetry by using the low-energy model for multifold chiral
fermion in Eq. (8). The effective Hamiltonian has skew
symmetry, which is an antisymmetry and represented by
{Heff (k)}∗ = −Heff (k). Thus, electronic states in the upper
and lower bands are transformed to each other |ψ+(k)〉 =
|ψ−(k)〉∗, and those in the middle and flatband is invariant
|ψ0(k)〉 = |ψ0(k)〉∗. The skew symmetry leads to the absence
of velocity matrix component between the upper and lower
bands 〈ψ+(k)|v̂μ|ψ−(k)〉 = −{〈ψ−(k)|v̂μ|ψ+(k)〉}∗ = 0
because the velocity is a Hermite operator. In the realistic
material, this symmetry is not preserved globally because of
the nonlinear term with the wave vector in the Hamiltonian.
Therefore, the electronic transition between the upper and
lower bands increases with increasing in |k|.

The prohibition of electronic transition is a characteristic
feature of the threefold chiral fermion in comparison with
Weyl and Dirac semimetals, the other systems with the lin-
ear dispersion. The skew symmetry leads to the correlation
between electronic states in the upper and lower cones and
restricts the electronic transition between them. In Dirac and
Weyl semimetals, on the other hand, the intercone transition
is relevant in the low-frequency electronic excitation. The
Dirac and Weyl Hamiltonian breaks the skew symmetry and
provides no restriction to the excitation process.

V. CONCLUSION

We have investigated the dynamical conductivity of CoSi,
a topological semimetal holding multifold chiral fermions,
by using first-principles band calculation and linear response
theory. The spectrum of dynamical conductivity σ1(ω) ex-
hibits the dip and peak structures at some photon frequency
ω. We investigate the relation between these structures and
the electronic structure. The peak structures in 1 eV < h̄ω

are corresponding to the transition between the local maxi-
mum and minimum of the occupied and unoccupied bands,
respectively. The peak structure at h̄ω = 650 meV, on the
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other hand, is attributed to the electronic transition between
parallel bands and shows the flat-top structure due to the
spin-split.

In the lower photon energy region, the spectrum reflects
the property of multifold chiral fermions. The dynamical
conductivity linearly increases with the photon energy and
turns down at h̄ω = 170 meV. This behavior is attributed to
not only the band structure but also the chirality of multifold
fermion at the � point. We show the prohibition of transition
between the upper and lower bands of threefold chiral fermion
and that the prohibition leads to the decrease in the dynamical

conductivity. Then the partially filled linear dispersion at the
R point contributes to the increase again at h̄ω = 200 meV.
The two multifold chiral fermionic states at the � and R
points coproduce a dip structure in the spectrum of dynamical
conductivity of CoSi.
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