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Dirac fermion quantum Hall antidot in graphene
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The ability to localize and manipulate individual quasiparticles in mesoscopic structures is critical in
experimental studies of quantum mechanics and thermodynamics, and in potential quantum information devices,
e.g., for topological schemes of quantum computation. In strong magnetic field, the quantum Hall edge modes
can be confined around the circumference of a small antidot, forming discrete energy levels that have a unique
ability to localize fractionally charged quasiparticles. Here, we demonstrate a Dirac fermion quantum Hall
antidot in a graphene, where charge-transport characteristics can be adjusted through the coupling strength
between the contacts and the antidot, from Coulomb blockade dominated tunneling under weak coupling to
the effectively noninteracting resonant tunneling under strong coupling. Both regimes are characterized by
single-flux and -charge oscillations in conductance persisting up to temperatures over 2 orders of magnitude
higher than previous reports in other material systems. Such graphene quantum Hall antidots may serve as a
promising platform for building and studying quantum circuits for quantum simulation and computation.
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I. INTRODUCTION

Localization and manipulation of individual quasiparticles
play an important role in the studies of quantum mechanics
and quantum thermodynamics, and in the applications of
quantum information devices. A wide variety of mesoscopic
systems, such as quantum dots [1–4], nitrogen-vacancy cen-
ters [5,6], superconducting Cooper pair boxes [7–10], super-
conducting quantum interference devices [11], etc., have been
extensively studied for quantum manipulation of charges,
spins, and magnetic fluxes. Quantum Hall (QH) antidots, on
the other hand, offer a promising approach for localizing
quantum Hall quasiparticles. Due to quantum confinement,
the chiral one-dimensional (1D) edge mode has its energy
quantized into discrete levels, mimicking a large, tunable “ar-
tificial atom” which hosts QH quasiparticles. Compared to the
other approaches, QH antidots are capable of localizing even
exotic quasiparticles with fractional charges and nontrivial
exchange statistics. It therefore holds promise for topological
schemes of quantum computation [12,13]. Experimentally,
pioneering studies of QH antidots have been carried out
using GaAs two-dimensional electron gas (2DEG), where
localization of integer [14,15] and fractionally charged [16]
quasiparticles have been demonstrated. The potential of ap-
plying such QH antidots for quantum information applications
has also been discussed [17]. On the other hand, due to the
small energy-scale associated with Landau level (LL) spacing
and energy quantization, the signatures of the localized QH
edge states, namely charge and magnetic flux oscillations
in conductance across the antidot, are fragile and require
very low electron temperature (typically sub-100 mK) [18]
to observe. A 2DEG system which can provide more robust
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localization of QH quasiparticles and stronger coherence is
therefore desirable for realizing more complex devices and
functionalities.

The development of 2D crystal graphene in the recent
decade raised a new opportunity for studying localized
QH states in the antidot setup. The Dirac nature of the
2DEG in graphene [19] differs fundamentally from that in
GaAs, due to its linear energy dispersion, chirality, and
nontrivial Berry’s phase. As a result, graphene can achieve
high charge-carrier mobilities (>105 cm2/Vs) which persist
even with densities down to ∼109 cm−2 without localiza-
tion. It has a large and energy-independent Fermi velocity
(vF ≈ 106m/s), which leads to large LL spacing (�εLL =√

2eh̄v2
F B = 35

√
B[T] meV) [20], as well as large quanti-

zation energy spacing under confinement. Both are critical
factors for realizing robust localization of QH states. Tech-
nically, being a single atomic layer, the size of graphene
devices may be pushed down to nanometer scale with sharp
definition [21]. And, Ohmic electrical contacts with low
contact resistance have been routinely achieved both for top
contacts [22] and side contacts [23]. Despite all the promising
characteristics, earlier works on graphene antidot devices
have been largely focused on band-structure engineering [24],
semiclassical charge transport in the antidot arrays [25], and
on gate-defined quantum dots [26,27]. Charge-transport stud-
ies on well-structured graphene-based QH antidots, on the
other hand, have not been reported to our knowledge. In this
work, we study Dirac electron QH antidots in graphene, and
demonstrate robust localization and quantization of QH edge
mode in the lowest-LL (LLL), which persist up to 10–100
times higher temperature compared to previous reports.

II. RESULTS AND DISCUSSION

The samples used in this work, illustrated in Fig. 1, are
point-contact-coupled antidots embedded in hexagonal boron
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FIG. 1. Graphene QH antidot. (a) Schematics of QH antidot. The red arrows indicate the QH edge states. The band structure illustrates
the bulk LLs and the quantized edge states. (b) Structure of a point-contact coupled QH antidot on graphene/hBN heterostructure. Inset: SEM
image of a 310-nm-diameter antidot sample. The yellow dotted lines highlight the boundaries of the antidot and the side contacts. The scale
bar is 200 nm. The bulk channel edges are outside the view. (c) Two-terminal resistance as a function of filling factor, measured in various
fixed magnetic fields by ramping the back-gate voltage.

nitride (hBN)-encapsulated graphene field-effect transistors
(see Supplemental Material [28] and references [23] within).
The two-terminal conductance consists of a background from
the bulk [29,30] and the tunneling conductance through the
QH antidot. Under well-developed QH effect, depending on
the coupling strength between the point contacts and the
antidot, the QH plateau resistances can vary between h

νe2 for
decoupled antidot, and h

2νe2 in the situation when antidot is
split by the contacts (see Supplemental Material [28]). In
our experiments, the coupling between the point contacts and
the antidot is carefully adjusted to be in between these two
limits. The overall geometry of our devices is designed so

that: (1) the diameter of the antidot Ddot � lB =
√

h̄
eB , where

lB is the magnetic length ∼10 nm for the few-tesla magnetic
field applied here; (2) Ddot is sufficiently small for energy
quantization; (3) the point contacts probing the antidot are
sufficiently sharp to minimize invasive effects and to optimize
phase-coherent charge transport. Satisfying these criteria, we
designed the diameter to be Ddot ∼ 200 − 310 nm and the
width of the point contacts to be ∼15 nm. The dimensions
of the devices are directly confirmed by scanning electron
microscopy (SEM) imaging. Figure 1(c) shows QH resistance
as a function of filling factor ν = nh

eB in various magnetic
fields (through ramping of the gate voltage). We note that
in measuring these curves the gate-voltage ramping speed is
relatively large and the fine oscillatory features (as discussed
below) are washed out. At anomalous integer fillings ν =
4(n + 1

2 ), the resistance values are observed to be between h
νe2

and h
2νe2 due to the conduction through the antidot.

In quantizing magnetic fields, periodic conductance oscil-
lations both in gate voltage and in magnetic field become
prevalent at filling factors between ν = 1 and ν = 2, with
typical amplitude of ∼0.1G0 (G0 = e2

h is the conductance
quantum). Depending on the coupling distance between the
point contacts and the antidot, two types of periodicity are
observed which we separately discuss below. In the case
of relatively weak coupling, as shown in Fig. 1(b) for a
310-nm-diameter antidot sample with a few tens of nanome-

ters contact-antidot separation, the conductance oscillations
under ramping magnetic field show an approximately constant
period of 21 mT. In Fig. 2(b), we plot the oscillatory con-
ductance as a function of magnetic flux through the antidot,
normalized over single-electron magnetic flux quantum: �

�0
=

eBπD2
QH

4h , where DQH is the diameter of the QH edge current en-
circling the antidot, and �0 = h

e . With DQH = 350 nm, which
is slightly larger than the physical diameter of the antidot
Ddot = 310 nm (by the amount consistent roughly with the
notion that the edge states are removed from the physical
edge by the distance of an order of the magnetic length
lB), the observed conductance oscillations match closely with
a flux period of 0.5 ± 0.1�0. We note that the observed
1
2�0 flux oscillations are reproducible over repeated thermal
cycles and over different samples with similar weak coupling.
This suggests their origin to be intrinsic to the antidots, and
independent of the unintentional defects.

Corresponding periodic conductance oscillations are also
observed as the gate voltage is swept at fixed magnetic
field. Figure 2(d) shows the conductance oscillations in the
310-nm antidot as a function of gate voltage and charge-

number change over the area of the antidot: �Q
e = c�VGπD2

dot
4e .

Here c is the geometrical capacitance per area. On average,
each conductance oscillation corresponds to addition/removal
of one electron into the edge state on the antidot. Compared
to the flux oscillations, the charge oscillations appear to be
somewhat less regular, indicating the presence of random
fluctuations in the coupling capacitance between the back gate
and the antidot. Direct correspondence between the charge
and flux oscillations is evidenced by Fig. 2(e), where the
conductance oscillations form tilted stripes on the “magnetic-
field–gate voltage” plane. Along the charge oscillation axis,
however, there are significant random fluctuations which man-
ifest the charge noise.

Next, we discuss the antidots with stronger coupling to
the point contacts, where a different type of magnetic oscil-
lation periodicity is observed, as illustrated by Fig. 3(a) for
a 200-nm-diameter antidot with point contacts touching its
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FIG. 2. Coulomb blockade in relatively weakly coupled QH antidot. Conductance oscillations are observed with ramping magnetic field
(a) and gate voltage (b). (c) A zoom-in of the conductance oscillations shows a magnetic flux period of �0/2, calculated using a QH edge-state
diameter of DQH = 350 nm. (d) A zoom-in of the conductance oscillations shows approximate one oscillation per charge, with charge number
calculated using the geometric capacitance over the physical area of the antidot. (e) Conductance oscillations versus both gate voltage and
magnetic field. (f) Charge-stability diagram showing Coulomb-blockade characteristics. The dotted lines are guides to the eyes.

circumference (SEM image shown in Supplemental Material
[28]). Here, with increasing magnetic field, the conductance
oscillations evolve from single-peaks [Fig. 3(a), inset] to “M”-
shaped double peaks [Fig. 3(a), main panel]. With an esti-
mated DQH ∼ 225 nm (which again differs from the physical
diameter by a size of the order of magnetic length), both the
single-peak oscillations in low field and the M-shaped pairs in
stronger field match with a flux period of φ0. The flux sepa-
ration of the two conductance peaks within an M-shaped pair
(�BZ ) increases with increasing magnetic field, as discussed
in detail later. Corresponding to the magnetic oscillations,
the gate voltage dependent conductance oscillations in this
200-nm-diameter antidot also show M-shaped pairs, as plotted
in Fig. 3(b). The charge period in in this sample is within
∼20% of what is calculated using the geometric size of the

antidot: �Q
e = c�VGπD2

dot
4e . The discrepancy may be attributed

to the errors in the estimations of the antidot size and effective
gate capacitance at the antidot.

The observation of �0 period (which obviously also in-
cludes the 1

2�0 period) of the magnetic flux oscillations
strongly suggests Aharonov-Bohm (AB) effect. We note that
both charge and flux oscillations are maximized when the
Fermi energy is between the zeroth LL and the first LL, and
that the oscillations disappear during the plateau-to-plateau
transition when the Fermi energy coincides with one of the
LLs. This suggests that the oscillations are associated with
the QH edge states encircling the antidot. Indeed, clear AB
oscillations can be present only if the circulating current has a
well-defined diameter. In a QH system, this happens when the

Fermi energy is between the LL, and, with the bulk gapped,
only the quasi-1D edge modes conduct.

In a single-particle picture (at first, neglecting Zeeman
effect), the energy quantization of the finite-size QH edge
state is obtained from the single-particle Dirac Hamiltonian
H0 = vF �σ · ( �p − e �A) + U with boundary conditions imposed
by the antidot geometry (see Supplemental Material [28]).
Here �A = rBϕ̂ is the vector potential in symmetric gauge. The
potential energy U is constant in the single-particle picture.
Considering the relevant length scales: Ddot � lB � a (where
a ∼ 0.14 nm is the lattice constant), the edge state can be
approximated as encircling the antidot edge with diameter
DQH ≈ Ddot. The Dirac Hamiltonian results in magnetic-
field-dependent energy levels ε j = 2 jh̄v

DQH
+ ev�

πDQH
, with con-

stant level spacing (neglecting disorder) δε = 2h̄v/DQH. Here
v = − 1

eB
dV
dr

<∼ vF (V being the confinement potential at the
edge) is the velocity of the QH edge state. We note that this
relation gives the proper account of the AB effect, as the
periodicity of the antidot energy spectrum in magnetic flux
has a period equal to the magnetic flux quantum: ε j (�) =
ε j−1(� + �0). And, in graphene, the sharp definition of the
antidot facilitates large energy-level spacing δε.

Electron-electron interaction leads to Coulomb-blockade-
type effects. In the weak coupling limit (“closed” antidot),
the electron interaction energy Uee = e2

2πεε0L ln( L
lB

), where L =
πDdot is the circumference of the edge, is constant for the
relevant edge states (see Supplemental Material [28]). For
the QH antidots studied in this work, the interaction energy
is Uee = 2.3 − 3.2 meV, which is much smaller than the
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FIG. 3. AB oscillations in strongly coupled QH antidot. (a) Conductance oscillations showing �0 flux period and Zeeman splitting. Inset:
In lower magnetic fields, the conductance oscillation evolves from merged peaks with �0 period to M-shaped spin-resolved oscillations, with
increasing magnetic field. (b) Conductance oscillations with ramping gate voltage. The top x axis shows the change in charge number calculated
using the geometrical capacitance over the physical area of the antidot. The red solid curve shows the fitting to a relatively symmetric M-shaped
oscillation using thermal excitation model. (c) Magnetic-field dependences of the AB oscillation period (�B) and normalized Zeeman splitting
(�BZ/�B). The dotted lines are guides to the eyes. (d) Differential conductance versus bias voltage and gate voltage. Dotted lines are guides
to the eyes. From the bias- and gate dependence of the differential conductance, the energy-level spacing is a summation of the bias voltages
at the two adjacent diamond tips which correspond to the two spin states.

LL spacing but significantly larger than the Zeeman energy
within the range of magnetic fields applied. In the presence
of metallic contacts, Uee should be screened and somewhat
reduced.

Following the discussion above, the antidot can be de-
scribed by a many-body Hamiltonian (see Supplemental
Material [28] and references [31–36] within):

H = Uee

2
(n + nφ − nG)2 +

∑
j,σ

ε j,σ n j,σ . (1)

Here n = ∑
j,σ n j,σ is the total charge number associated with

the edge states, n j,σ is the occupation number of the state
with orbital index j, spin index σ = ±1, and the single-
particle energy ε j,σ = ε j + gμBBσ/2, where μB is the Bohr
magneton, B is the magnetic field, and the g factor for
electrons in graphene is close to its free-electron value [37]
g ≈ 2. Also in the Hamiltonian, nG = cVG and nφ = νS�

�0
,

where νS is the number of occupied LLs including spin
degeneracy, which gives the number of the propagating edge
modes. Periodicity of the linear antidot conductance, or other
equilibrium properties of the antidot, in the back-gate voltage
VG or magnetic flux �, is determined by the behavior of the

occupation factors n j,σ and the Hamiltonian H as functions of
VG and � under the conditions of the fixed chemical potential
of the external contacts to the antidot. Increase of the gate
voltage such that nG → nG + 1 leads to the corresponding
increase of the total occupation factor, n → n + 1, leaving
the Hamiltonian invariant, H (nG) = H (nG + 1). Similarly,
because the spin-degenerate single-particle spectrum of the
antidot is periodic in flux with the period �0, increase of
the flux such that nφ → nφ + νS leads to the decrease of the
total occupation factor, n → n − νS , leaving the Hamiltonian
unchanged, H (nφ ) = H (nφ + νS ). This gives rise to the ob-
served single-charge periodicity in the gate voltage, and en-
sures �0 flux periodicity in all regimes in agreement with the
general Byers-Yang theorem [38]. With νS QH edge modes,
and with degeneracy broken in the Coulomb interaction-
dominated regime, one expects νS conductance peaks per
�0. This is evident from Hamiltonian (1) that the single-
charge period �nφ = 1 as a function of magnetic flux gives
rise to the finer flux oscillation period �0

νS
. Such fractional

AB oscillations have been observed in GaAs heterostructures
including antidots [14,15] and the related structures, Fabry-
Perot interferometers [33,39,40] in the integer quantum Hall
regime.
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For a relatively weakly coupled (closed) antidot ([e.g.,
the 310-nm-diameter antidot sample in Fig. 1(b)] and with
the Fermi energy above the LLL (νS = 2), equally spaced
magnetic oscillations are observed with �0/2 period (con-
sistent with the larger period �0) independent of magnetic
field. This suggests that the antidot tunneling is dominated
by electron-electron interaction which results in a constant
energy gap for the addition of individual electrons to the
antidot that is independent, e.g., of electron spin. To find
this addition energy, we measured the bias-voltage depen-
dence of the device conductance. In Fig. 2(f), we plot the
background-normalized differential conductance (dI/dV ) as
a function of gate voltage and bias voltage (charge-stability
diagram), which resembles the Coulomb blockade diamonds,
revealing the charge addition energy to be ∼1.5 meV for the
310-nm-diameter antidot sample. We note that the quality of
the charge-stability diagram is limited by the charge noise
in the sample and the electrical noise in our measurement
setup. Well-defined periodicity of the conductance oscillations
in this antidot implies that the addition energy is given by
the Coulomb repulsion energy Uee, with the single-particle
energy-level spacing ∼δε either too small to be noticeable
in comparison to Uee, or washed out by electron-electron
relaxation. Compared to a simple closed-antidot estimate of
∼2.3 meV, the observed Coulomb repulsion energy is some-
what smaller, which can be qualitatively explained by finite
screening effect from the contacts.

For a strongly coupled (“open”) antidot, the electron-
electron interaction is largely screened by the electrodes.
Neglecting electron correlations, the single-particle picture
of energy-level quantization and Zeeman splitting predicts
AB oscillation with a primary oscillation period of �0 and
a B-dependent Zeeman splitting of the conductance peaks in
strong magnetic fields [41]. This is indeed consistent with our
observation where single-flux oscillations in weak magnetic
field split and resolve into M-shaped pairs in strong mag-
netic field. In Fig. 3(c), the conductance oscillation period
in magnetic field is plotted as a function of magnetic field,
both for the M-shaped pairs (�B) and for the magnetic-field
splitting within each pair (�BZ ). �B is roughly magnetic-
field independent with its corresponding flux period ∼�0. The
magnetic-field dependence of �BZ can be fit to a straight
line intersecting the origin. Extrapolating the linear depen-

dence, �BZ (B0)
πD2

QH

4 = �0, we get B0 ∼ 18.5 T at which
Zeeman splitting becomes equal to the quantization energy
spacing δε = 2h̄v/DQH. Based on this comparison, we can
estimate δε = gμBB0 ∼ 2.1 meV. This value is confirmed
by measuring the bias and gate dependence of the differential
conductance [Fig. 3(d)] where the level-spacing energy is a
sum of the heights of the two adjacent “diamonds” (from
Zeeman splitting) in the plot, which gives ∼2–2.5 meV. From
the level spacing, we can estimate the QH edge-state velocity
v ∼ 3.4 × 105 m/s , about 1/3 of the Fermi velocity of free
Dirac electrons in graphene.

In the Coulomb blockade dominated regime, the conduc-
tance oscillations are suppressed at elevated temperatures
through thermal excitation/smearing [Fig. 4(a)]. The corre-
sponding antidot conductance can be calculated numerically
through the linear response of the Coulomb blockade rate
equations [32] to the external bias (see Supplemental Material

[28]). Figure 4(b) shows the temperature dependence of the
averaged conductance oscillation amplitude (defined as the
difference in conductance at successive minima and maxima),
with the best fit calculated numerically with addition energy
Uee and a normalization prefactor as fitting parameters. The
best fit of the addition energy, Uee = 1.3 meV, is in good
agreement with the value obtained experimentally from the
height of the Coulomb diamonds for the 310-nm antidot sam-
ple [Fig. 2(f)]. As is characteristic of single-electron devices,
the linear conductance oscillations are nearly completely sup-
pressed as the temperature exceeds half of the addition energy.

We note that in the weakly coupled QH antidot discussed
above, the Coulomb oscillations persist up to ∼4 K, which
is 1–2 orders of magnitude higher than the previous reports
for GaAs-based devices with comparable antidot size. The
robustness of single charging effects can be further enhanced
by increasing the electron-electron interaction energy Uee.
To demonstrate this, we study a QH antidot sample with
∼250-nm effective diameter made on suspended graphene,
where Uee is enhanced through a reduction in dielectric
screening. In the suspended graphene sample, carrier mo-
bility can be sequentially improved through repeated cur-
rent annealing (controlled Joule heating which evaporates
the contaminants). Rather than coupling to the antidot us-
ing protruding point contacts (which induces unwanted high
current density at the sharp tips, causing damage during
the annealing), straight source and drain electrodes are used
which are separated from the antidot by ∼200 nm [Fig. 4(d),
inset]. Coupling to the antidot is possible only in low magnetic
fields, through extended states from the electrodes. With high
mobility >105 cm2/Vs, QH plateaus become well developed
in magnetic field as low as 1 T. Figure 4(d) shows the con-
ductance oscillations in gate voltage at B = 1 T. The antidot
is weakly coupled as is evident from the nearly unperturbed
QH plateau resistance background [Fig. 4(d)]. A thorough
current annealing narrows the conductance peaks, as shown
by Fig. 4(e). In absence of the hBN encapsulation, the effec-
tive dielectric constant and screening becomes significantly
reduced, resulting in a much larger Coulomb gap. In Fig. 4(f),
the charge-stability diagram measures a Coulomb gap of
∼8 meV. The large Coulomb gap allows single-charge os-
cillations to persist for temperatures over 10 K, as shown in
Fig. 4(e). In Fig. 4(f), we also observe evidence of energy
quantization in the excited states, indicated by the bright lines
outside the Coulomb diamonds. The energy level spacing δε

is found to be ∼5 meV, and is spin degenerate due to the small
magnetic field. Formation of such quantized energy levels
suggests robust coherence in these high-mobility samples.

For samples with strong coupling to the antidot, where
Coulomb blockade is largely screened, both thermal ex-
citation and disorder can contribute to the suppression of
conductance oscillations (see Supplemental Material [28]).
Inelastic charge-carrier scattering, including electron-electron
and electron-phonon scattering, have a characteristic energy
scale of ∼kBT which is much smaller than the energy-level
spacing δε ≈ 2 meV for the 200-nm antidot. Consequently,
decoherence is not expected to play a critical role in the tem-
perature dependence of conductance oscillations. In the strong
tunneling limit, the amplitude of the conductance oscillations
can be calculated using a standard double-barrier transmission
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FIG. 4. Thermal suppression of conductance oscillations in the QH antidots. (a) Gate-dependent conductance oscillation at various
temperatures. The curves, taken at (from top to bottom) T = 0.4, 1.8, 2.5, 3.1, 3.8, 4.3, 4.8, and 5.5 K, are vertically shifted for clarity.
The temperature dependence of the averaged conductance oscillation amplitude for the weakly coupled 310-nm antidot (b) and the strongly
coupled 200-nm antidot (c) are fitted with thermal excitation models. (d) Conductance oscillations in a suspended graphene QH antidot at
B = 1 T. The dotted line labels QH plateau resistance at n = 2. Inset: SEM image of a suspended graphene with three QH antidot devices.
The scale bar is 1 μm. (e) Temperature dependence of conductance oscillations. The dotted and the solid black curves, both measured at 450
mK, correspond to before and after thorough current annealing, respectively. The red, blue, and purples curves are taken at 2, 5, and 10 K,
respectively, and are shifted downward for clarity. (f) Charge-stability plot for the suspended graphene QH antidot, taken in 1-T magnetic field
at 450 mK. The dotted lines are guides to the eyes.

model, characterized by the transmission probabilities at the
two leads. In the LLL at fixed magnetic field, the two modes
for each spin contribute in parallel with a relative shift given
by the Zeeman energy. Increasing temperature in the two
leads then effectively smears the energy levels and causes
suppression of the amplitude of conductance oscillations (see
Supplemental Material [28]). In Fig. 3(b) we fit the gate
dependence of an M-shaped oscillation pair at B = 8.5 T,
using 0.85 and 0.51 as the transmission probabilities, and a
Zeeman splitting of 0.82 meV which is in reasonable agree-
ment with gμBB = 0.98 meV. In Fig. 4(c), the temperature de-
pendence of the averaged conductance oscillation amplitude
at B = 10 T is calculated using the thermal excitation model
and compared with the experimental data, with transmission
probabilities 0.72 and 0.41. The deviation of the simulation
from the conductance oscillation amplitude data at low tem-
peratures (T < 1 K) may be an indication of the charge noise
in the vicinity of the antidot, which provides an additional
mechanism of suppression of the conductance oscillations that
becomes noticeable once the thermal broadening is weak.

In all our discussions above, we have not considered the in-
terchannel scattering which can happen on the etching-defined
physical edges of the antidots. It has been shown that such
interchannel scattering can happen between the same-spin
edge modes and causes equilibration of the modes [37]. In our

measurements which focus on the lowest Landau level, the
two edge channels have opposite spins, hence edge-channel
equilibration is not expected.

III. CONCLUSION

We demonstrate an experimental study on Dirac elec-
tron quantum Hall antidots in graphene. Depending on the
coupling strength to the antidot, both Coulomb blockade
dominated tunneling and effectively noninteracting resonant
tunneling are achieved. Both regimes are characterized by
single-flux and single-charge oscillations in conductance
which, due to the Dirac nature of the electron gas in graphene
and its capability of defining the antidot structure with great
sharpness, persist up to temperatures over 2 orders of magni-
tude higher than that reported previously on conventional 2D
electron gas.

The main advantages of using graphene in QH antidots
come from its large edge-state velocity v (as a result of
the Dirac spectrum), which results in the large energy-level
spacing, and large Landau-level separation which permits
scaling up of the characteristic antidot energies. Another
technical convenience of graphene in QH antidot samples
comes from the observation that the diameter of the QH
edge state encircling the antidot is very close to the physical
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size. All this opens the possibility of precise design of the
antidots and their coupling into multiple antidot structures for
possible applications in quantum information. We note that
while in this work we mainly focused on direct metallic point
contacts, coupling to the antidot can also be achieved through
the more conventional QH edge-to-edge tunneling (see Sup-
plemental Material [28]). With further work to optimize the
device structure and mobility, the graphene QH antidot sys-
tem demonstrated here may serve as a promising platform
for studying localized QH states, and for building antidot-
based quantum circuits for quantum simulation and compu-
tation. Besides graphene, the chiral edge-state-based antidot

structure can also be applied in many other 2D systems (e.g.,
2D superlattice, layered topological material, etc.), providing
an effective technique for studying chiral quasiparticles.
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