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Mean-field thermodynamic quantum time-space crystal: Spontaneous breaking
of time-translation symmetry in a macroscopic fermion system
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A model demonstrating the existence of a thermodynamically stable quantum time-space crystal has been
proposed and studied. This state is characterized by an order parameter periodic in both real and imaginary
times. The average of the order parameter over phases of the oscillations vanishes but correlation functions of
two or more order parameters show nondecaying oscillations. An alternative interpretation of the results is based
on the concept of an operator order parameter introduced for this purpose. The model studied here has been
suggested previously, in particular, for describing the pseudogap state in superconducting cuprates. Although
many properties of the time-space crystal considered here are close to those of a well known DDW state, static
magnetic moments oscillating at (π, π ) do not exist. Instead, δ peaks at finite energies are predicted in the
cross-section of inelastic spin-polarized neutron scattering.
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I. INTRODUCTION

A. What are thermodynamic quantum time crystals?

Crystalline structures play a very important role in modern
condensed matter physics and material science. These can
be periodic arrays of atoms in metals and insulators but
very often they arise as a result of a sharp phase transition.
Antiferromagnets, charge density waves, and many other
states of matter can serve as well known examples of space
crystals. If a space crystal appears at a certain critical tem-
perature or a critical parameter characterizing the system one
can expect sharp changes of physical quantities at the critical
point. The standard way of describing a phase transition is
based on the concept of an order parameter introduced by
Landau [1]. This quantity equals zero in the disordered phase
but is finite in the ordered one.

At the same time, one should be a little bit more careful
with this definition because the formal average of the order
parameter over thermodynamic states can strictly speaking
be equal to zero due to the degeneracy of the free energy
functional at the minimum. Indeed, the average magnetic
moment of an antiferromagnet or the charge of a charge
density wave (CDW) equals zero because the energies of the
states of the structures shifted by, e.g., half a period are equal
to each other and the average vanishes. We write this property
in the form ∫

ρ(r − r0)dr0 = 0, (1.1)

where, for example, ρ(r) = ρ0 cos(Qr) can be the order
parameter of a CDW. The integration is performed over the
period along a primitive vector and Eq. (1.1) should be
valid for any direction. Of course, depending on the system
under consideration there can be additional types of averaging

over the degeneracies of the ground state. The energy of a
superconductor does not depend on phase and averaging over
the phase gives zero, the direction of the antiferromagnetic
moment can be arbitrary and the average over the directions
equals zero. One can easily continue the list of examples but,
to simplify the discussion, we will have in mind the averaging
as it is written in Eq. (1.1).

One may ask whether it makes a sense or not to average
over the degeneracies of the ground state. Actually, this de-
pends on the type of the experiment designed to probe the ma-
terial. In many situations, one considers systems with contacts
selecting one of the states. However, probing a system with
the help of, e.g., x-ray scattering one detects a contribution
coming from many parts of a sample, and the order parameter
can have different phases in different parts of it. Then, one
should average over the position of CDW.

In order to avoid the ambiguity of the definition of the
order parameter one speaks usually of a long-range order. For
example, CDW is characterized by a correlation function

K (r) =
∫

ρ(r0)ρ(r − r0)dV0, (1.2)

where the integration is performed over the elementary cell.
The long-range order is determined by a nondecaying asymp-
totic behavior of the correlation function K (r) at infinity

lim
|r|→∞

K (r) ∝ cos(Qr), (1.3)

where Q is vector of the CDW oscillations. It is the long-range
order that characterizes any crystalline structure unambigu-
ously.

Space and time play in many respects a similar role, and it
looks quite natural to extend the notion of the space crystals to
(thermodynamic) time-space crystals just adding an additional
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time coordinate to the above definitions and using coordinates
R = (t, r) on equal footing. Suppose, one comes to an order
parameter B(R) oscillating both in time and space. Again, one
should assume in analogy with Eq. (1.1) that∫

B(R − R0)dR0 = 0, (1.4)

where R0 = (t0, r0). The integration in Eq. (1.4) is performed
over the period in time-space along a primitive vector. Now
the primitive vectors include the one directed along the time
axis. The integral (1.4) is assumed to be zero for the inte-
gration along any primitive vector including integration over
time.

It is clear that already averaging over t0 must give zero
(or a time-independent constant) if one speaks of a state in
the thermodynamic equilibrium. Indeed, there cannot be any
selected t0 in the equilibrium, although a certain time t0
appears naturally in nonequilibrium situations marking the
beginning of a process. This fact can be emphasized explicitly
by the following integral:∫

period
B(t − t0, r − r0)dt0 = 0. (1.5)

In Eq. (1.5), the integration is performed over the period of
the function B(t ).

The long-range order both in space and time is introduced
using the correlation function

K (R) =
∫

B(−R0)B(R − R0)d�0, (1.6)

where the integration is performed over the elementary cell in
time-space. The long-range order in time-space is determined
by the following asymptotic behavior:

lim
|r|→∞,|t |→∞

K (R) ∝ cos(Qr) cos(�t ), (1.7)

where � is a characteristic energy.
Here, only macroscopic systems with the volume of the

system V → ∞ in the thermodynamic equilibrium are con-
sidered, and Eq. (1.7) should be valid for arbitrarily large
volumes and times. Both Q and � in Eq. (1.7) are supposed
to be independent on the volume V → ∞. Oscillations in
time of two-time correlation functions are very well known
in, e.g., two or more level systems. However, in the limit
V → ∞, the level spacing � in such systems goes to zero
and the frequency of the oscillations vanishes, which contrasts
Eq. (1.7) written for finite � dependent on internal parameters
of the model but not on the volume. The systems possessing
these properties are classified here as “thermodynamic quan-
tum time-space crystals.” To the best of our knowledge, this
type of behavior has not been known so far.

Although Eqs. (1.4)–(1.7) written in analogy with
Eqs. (1.2) and (1.3) are just a guess, they, if accepted, can
exclude certain types of proposals on how to realize the time
crystals. Quantum-mechanical averaging of an operator can
lead to classical oscillations of, e.g., currents, and this would
result in a radiation and a loss of energy, which is not possible
in a thermodynamically stable state. The energy can also
be lost due radiation of phonons in solid, etc. However, as
follows from the present discussion, any time-dependent order

parameter of a thermodynamically stable state can appear only
in the form of B(t − t0, r) with arbitrary t0. Then, integrating
over t0 like it is done in Eq. (1.5) gives zero (or constant), and
one cannot have anything like currents oscillating in time. [If
the integral in Eq. (1.5) is a time-independent constant one
can subtract the corresponding constant from the definition of
B(t, r)]. All this means that Eq. (1.5) is a necessary condition
for any model proposed for the thermodynamically stable time
crystal, and the latter is an essentially quantum phenomenon.
At the same time, Fourier transform of two-time correla-
tion functions determines scattering amplitudes, and therefore
there should be possibility to observe the thermodynamically
stable time crystals experimentally.

It is important to emphasize that, in this introductory
section, we merely want to discuss some possibilities of in-
troducing the thermodynamic quantum time crystals (TQTC)
without violating laws of the nature, and, at the same time,
make this notion very similar to the space crystals. The dis-
cussion of this section is not necessary for performing explicit
calculations within a model introduced later in the paper and
serves only for visualizing results in simple terms.

Several years ago Wilczek [2] has proposed a concept
of quantum time crystals using a rather simple model that
possessed a state with a current oscillating in time. However,
a more careful consideration of the model [3] has led to the
conclusion that this was not the equilibrium state. These pub-
lications were followed by a hot discussion of the possibility
of realization of a thermodynamically stable quantum time
crystal [4–9]. More general arguments against thermodynam-
ically stable quantum time crystals in a macroscopic system
have been presented later [10]. As a result, a consensus has
been achieved that thermodynamical macroscopic quantum
time crystals could not exist.

Slowly decaying oscillations in systems out of equilibrium
are not forbidden by the “no-go” theorems, and their study is
definitely interesting by its own. Recent theoretical [11–16]
and experimental [17–19] works have clearly demonstrated
that this research field is very interesting and is fast growing.
At present, the term “quantum time crystal” is usually used for
nonequilibrium systems. It is difficult to cite here all papers
already published in this direction of research but this activity
is clearly different from the investigation of the possibility of
the thermodynamically stable time crystal presented below.

It comes as a great surprise that a time-space crystal may
exist as a thermodynamically stable state [20]. We use the
term “thermodynamic quantum time crystal” (TQTC) here to
distinguish between the equilibrium and out-of-equilibrium
states.

It turns out that the TQTC state can appear as a result of
the breaking of the time-translation invariance of the original
model and formation of a time-dependenent order parame-
ter B(t ) with the properties described by Eqs. (1.4)–(1.7).
This is a new effect. Actually, the “no-go” theorem [10] is
proven only for models where such a symmetry breaking
does not occur and is definitely valid for conventional models
considered in the past. However, the formation of the time-
dependent order parameter invalidates the proof and this will
be discussed in detail later.

In this paper, considering a model of interacting fermions it
is demonstrated that the system can undergo a phase transition
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into a state with an order parameter oscillating in both imag-
inary τ and real t time. Studying the behavior in imaginary
time τ is necessary for calculation of the free energy of
the system, which is a standard very convenient method in
quantum field theory. The period of the oscillations in the
imaginary time equals 1/mT, where m is integer, as required
by boundary conditions for bosonic fields. The phase of the
oscillations is arbitrary and the average over the position both
in real and imaginary time of the periodic structure equals
zero, in agreement with Eqs. (1.4) and (1.5). Therefore the
system does not lose energy, which is the necessary condition
for the thermodynamic equilibrium. The correlation function
of the order parameters at real times has the form of Eq. (1.7),
and its Fourier-transform determines the quantum scattering
cross section. The TQTC obtained here can exist in arbitrarily
big volume and is a completely new type of ordered states of
matter.

Although being rather general, the model considered
here has been introduced previously in a slightly differ-
ent form of spin-fermion model with overlapping hot spots
(SFMOHS) for description of underdoped superconducting
cuprates [21–23]. The new state of TQTC obtained within
this model is characterized by a loop currents order param-
eter oscillating both in space and time. The phase of the
oscillations in time is arbitrary and averaging over the latter
gives zero. As a result, the time reversal symmetry is broken
but no static magnetic moments appear. These features may
correspond to the pseudogap state [24–26] and we make
explicit calculations and obtain results having in mind this
possibility.

B. Pseudogap state in superconducting cuprates

The pseudgap state is characterized by the loss of density
of states due to the opening of a partial gap at the Fermi level
below the pseudogap temperature T ∗ > Tc, where Tc is the su-
perconducting temperature. This gap decreases monotonously
with the hole doping, which has been first observed in NMR
(Knight shift) [27,28] and, more recently, ARPES [26,29] and
Raman [30,31] scattering studies.

However, modern experiments add a lot of unconventional
details to this picture, showing that various ordering tenden-
cies play a crucial role in the pseudogap state. The point-group
symmetry of the CuO2 planes is broken in the pseudogap
phase, which is seen from scanning tunneling microscopy
(STM) [32,33] and transport studies [34,35] of the pseudogap
phase. More recently, magnetic torque measurements [36]
of the bulk magnetic susceptibility confirmed C4 breaking
occurring at T ∗. Additionally, an inversion symmetry break-
ing associated with pseudogap has been discovered by means
of second harmonic optical anisotropy measurement [37].

Other experiments suggest that an unconventional time-
reversal symmetry breaking can also be associated with the
pseudogap. Polarized neutron diffraction studies of different
cuprate families reveal a magnetic signal commensurate with
the lattice appearing below T ∗ and interpreted as being due
to a Q = 0 intraunit cell magnetic order [38,39]. The signal
has been observed to start developing above T ∗ with a finite
correlation length [40,41] and breaks the C4 symmetry of such
a signal. Additionally, at a temperature Tk that is below Tc but

shares a similar doping dependence, polar Kerr effect has been
observed [42,43], which indicates [44,45] that time-reversal
symmetry is broken. Additional signatures of a temporally
fluctuating magnetism below T ∗ are also available from the
recent μSR (muon spin relaxation) studies [46].

While the signatures described above indicate that the
pseudogap is a distinct phase with a lower symmetry, there
also exist experiments [24,47] with thermodynamic evidence
for a corresponding phase transition. Transport measurements
suggest the existence of quantum critical points (QCPs) of the
pseudogap phase [48], accompanied by strong mass enhance-
ment [49] in line with the existence of a QCP.

As for theory, one of the initial interpretations was that the
pseudogap is a manifestation of a fluctuating superconductiv-
ity, either in a form of preformed Bose pairs [50,51] or strong
phase fluctuations [52].

However, the onset temperatures of superconducting fluc-
tuations observed in experiments [53,54] are considerably
below T ∗ and have a distinct doping dependence. Another
scenario dating back to Ref. [55] attributes the pseudogap
to strong short-range correlations due to a strong on-site
repulsion. However, this scenario does not explain the broken
symmetries of the pseudogap state.

A different class of proposals for explaining the pseudogap
involves a competing symmetry-breaking order. One of the
possible candidates discussed in the literature is a Q = 0
orbital loop current order [56–58]. While successfully de-
scribing some of the experimentally observed phenomena, in
particular, those of Refs. [38–41], it does not lead to a gap on
the Fermi surface at the mean-field level. Numerical studies
of the three-band Hubbard model give arguments both for
[59,60] and against [61–63] this type of order. Moreover, in
contrast to the experiments [38–41] the loop currents at Q = 0
have not been observed in recent experiments [64] on neutron
scattering, which is in agreement with negative results of
experiments on nuclear magnetic resonance and spin rotation
measurements.

More recent studies focused on the important role of the
interplay between CDW and superconducting fluctuations
[65], preemptive orders [66], CDW phase fluctuations [67],
and hypothetical SU(2) symmetry [68,69]. Breaking of the
time-reversal and C4 symmetries is not easily obtained from
those models, though.

An interesting possibility is the d-density wave (DDW)
state [70] (also known as orbital flux phase [71,72]) which is
characterized by a pattern of bond currents modulated with the
wave vector Q = (π, π ) and is not generally accompanied by
a charge modulation. This order leads to a reconstructed Fermi
surface consistent with the transport [48,73] and ARPES
[26] signatures of the pseudogap. Moreover, the time-reversal
symmetry is also broken and a modified version of DDW can
explain the polar Kerr effect [74] observation. Additionally,
model calculations show [75,76] that the system in the DDW
state can be unstable to the formation of axial CDWs.

Experimental studies [77,78] aimed at direct detection of
magnetic moments created by the DDW state seemed to give
results in favor of the existence of the magnetic moments. At
the same time, neutron scattering [79] and μSR [80] exper-
iments have rather unambiguously demonstrated absence of
any static magnetic order at Q = (π, π ). At present, there
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is no clear evidence for existence in the cuprates of static
magnetic moments corresponding to the DDW.

In principle, the idea of using the DDW state for explana-
tion of the origin of the pseudogap state might look promising
[70] because many observed effects correlate with predictions
of this proposal (see, e.g. Refs. [74,81,82]). At the same time,
as already mentioned, a magnetic structure with the vector
Q = (π, π ) has not really been confirmed experimentally,
although a time dependent magnetism was seen recently [46]
below T ∗.

If the pseudogap state really corresponded to a temporarily
oscillating loop currents order parameter with Q = (π, π ),
the magnetic moments would not be seen in neutron elastic
scattering experiments. At the same time, the time-reversal
symmetry would be broken with all consequences and the gap
in the spectrum would exist in the antinodal regions. The goal
of this paper is to show that the TQTC state leading to such a
picture is really possible.

C. Plan of the presentation

In this paper, we will demonstrate considering a spin-
fermion model that the TQTC can exist and the properties of
the order parameter correspond to those written in Eqs. (1.4)–
(1.7). It has been shown previously [23] that the model under
consideration can give the DDW state. Now we will show
that the model allows one to obtain a state with zero static
loop currents but nonzero dynamic correlation of the currents
that can be observed in, e.g., inelastic spin-polarized neutron
scattering. At the same time, many other properties are similar
to those of the DDW state.

In Sec. II, a spin-fermion model with overlapping hot
spots is introduced and simplified, in Sec. III, general for-
mulas for the partition function are derived decoupling of
the electron-electron interaction by integration over auxiliary
fields and minimizing a free energy functional containing
these fields, while in Sec. IV, the free energy of the system
is calculated. Section V is devoted to calculation of time-
dependent correlation functions using averaging over phases
of oscillations, while in Sec. VI, the same correlation func-
tions are calculated using an operator order parameter and a
quantum mechanical averaging. In Sec. VII, the main results
are re-derived using the Hamiltonian formulation of the model
and the disagreement with the “no-go” theorem is explained.
In Sec. VIII, possibilities of experimental observation of the
“thermodynamic quantum time-space crystal” are discussed,
and the final discussion of the results is presented in Sec. IX.

II. SPIN-FERMION MODEL WITH OVERLAPPING HOT
SPOTS (SFMOHS) AND ITS SIMPLIFICATION

The spin-fermion model with overlapping hot spots
(SFMOHS) has been suggested and further studied in
Refs. [21–23] for description of superconducting cuprates.
This model originates from previously used spin-fermion
models with eight hot spots [65,66,68,83,84] by the assump-
tion that the hot spots on the Fermi surface are not isolated,
may overlap and form antinodal “hot regions.” This can
happen when the fermion energies are not far away from the

FIG. 1. Spin-fermion model with overlapping hot spots and loop
currents. (a) Fermi surface and interaction and (b) Loop currents.

van Hove singularities in the spectrum of the cuprates, which
corresponds to results of ARPES study [43,85–87].

It is assumed that most important are momenta near the
middles of the edges of the Brillouin zone (hot regions) and
the latter are numerated as 1 and 2 [see Fig. 1(a)].

The vector QAF connecting the middles of the edges equals
the vector of the antiferromagnetic modulation of the parent
compound. This contrasts the structure of the ‘conventional’
spin-fermion model with eight hot spots [65,66,68,83,84].

We write the partition function Z of the system in a form of
a functional integral over anticommuting vector fields χa

α (X )
with the subscript α and the superscript a numerating spin and
the hot regions

Z =
∫

exp[−S0[χ ] − Sint[χ ] − Sc[χ ]]Dχ. (2.1)

As usual, the fields χ satisfy the fermionic boundary condi-
tions

χ (τ ) = −χ (τ + 1/T ). (2.2)

In Eq. (2.1), the action S0 of the noninteracting particles
equals

S0 =
∫

χ+(X )[∂τ + ε+(−i∇ ) + 3ε
−(−i∇ ) ]χ (X )dX. (2.3)

Herein, vectors χ and χ+ have components

χ =

⎛
⎜⎜⎜⎝

χ1
1

χ1
2

χ2
1

χ2
1

⎞
⎟⎟⎟⎠, χ+ = (χ1∗

1 χ1∗
2 χ2∗

1 χ∗2
2

)
(2.4)

and X = (τ, r) is afour-dimensional coordinate in space and
imaginary time τ , varying in the interval 0 < τ < 1/T, T is
temperature. In Eq. (2.3),

ε±(p) = 1
2 (ε1(p) ± ε2(p)), (2.5)

where ε1(p) and ε2(p) are two-dimensional spectra of the
fermions in the regions 1 and 2 counted from the chemical
potential μ (momenta are counted from the middles of edges).
Matrices 1, 2, 3 are Pauli matrices in the space of num-
bers 1 and 2 numerating the hot regions.
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The interaction via antiferromagnetic paramagnons reads

Sint[χ, χ+] = −λ2

2

∫
D0(X − X ′)(χ+(X )�σ1χ (X ))

× (χ+(X ′)�σ1χ (X ′))dXdX ′, (2.6)

where λ is a coupling constant, and D0 is propagator of critical
paramagnons. Its Fourier transform can be written as

D0(ω, q) = (ω2/v2
s + q2 + ξ−2

)−1
, (2.7)

where ξ is a correlation length characterizing proximity to
the antiferromagnetic transition point and vs is the velocity of

antiferromagnetic excitations. The term Sint[χ ] describes the
interaction between the fermions of the region 1 and 2.

We concentrate on more energetically favorable singlet
electron-hole pairings between the regions 1 and 2. This
allows one to replace the action Sint[χ ] by the following
effective action:

Sint[χ, χ+] → S(current)
int [χ, χ+] + S(density)

int [χ, χ+], (2.8)

where

S(current)
int [χ, χ+] = −3λ2

8

∫
D0(X − X ′)(χ+(X ′)2χ (X ))(χ+(X )2χ (X ′))dXdX ′, (2.9)

S(density)
int [χ, χ+] = 3λ2

8

∫
D0(X − X ′)(χ+(X ′)1χ (X ))(χ+(X )1χ (X ′))dXdX ′. (2.10)

In addition to the interaction via antiferromagnetic paramagnons, a QAF-component term Sc[χ, χ+] of the Coulomb interaction
has been added in Eq. (2.1)

Sc[χ, χ+] = 1

2

∫
Vc(X − X ′)(χ+(X )1χ (X ))(χ+(X ′)1χ (X ′))dXdX ′, (2.11)

which is very similar to S(density)
int [χ ] and does not give a

contribution of the form of S(current)
int [χ ], Eq. (2.9). Actually,

Eq. (2.9) describes an attraction of the loop currents, while
Eqs. (2.10) and (2.11) stand for a repulsion of the (π, π )
component of the charges.

The limit of the overlapping hot spots allows a variety of
electron-hole as well as superconducting pairings [23]. In the
model described by Eqs. (2.8) and (2.11) several different
phases have been identified within mean-field schemes. This
includes, depending on the parameters of the model, d-wave
superconductivity, Pomeranchuk deformation of the Fermi
surface, d-form-factor charge-density waves with modulation
vectors parallel to the bonds and d-density wave (DDW) state
(loop currents). It is relevant to emphasize that all relevant
energies like gaps in the spectrum, the Fermi energy, chemical
potential, energy of the Pomeranchuk deformation of the
Fermi surface, etc., are of the same order of magnitude.
This corresponds to the experiments showing that all relevant
energies of the various states are of order of several hundreds
Kelvin, which is much smaller than usual electronic energies
of the order of 1 eV.

Taking into account only the attraction term, Eq. (2.9), one
obtains [23] the DDW state with the static currents repre-
sented in Fig. 1(b). The loop currents obtained in SFMOHS
flow along the bonds of the square lattice and their direction
is shown by arrows. The period of the oscillations equals the
double period of the lattice. Within this picture one can speak
of static magnetic moments oscillating in space.

Although using SFMOHS with the interaction specified
by Eqs. (2.6)–(2.11) one can explicitly make calculations
of various physical quantities for static order parameters,
it is worth further simplifying the form of the interaction
when investigating the possibility of formation of TQTC. This
allows one to avoid unnecessary complications in calculations

but, after all, the main issue of the present work is to demon-
strate that TQTC is a general phenomenon, and keeping a
detailed form of the interaction is not helpful for achieving this
goal.

One comes to the simplified version of the model replacing
the interactions D0(X − X ′) and Vc(X − X ′) by δ functions in
both space and imaginary time

3λ2D0(X − X ′) → 2U0δ(X − X ′),

2Vc(x − X ′) → Ucδ(X − X ′). (2.12)

The main results of this paper are derived using a scheme
equivalent to a mean-field approximation. Therefore we start
with a simplified model already adopted for using this scheme
(the two-particle interaction contains squares of the sums
over momenta and spins). We write such a simplified action
S[χ, χ+] in the form

S[χ, χ+] = S0[χ, χ+]

− U0

4V

∫ 1/T

0

(∑
p

χ+
p (τ )2χp(τ )

)2

dτ

+ Ũ0

4V

∫ 1/T

0

(∑
p

χ+
p (τ )1χp(τ )

)2

dτ, (2.13)

where

S0[χ, χ+] =
∫ 1/T

0
χ+

p (τ )[∂τ + ε+(p) + 3ε
−(p) ]χp(τ )dτ

(2.14)

and

Ũ0 = U0 + Uc > U0. (2.15)

It is assumed that U0 > 0, p = {p,α} stands for the momen-
tum p and spin α, and V is the volume of the system.
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The interaction terms correspond to a long-range coher-
ence of pairs composed of electrons and holes belonging to
the different bands but the interaction between the electrons is
a short-range one.

The combination
∑

p χ+
p (τ )1χp(τ ) stands for the (π, π )

charge oscillation, while
∑

p χ+
p (τ )2χp(τ ) describes loop

currents, Fig. 1(b).
Action Eq. (2.13) written for the electron-hole pairs is

similar to the one in the Bardeen-Cooper-Schrieffer (BCS)
model for Cooper pairs [88]. It contains an inter-band at-
traction (term with matrix 2) and repulsion (term with 1).
Taking into account only the term with the attraction one
obtains an order parameter B corresponding in the language
of SFMOHS to spontaneous static loop currents, Fig. 1(b). In
order to obtain the new interesting state with a time-dependent
order parameter one should consider both the interactions.
It is crucial that the term with 1 in Eq. (2.13) describing
the interaction of charges is repulsive. The correspondence
of action, Eq. (2.13), and the BCS model could be achieved
formally putting Ũ0 = −U0 but this would contradict to the
assumption (2.15). This is the reason why the results obtained
in the present paper cannot be applied to the BCS supercon-
ductors.

III. PARTITION FUNCTION AND EQUATIONS
FOR THE MINIMUM OF A FREE ENERGY

FUNCTIONAL OF BOSON FIELDS

A. General formulas for the partition function

The order parameter of the model determined by the action
(2.13) can be either static or oscillating both in real and imag-
inary time. Although the properties of the TQTC, Eqs. (1.4)–
(1.7), are expected to follow from the real-time dependence
of the order parameter, thermodynamics is determined by its
imaginary-time behavior.

Now we write the partition function Z , Eq. (2.1), as

Z =
∫

exp[−S[χ, χ+]]Dχ, (3.1)

where the action S[χ, χ+] is specified by Eqs. (2.13) and
(2.14), and following the standard mean-field theory introduce
order parameters b(τ ) and b1(τ ). Making a rotation of the
fields χ in the space of numbers 1 and 2 of the bands

χp(τ ) = U0ηp(τ ), U0 = 1√
2

(
1 i
i 1

)
(3.2)

and using the relations

U+
0 2U0 = 3, U+

0 3U0 = −2, U+
0 1U0 = 1,

(3.3)
we write the action S[χ, χ+] in terms of the anticommuting
variables in the form

S[η] = S0[η] + Sint[η], (3.4)

where

S0[η] =
∫ 1/T

0
η+

p (τ )(∂τ + ε+(p) − ε−(p)2)ηp(τ )dτ (3.5)

and

Sint[η] = − 1

4V

∫ 1/T

0

⎡
⎣U0

(∑
p

η+
p (τ )3ηp(τ )

)2

− Ũ0

(∑
p

η+
p (τ )1ηp(τ )

)2
⎤
⎦dτ. (3.6)

Now we use a method of integration over auxiliary bosonic
fields b(τ ) and b1(τ ) (Hubbard-Stratonovich transformation)
to decouple the interaction in Sint (η), Eq. (3.6)

exp [−Sint[η]] =
∫

exp

[
−
∫ 1/T

0

[
b2(τ )

U0
+ b2

1(τ )

Ũ0

]
dτ

]

× Z−1
b exp

[∫ 1/T

0
η+

p (b(τ )3 + ib1(τ )1)dτ

]
× DbDb1, (3.7)

where

Zb =
∫

DbDb1 exp

[
−
∫ 1/T

0

[
b2(τ )

U0
+ b2

1(τ )

Ũ0

]
dτ

]
.

The fields b(τ ) and b1(τ ) must obey the bosonic boundary
conditions

b(τ ) = b(τ + 1/T ), b1(τ ) = b1(τ + 1/T ). (3.8)

Substituting Eq. (3.7) into Eqs. (3.6) and (3.4), we obtain an
effective action quadratic in η, which allows us to integrate
exactly over η, η+. As a result, we represent the free energy F
in the form

F = −T ln

[∫
exp

[
−F[b, b1]

T

]
DbDb1

]
. (3.9)

Herein, the free energy functional F[b, b1] equals

F[b, b1]

T
=
∫ 1/T

0

[
−2
∑

p

tr[ln (h(τ, p) − ib1(τ )1)]τ,τ

+V

(
b2(τ )

U0
+ b2

1(τ )

Ũ0

)]
dτ, (3.10)

where

h(τ, p) = ∂τ + ε+(p) − ε−(p)2 − b(τ )3, (3.11)

and symbol “tr” means trace in the space of the bands 1
and 2.

Both the terms in Eq. (3.10) are proportional to the volume
V of the system, and therefore the saddle-point method be-
comes exact for calculation of the functional integral over the
fields b(τ ) and b1(τ ) in the limit V → ∞. In other words,
the fields b(τ ) and b1(τ ) should be found from the condi-
tion of the minimum of the free energy functional F[b, b1],
Eq. (3.10). Substitution of the functions obtained in this way
into Eqs. (3.10) and (3.9) gives the free energy F.
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FIG. 2. Jacobi elliptic function. (a) Potential w at k = 0.9999 and (b) Solution u as a function of x at k = 0.9999.

B. Equations for the minimum of the free energy functional
F [b, b1] and their solutions at b1(τ ) = 0

Minimization of the free energy functional F[b, b1],
Eq. (3.10), leads to the following equations for b(τ ) and b1(τ )

b(τ ) = −U0tr
∫

3[H−1(τ, p)]τ,τ
dp

(2π )2 , (3.12)

b1(τ ) = −iŨ0tr
∫

1[H−1(τ, p)]τ,τ
dp

(2π )2 , (3.13)

where

H (τ, p) = h(τ, p) − ib1(τ )1.

Equations (3.12) and (3.13) have a time-independent solution
[23]

b1(τ ) = 0, b(τ ) = γ , (3.14)

where γ determines the gap in the spectrum and can be bound
from the equation

1 = U0

2

∫
tanh κ

(0)
p +ε+(p)/T

2 + tanh κ
(0)
p −ε+(p)/T

2√
(ε−(p))2 + γ 2

dp

(2π )2 (3.15)

and

κ (0)
p =

√
(ε−(p))2 + γ 2

T
. (3.16)

Of course, the trivial solution b1(τ ) = 0, b(τ ) = 0 also exists
but we are interested in the region of parameters of the model
where nonzero solutions appear.

Provided ε+(p) is not very large, Eq. (3.15) simplifies at
low temperatures to the form

1 = U0

∫
1√

(ε−(p))2 + γ 2

dp

(2π )2 . (3.17)

However, more sophisticated time-dependent solutions of
Eqs. (3.12) and (3.13) also exist even at Ũ0 = 0. Although it
was assumed in the beginning that Ũ0 > 0 (2.15) and this is
the most interesting case, we start with formally considering
the limit Ũ0 = 0 because it helps to understand the structure
of the solutions at arbitrary Ũ0.

Setting Ũ0 = 0 in Eq. (3.13) and, hence b1(τ ) = 0, we
come to the following equation for b(τ ):

b(τ ) = −U0tr
∫

3[h−1(τ, p)]τ,τ
dp

(2π )2 , (3.18)

with the operator h(τ, p) specified by Eq. (3.11).
Although Eq. (3.18) is quite nontrivial due to a possible

dependence of b(τ ) on τ , solutions b0(τ ) of this equations can
be written exactly in terms of a Jacobi double periodic elliptic
function sn(x|k),

b0(τ ) = kγ sn(γ (τ − τ0)|k), (3.19)

where 0 < k < 1 is the modulus, γ is an energy, and τ0 is an
arbitrary shift of the imaginary time in the interval 0 < τ0 <

1/T (see also Fig. 2). The period of the oscillations for an
arbitrary k equals 4K (k)/γ , where K (k) is the elliptic integral
of the first kind, and therefore the condition

γ = 4K (k)mT (3.20)

with integer m > 0 must be satisfied to fulfill Eqs. (3.8).
One can visualize the function u = ksn(x|k) satisfying the

equation (
du

dx

)2

= u4 − (1 + k2)u2 + k2 (3.21)

by taking into account the fact that it describes motion of
a classical particle with unit mass and energy k2/2 in the
potential w = 1

2 (u2(1 + k2) − u4). In the limit k → 1, the
particle starts moving from the top a hill in Fig. 2(a), stops on
the other hill, and then moves back forming an instanton–anti-
instanton pair (IAP). In this limit, the function u has a simple
form of alternating functions tanh x and − tanh x (instantons
and anti-instantons), and is represented in Fig. 2(b). In the
limit of small k, the Jacobi elliptic function has the asymp-
totic behavior sn(x|k) → sin x corresponding to a harmonic
oscillation of the classical particle near a minimum of w.

At small 1 − k, the period 4K (k)/γ of b0(τ ) grows loga-
rithmically as − ln (1 − k) and the solution b0(τ ) consists of
2m well separated alternating instantons and anti-instantons. It
is important that the integral over the period of the oscillations
in Eq. (3.19) equals zero. The average over the position τ0

equals zero as well

b0(τ ) = 0, (3.22)

where bar stands for such an averaging.
The solution (3.19) of Eq. (3.18) satisfying the bound-

ary condition, Eq. (3.20), has been used previously in
Refs. [89–91] starting from a different model. A similar
solution for a mean-field equation arising in 1D models of
polymers (depending on coordinates but not on the imaginary
time) has been discovered long ago [92] and later used also in
Refs. [93,94].
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One can demonstrate that the function b0(τ ), Eq. (3.19),
is really the solution of Eq. (3.18) by finding the eigenfunc-
tions � (0)

sp (τ ) and eigenenergies ε (0)
sp of the operator h(τ, p),

Eq. (3.11), with b(τ ) = b0(τ ), where b0(τ ) satisfies equation

ḃ2
0(τ ) = b4

0(τ ) − γ 2(1 + k2)b2
0(τ ) + γ 4k2, (3.23)

and making a spectral expansion of the operator h−1(t, p).
It is instructive to give details of the calculations because

an extension of this formalism will be used for nonzero b1(τ ).
At b1(τ ) = 0, we have equations

h(τ, p)� (0)
sp (τ ) = ε (0)

sp � (0)
sp (τ ),

�̄ (0)
sp (τ )h̄(τ, p) = ε (0)

sp �̄ (0)
sp (τ ). (3.24)

In Eqs. (3.24) operator h(τ, p) has been defined in Eq. (3.11)
and h̄(τ, p) equals

h̄(τ, p) = −←−
∂ τ + ε+(p) − ε−(p)2 − b0(τ )3, (3.25)

where the derivative
←−
∂ τ acts on the left. The eigenfunctions

�̄ (0)
sp (τ ) and � (0)

sp (τ ) have to obey the antiperiodic boundary
conditions

� (0)
sp (τ ) = −� (0)

sp (τ + 1/T ), �̄ (0)
sp (τ ) = −�̄ (0)

sp (τ + 1/T ).

(3.26)

Solutions � (0)
sp (τ ), �̄ (0)

sp (τ ) of Eqs. (3.24) satisfying
Eqs. (3.26) can be sought in the form

� (0)
sp (τ ) = Npϒlp(τ )e−iπ (2n+1)τT e−(−1)l κpT τ ,

(3.27)
�̄ (0)

sp (τ ) = (−1)l+1Npϒ̄lp(τ )eiπ (2n+1)τT e(−1)l κpT τ ,

where s = {l, n}, l = 1, 2, n = 0,±1,±2 . . . , and Np is a
normalization factor.

Functions ϒlp(τ ) equal

ϒlp(τ ) =
(

1
(iε−(p))−1(−∂τ + b0(τ ))

)
Zlp(τ ), (3.28)

ϒ̄lp(τ ) = ((iε−(p))−1(∂τ − b0(τ )) 1)Z̄lp(τ ), (3.29)

where

Z̄l (τ ) =
{

Xp(τ ), l = 1

Yp(τ ), l = 2
, Zl (τ ) =

{
Yp(τ ), l = 1

Xp(τ ), l = 2
, (3.30)

and the functions Xp(τ ) and Yp(τ ) are growing and decaying
with τ solutions of the same equation[− ∂2

τ + (ε−(p))2 + Q(τ )
]
Yp(τ ) = 0,

(3.31)[−∂2
τ + (ε−(p))2 + Q(τ )

]
Xp(τ ) = 0,

with

Q(τ ) = b2
0(τ ) + ḃ0(τ ). (3.32)

Although the functions � (0)
sp (τ ) and �̄ (0)

sp (τ ) obey the an-
tiperiodicity conditions (3.26), the solutions Xp(τ ) and Yp(τ )
cannot be periodic. We assume that they change over the
period 1/T as

Xp(τ + 1/T ) = eκp Xp(τ ), Yp(τ + 1/T ) = e−κpYp(τ ), (3.33)

where κp is a function of p only. The antiperiodicity of
the eigenfunctions � (0)

sp (τ ) and �̄ (0)
sp (τ ) is guaranteed by the

presence in Eq. (3.27) of the exponentials containing κp. The

solutions Xp(τ ) and Yp(τ ) of Eqs. (3.31) are related to each
other as

Ẋp(τ )Yp(τ ) − Xp(τ )Ẏp(τ ) = Cp, (3.34)

where Cp is a time-independent function of p.

Equations (3.27)–(3.34) are sufficient to prove the orthog-
onality of the eigenfunctions � (0)

sp (τ )

(�̄sp, �s′p) ≡ T
∫ 1/T

0
�̄sp(τ )�s′p(τ )dτ = δss′ (3.35)

and write the normalization Np in the form

N 2
p = iε−(p)T

Cp
. (3.36)

Substituting Eqs. (3.27)–(3.30) into Eq. (3.24) one finds the
eigenenergies ε (0)

sp

ε (0)
sp = ε+

p (p) − i(2n + 1)πT + (−1)l+1κpT . (3.37)

The last step to be done for writing the eigenfunctions � (0)
sp (τ )

and �̄ (0)
sp (τ ) explicitly is to solve Eqs. (3.31). The final solu-

tion for Xp(τ ) and Yp(τ ) can be written in the form

Xp(τ ) = wp(τ ) exp

[∫ τ

0

�p

w2
p(τ ′)

dτ ′
]
, (3.38)

Yp(τ ) = wp(τ ) exp

[
−
∫ τ

0

�p

w2
p(τ ′)

dτ ′
]
, (3.39)

where

�p = |ε−(p)|3
√(

1 + γ 2

4

(1 − k)2

(ε−(p))2

)(
1 + γ 2

4

(1 + k)2

(ε−(p))2

)

(3.40)

and

wp(τ ) =
(

(ε−(p))2 + 1 + k2

4
− Q(τ )

2

)1/2

. (3.41)

These solutions can be checked substituting Eqs. (3.38) and
(3.39) into Eqs. (3.31) and using Eq. (3.23). One can also see
from Eq. (3.34) that

Cp = 2�p, (3.42)

and it is clear that the parameter κp equals

κp =
∫ 1/T

0

�p

w2
p(τ )

dτ. (3.43)

From Eqs. (3.28)–(3.30) and (3.38)–(3.42), one can derive the
following useful relations:

(ϒ̄lp(τ )3ϒlp(τ )) = 2ib0(τ )ε−(p), (3.44)

(ϒ̄lp(τ )1ϒlp(τ )) = −ḃ0(τ ). (3.45)

Using the spectral expansion of the function h−1(τ, p) one can
bring Eq. (3.18) to the form

b(τ ) = −U0

∑
s

�̄ (0)
sp (τ )3�

(0)
sp (τ )

ε
(0)
sp

. (3.46)
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Substituting eigenfunctions � (0)
sp (τ ), Eqs. (3.27) and (3.36),

and eigenenergies ε (0)
sp , Eq. (3.37), into Eq. (3.46), we obtain

finally the mean-field equation for b0(τ )

b0(τ ) = U0

2

∫ [
tanh

κp + ε+
p /T

2
+ tanh

κp − ε+
p /T

2

]

× b0(τ )|ε−(p)|√(
(ε−(p))2 + γ 2 (1−k)2

4

)(
(ε−(p))2 + γ 2 (1+k)2

4

)
× dp

(2π )2 . (3.47)

We see that b0(τ ) drops out from Eq. (3.47), and the latter
is algebraic, which means that b0(τ ) is an exact solution of
Eq. (3.18). Equation (3.47) is valid for arbitrary temperature
T and modulus k. It should be solved together with Eq. (3.20)
and one should find the solution for a given number m of IAP.
One has to calculate also the integral providing the value κp,

Eq. (3.43). Actually, it can be expressed in terms of the elliptic
integrals of the first K (k̃) and third �(k̃) kinds:

κp = |ε−(p)|
T

√√√√ (ε−(p))2 + γ 2

4 (1 − k)2

(ε−(p))2 + γ 2

4 (1 + k)2

�(n, k̃)

K (k̃)
, (3.48)

where

n = γ 2k

(ε−(p))2 + γ 2

4 (1 + k)2
, k̃ = 2

√
k

1 + k
. (3.49)

Equations (3.47) and (3.49) overlap with results of previous
publications [89,90].

It is clear that at low temperatures there can be many
solutions of Eq. (3.47) because it contains two unknown
parameters γ and k. The proper solution should correspond
to the minimum of the free energy F[b, b1], Eqs. (3.10) and
(3.11). We will see that in the absence of the field b1(τ ), which
is the case when the interaction Ũ0 in Eq. (3.13) is formally
put to zero, the time-independent solution, Eq. (3.14), is most
favorable. At nonzero Ũ0, one has to solve Eqs. (3.12) and
(3.13) together. Of course, this will modify the solution b(τ )
but the solution alone cannot help answering the question
whether configurations with a finite number of IAP can be
energetically favorable or not. In other words, one has to cal-
culate the free energy for a given number m of IAP and check
whether this energy can be lower than that with m = 0 or not.

The calculations to be done look rather involved. Fortu-
nately, the limit of a diluted system of IAP corresponding to
a large period (1 − k � 1) is most favorable for obtaining
a nonzero imaginary-time-dependent order parameter, and
calculations become considerably simpler in this limit.

It is worth mentioning that, in the limit 1 − k � 1,

Eq. (3.47), reduces to Eq. (3.15), and many thermodynamic
properties of the diluted system of IAP can be very close to
those of DDW state. At the same time, behavior of physical
quantities like loop currents determined directly by the order
parameter can be drastically different.

IV. FREE ENERGY

A. General scheme of the calculations

In principle, the free energy F should be calculated by first
solving Eqs. (3.12) and (3.13) for b(τ ), b1(τ ) for a given
number m of IAP and substituting the solution into the free
energy functional F[b, b1], Eqs. (3.10) and (3.11). This would
give a free energy F [m] as a function of m. The minimum of
this function is the free energy of the system.

This procedure resembles calculation of the free energy
of vortices in a superconductor subjected to a magnetic B
field. In order to investigate the possibility of entering vortices
into the superconductor, one calculates the energy of a single
vortex and the energy of its interaction with the magnetic field.
The total energy is positive in the Meissner state, while it is
negative in the mixed Abrikosov state. The energy equals zero
at the critical field Bc1. Even if it is not easy to find the precise
form of the single vortex, the existence of the transition can
be established in this way taking an approximate solution for
the vortex.

Solving Eqs. (3.12) and (3.13) exactly or investigating the
problem numerically is not an easy task, and it is beyond
the scope of the present work. Instead, we develop here
an approximate scheme that provides physically plausible
results. We proceed by introducing eigenfunctions �sp(τ ), its
conjugates �̄sp(τ ) and eigenenergies εsp, satisfying equations

(h(τ, p) − ib1(τ )1)�sp(τ ) = εsp�sp(τ ),
(4.1)

�̄sp(τ )
(
h̄(τ, p) − ib1(τ )1

) = εsp�̄sp(τ ),

and antiperiodicity conditions

�sp(τ + 1/T ) = −�sp(τ ), �̄sp(τ + 1/T ) = −�̄sp(τ ). (4.2)

Operators h(τ, p) and h̄(τ, p) are specified in Eqs. (3.11) and
(3.25). Functions �sp(τ ), �̄sp(τ ) form an orthogonal basis of
the eigenfunctions

(�̄sp, �s′p) ≡ T
∫ 1/T

0
�̄sp(τ )�s′p(τ )dτ = δss′ . (4.3)

Setting formally b1(τ ) = 0 one comes back to the eigenfunc-
tions � (0)

sp (τ ), �̄ (0)
sp (τ ) and eigenenergies ε (0)

sp , Eqs. (3.24)–
(3.43). Then, one can write the “electronic” part Fel [first term
in the integrand in Eq. (3.10)] in the form

Fel[b(τ ), b1(τ )]

V T
= 2
∫ 1/T

0

∑
p

tr[ln (h(τ, p)−ib1(τ )1)]τ,τ dτ

= −2
∑

s

∫
ln

εsp

T

dp

(2π )2 . (4.4)

One should keep in mind that the eigenvalues εsp are
functionals of the functions b(τ ) and b1(τ ). The fact that
the functional Fel[b(τ ), b1(τ )] can be expressed in terms of
only the eigenvalues simplifies calculations. We cannot find
εsp and �sp(τ ) exactly for arbitrary b1(τ ) and simply use a
perturbation theory for the eigenvalues εsp. In the zeroth ap-
proximation, one puts b1(τ ) = 0 and obtains the eigenvalues
ε (0)

sp , Eqs. (3.37), (3.48), and (3.49).
As the next step, we assume nonzero b1(τ ) and write

b(τ ) = b0(τ ) + δb(τ ), (4.5)
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where b0(τ ) is given by Eq. (3.19). Then, we expand
Fel[b(τ ), b1(τ )], Eq. (4.4), in b1(τ ) and δb(τ ) up to the
second order in these variables. This will allows us to obtain
an interaction between the fields b(τ ) and b1(τ ) and take into
account a screening of this interaction.

Although putting b1(τ ) = 0 leads to the correct static solu-
tion for b, it is generally not a good assumption because, as we
will see, the field b1(τ ) linearly couples to the time derivative
ḃ0(τ ) generating an additional term in the free energy of IAP

Fint[b1]

V T
= −J

2

∫ 1/T

0
ḃ0(τ )b1(τ )dτ, (4.6)

where J is a constant.
Fluctuations of b1(τ ) generate an effective attraction be-

tween the instantons and anti-instantons and favor formation
of τ -dependent structures. Formally replacing τ by a space
coordinate one can see that the mechanism of the attraction is
similar to the one of the electron-phonon interaction in solids.
The field b1(τ ) plays in this picture the role of phonons and
its fluctuations may result in a sufficiently strong attraction
of instantons and anti-instantons and, eventually, lead to a
function b(τ ) oscillating in the imaginary time τ.

The calculation of the free energy functional
Fel[b(τ ), b1(τ )] is done by substituting

εsp = ε (0)
sp + ε (1)

sp + ε (2)
sp , (4.7)

into Eq. (4.4) and calculating ε (1)
sp and ε (2)

sp with the help of
standard quantum-mechanical formulas

ε (1)
sp = −

∫ 1/T

0
�ss(τ, p)dτ, (4.8)

ε (2)
sp =

∑
s′ =s

∫ 1/T

0

�ss′ (τ, p)�s′s(τ, p)

ε
(0)
sp − ε

(0)
s′p

dτ, (4.9)

where

�ss′ (τ, p) = �̄ (0)
sp (τ )(ib1(τ )1 + δb(τ )3)� (0)

s′p (τ ).

As soon as the electronic part is calculated, one should
minimize F[b(τ ), b1(τ )], Eqs. (3.10) and (3.11), with respect
to b1(τ ) and δb(τ ), and calculate the free energy in terms of
the solution b0(τ ), Eq. (3.19).

B. Free energy for an arbitrary spectrum ε−(p)

We consider here the most interesting limit of small
1 − k � 1 assuming that temperatures are low, T � γ . Tak-
ing b0(τ ) in the form of Eq. (3.19) one can determine the
parameter γ from Eq. (3.17) which is, at the same time, the
mean-field equation for the time-independent order parameter
(gap in the electron spectrum) of the DDW state [23]. The
modulus k and, hence, the number of IAP drops out from
Eq. (3.17) and can be determined only from the condition of
the minimum of free energy. In the absence of the field b1(τ ),
the minimum is always reached at the time-independent solu-
tion b = γ . The fields b1(τ ) couple to ḃ0(τ ), Eq. (4.6), and a
finite number m of the instantons–anti-instantons can provide
the absolute minimum of the free energy. This statement can
be checked by calculating the free energy for finite m in the
linear approximation in this number. Negative values of the

difference �F between this free energy and the free energy of
the DDW will indicate the possibility of the imaginary-time-
dependent state.

In the limit 1 − k � 1, one can write the parameter κp
[(3.48) and (3.49)] in a simplified form

κp = κ (DDW)
p + κ (inst)

p , (4.10)

where

κ (DDW)
p =

√
(ε−(p))2 + γ 2

T
(4.11)

is the function κp for the DDW state, and

κ (inst)
p = −m ln

1 + γ√
(ε−(p))2+γ 2

1 − γ√
(ε−(p))2+γ 2

(4.12)

is the contribution of the instantons and anti-instantons. The
term κ (inst)

p is smaller than κ (DDW)
p at low temperatures but still

can be large at large m.

Equations (4.10)–(4.12) are used for calculation of ε (0)
sp ,

Eq. (3.37). Substituting Eqs. (4.10)–(4.12), and (3.37) into
(4.4), performing summation over n, and adding a contribu-
tion coming from the b2(τ ) term in Eq. (3.10), we obtain with
the help of the self-consistency equation (3.17) the energy of
Finst of “noninteracting” instantons and anti-instantons

Finst

2mV T
=
∫ ⎡⎣ln

1 + γ√
(ε−(p))2+γ 2

1 − γ√
(ε−(p))2+γ 2

− 2γ√
(ε−(p))2+ γ 2

⎤
⎦ dp

(2π )2 .

(4.13)

The energy Finst , Eq. (4.13), is always positive. The effective
attraction arises due to the interaction of the instantons with
the field b1(τ ), Eq. (4.6), and can be obtained calculating the
first order ε (1)

sp , Eq. (4.8). Using Eq. (3.45), one can easily carry
out summation over n to obtain Eq. (4.6) with the constant J,

J = 1

2

∫
sgn(ε−(p))√(

(ε−(p))2 + γ 2 (1−k)2

4

)
((ε−(p))2 + γ 2)

dp

(2π )2 .

(4.14)

At small 1 − k the integral J , Eq. (4.14), can be very large and
the attraction very strong due to a large contribution coming
from the region of small ε−(p). Therefore the second order
ε (2)

sp , Eq. (4.9), is also important because it leads to a screening
of the interaction (4.6, 4.14) and partially cuts the singularity
at ε−(p) = 0 arising in the integrand in (4.14) in the limit k →
1.

As a result, one can write the difference �F[b1, δb]
between the free energy of the system with m alternating
instantons and anti-instantons and that of the system without
instantons as

�F[b1, δb] = Finst + Fint[b1] + F2[b1, δb] (4.15)

with Finst given by Eq. (4.13), Fint[b1] specified by Eqs. (4.6)
and (4.14) and a quadratic form F2[b1, δb] of b1(τ )
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and δb(τ )

F2[b1, δb]

V T
=
∫ 1/T

0

[(
A0 + 1

4

(
A1 − C2

B

)
ḃ2

0(τ )

)
b2

1(τ )

+Bb2
0(τ )

(
δb(τ ) − Cḃ0(τ )

2Bb0(τ )
b1(τ )

)2
]

dτ,

(4.16)

where the constants A0, A1, B, and C equal

A0 =
(

1 + U0

Ũ0

)∫
1√

(ε−(p))2 + γ 2

dp

(2π )2 , (4.17)

A1 =
∫

1

((ε−(p))2 + γ 2)3/2
(
(ε−(p))2 + γ 2 (1−k)2

4

) dp

(2π )2 ,

(4.18)

B = 1

((ε−(p))2 + γ 2)3/2

dp

(2π )2 , (4.19)

C =
∫

ε−(p)

((ε−(p))2 + γ 2)3/2
(
(ε−(p))2 + γ 2(1−k)2

4

) dp

(2π )2 .

(4.20)

The minimum of F2[b1, δb] with respect to δb(τ ) is achieved
at

δb(τ ) = Cḃ0(τ )

2Bb0(τ )
b1(τ ). (4.21)

Then, one finds the minimum value of �F[b1, δb], Eq. (4.15)
giving the free energy �F

�F

V T
= Finst

V T
− J2

∫ 1/T

0

[
A0 + 1

4

(
A1−C2

B0

)
ḃ2

0(τ )

]−1

ḃ2
0(τ )dτ,

(4.22)

where �F is the difference between the total free energy
F and the free energy Fhom of the system with the order
parameter homogeneous in the imaginary time.

At first glance, the energy �F is proportional to T , which
is small at low temperatures. However, in the limit of small
k, when the period of the oscillations is large, the energy
�F is proportional to the number m, that can be large and
proportional to 1/T . The energy �F is proportional to the
volume as well, and therefore the contribution of the IAP into
thermodynamical quantities will exceed those coming from
fluctuations. The case �F/(2mTV ) > 0 corresponds to the
state with the static order parameter, while in the region of
parameters where �F/V (2mT ) < 0 one expects a chain of
alternating instantons and anti-instantons. A more accurate
calculations are necessary to determine the number m as a
function of temperature and parameters of the model. Here we
restrict ourselves by investigating the stability against forma-
tion the chain of the alternating instanton and anti-instantons.

The main contribution to the integral, Eq. (4.22), comes
from the vicinity of zeros of b0(τ ), where the derivative ḃ0(τ )
is essentially nonzero. Therefore the integral is proportional
to 2m [as well as Finst, Eq. (4.13)], and the integration is
reduced to the integration over the half period of the function

b0(τ ). The free energy �F is also proportional to 2m, and
one can calculate the energy per one instanton replacing
b0(τ ) by γ tanh γ τ and then integrating over τ from −∞
to ∞ because the distance between the instantons and anti-
instantons is very large in the limit k → 1. Equation (4.22) can
be further simplified introducing a new variable of integration
v = γ tanh γ τ.

In order to compute the energy �F explicitly, one should
choose a specific form of the electron spectrum. Having in
mind SFMOHS [21–23], we write the spectrum as

ε1(p) = αp2
x − βp2

y + P − μ, ε2(p) = αp2
y − βp2

x − P − μ,

(4.23)

where μ is the chemical potential and P is a Pomeranchuk
order parameter that may appear in the model under consid-
eration. The spectrum displayed in Eq. (4.23) corresponds at
P = 0 to the Fermi surface depicted in Fig. 1(a). In principle,
the Pomeranchuk order parameter can compete with the DDW
and the state with the instantons and anti-instantons, and one
should then consider all these phases together. In order to
avoid too complicated formulas here, we neglect the inverse
effect of the instantons of the value of P and consider the latter
as an independent parameter. We introduce also an energy
cutoff � limiting the areas of the hot spots as

α + β

2
p2 < �, (4.24)

with p2 = p2
x + p2

y.

The dependence of a function S = �F/(2mTV ) on param-
eters characterizing the energy spectrum in the SFMOHS is
represented in Fig. 3. We use the following notations:

a = U0/Ũ0, g0 = 1

2π

U0

α + β
.

Figures 3(a)–3(e) represent dependence of z =
2π2(α + β )S/� on x = P/γ and y = �/γ for several
values of k and a. Figure 3(f) describes the solution of
the self-consistency equation (3.17) for arbitrary � and P.
More information about the computations can be found in
Appendix.

We see from Fig. 3 that there is a certain region of parame-
ters where the free energy �F is negative, which indicates the
instability of the imaginary-time-independent state (DDW).
The region of small 1 − k and a is most favorable for the
formation of the lattice of IAP. As we consider here structures
periodic in space [oscillations with vector QAF connecting the
bands 1 and 2, Fig. 1(b)], the periodic in τ order parameter
b(τ ) providing the minimum of the free energy is at the same
time the amplitude of the periodic oscillations in space.

The present calculations do not determine the number m
of IAP as a functions of temperature. Leaving this problem
for future investigations, we will calculate in the next sections
physical quantities without specifying the value of m or,
alternatively, k related to the latter by Eq. (3.20).

V. THERMODYNAMIC QUANTUM TIME-SPACE CRYSTAL

In the previous sections, we have shown that the state with
the order parameter b(τ ) represented by a chain of alternating
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FIG. 3. Free energy of instanton–anti-instanton pairs. (a) k = 0.99, a = 0, (b) k = 0.90, a = 0, (c) k = 0.70, a = 0, (d) k = 0.99, a = 1,
(e) k = 0.90, a = 1, and (f) z = g−1

0 (x, y).

instantons and anti-instantons in the imaginary time can be
more favorable energetically than the one with the static order
parameter. Now we discuss properties of this state concerning
its behavior in real time.

The thermodynamical quantities have been calculated us-
ing imaginary time τ and Matsubara frequencies. Methods of
calculations of dynamic quantities for ‘conventional systems’
are well developed. Linear response functions are calculated
by an analytical continuation from imaginary Matsubara fre-
quencies to real ones [95]. This method is based on an
assumption that the response function is analytical at ∞
on the complex plane of the frequencies. However, due to
periodicity in both real t and imaginary time τ of the function
b0(τ ), Eq. (3.19), one obtains a Fourier series rather than a
Fourier integral in the complex plane of the frequencies and
the standard analytical continuation cannot be applied for this
essentially thermodynamic problem.

Fortunately, one can use now the fact that the function
b0(τ ), Eq. (3.19), is analytical in the complex plane of τ

(except poles). Equation (3.23) as well as Eqs. (3.28)–(3.31)
can be used everywhere on this plane including the axis of real
time t = −iτ.

At zero temperature T = 0, one can rather easily represent
real-time correlation functions in terms of a functional integral
in real time. This is the standard field-theoretical formulation
of quantum mechanics in terms of path integrals. Following
this method, one represents the current-current correlation
function N (t1 − t2) in the form

N (t1 − t2) = U 2
0

V 2

∑
p,p′,α,α′

〈(η+
p (t1)3ηp(t1))(η+

p′ (t2)3ηp′ (t2))〉S̃.

(5.1)

In Eq. (5.1), the same fields η, η+ as in the previous sections
are used. However, they are functions of real time, and the
angle brackets stand for averaging with the action written in
real time. The function N (t1 − t2) is proportional to a function
entering the scattering cross-sections. The overall coefficient
in Eq. (5.1) is chosen for simplicity.

The equivalent functional integration is based on averaging
with action S̃ written in real time

〈. . . 〉S̃ =
∫

(. . . )e−iS̃[η]Dη∫
e−iS̃[η]Dη

. (5.2)

In Eq. (5.2), the action S̃[η] has the following form:

S̃0[η] = S̃0[η] + S̃int[η], (5.3)

where

S̃0[η] =
∑

p

∫ ∞

−∞
η+

p (t )(−i∂t + ε+(p) − ε−(p)2)ηp(t )dt

(5.4)

and

S̃int[χ ] = − 1

4V

∫ ∞

−∞

⎡
⎣U0

(∑
p

η+
p (t )3ηp(t )

)2

− Ũ0

(∑
p

η+
p (t )1ηp(t )

)2
⎤
⎦dt . (5.5)

The action S̃[η] can easily be obtained from Eqs. (3.4)–
(3.6) making the Wick rotation τ → it . Again, the evalua-
tion of the functional integrals can be performed decoupling
the interaction by Gaussian integration over auxiliary fields
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B(t ) and B1(t ). This leads us to the electron part of action
S[η, η+, B, B1(t )] containing both fermion η, η+ and boson
B(t ), B1(t ) fields

S[η η+, B, B1(t )] =
∫ ∞

−∞
η+

p (t )H(t, p)ηp(t )dt (5.6)

with the operator H(t, p) equal to

H(t, p) = −i∂t + ε+(p) − H0(t, p), (5.7)

where

H0(t, p) = ε−(p)2 + i(B(t )3 + B1(t )1). (5.8)

Then, we integrate over η, η+ and reduce the full action S to
the form

S = − ln

[∫
exp [−iS[B, B1]]DBDB1

]
, (5.9)

where the action S[B, B1] equals

S[B, B1] =
∫ ∞

−∞−

[
−2
∑

p

tr[ln (H(t, p))]t,t

−V

(
B2(t )

U0
− B2

1(t )

Ũ0

)]
dt, (5.10)

Minimizing S[B, B1] with respect to B(t ) and B1(t ), we come
to equations

B(t ) = −iU0tr
∫

3Gp(t, t ′)
dp

(2π )2
, (5.11)

B1(t ) = iŨ0tr
∫

1Gp(t, t ′)
dp

(2π )2 , (5.12)

where the matrix Green function Gp(t, t ′) satisfies the equa-
tions

H(t, p)Gp(t, t ′) = −δ
(
t − t ′), (5.13)

Gp(t, t ′)H̄
(
t ′, p
) = −δ(t − t ′). (5.14)

In Eq. (5.17), the operator H̄(t, p) equals

H̄(t, p) = i
←−
∂ t + ε+(p) − H0(t, p). (5.15)

We will see that the solutions B(t ) and B1(t ) are periodic. The
integrands in Eqs. (5.11) and (5.12) can be calculated using
spectral expansions similar to those performed in Secs. III and
IV. Indeed, one can introduce eigenfunctions ψsp(t, p) and
eigenvalues Esp of the operator H(t, p), Eq. (5.7), as

H(t, p)ψsp(t ) = Espψsp(t ),

ψ̄sp(t )H̄(t, p) = Espψ̄sp(t ). (5.16)

Equations (5.11), (5.12), and (5.16) are very similar to
Eqs. (3.12), (3.13), and (4.1), respectively, and can be obtained
from those setting T = 0 and making the rotation τ → it .

It can rather easily be demonstrated that there are real
periodic solutions B(t ) and B1(t ) of Eqs. (5.11) and (5.12)
determining the minimum of the action S[B, B1], Eq. (5.10).
Indeed, subtracting Eqs. (5.13) and (5.14) from each other one
obtains putting t ′ = t the following equation:

−i∂t (Gp(t, t )) − [H0(t, p),Gp(t, t )] = 0, (5.17)

where [. . . , . . . ] stands for the commutator.

Representing the solution Gp(t, t ) in the form

Gp(t, t ) = iS1
p(t )1 + S2

p(t )2 + iS3
p3, (5.18)

one can transform Eq. (5.18) as

∂t Sp(t ) = 2Bp(t ) × Sp(t ), (5.19)

where the vectors Sp(t ) and Bp(t ) equal

Sp(t ) = (S1
p(t ), S2

p(t ), S3
p(t )
)
,

Bp(t ) = (B1(t ), ε−(p), B(t )). (5.20)

The vector product in Eq. (5.19) is defined for arbitrary three-
component vectors L and M as

[L × M]k = ei jkgkkLiL j, (5.21)

where ei jk is the antisymmetric tensor (e123 = 1), and g =
diag(−1, 1,−1) is metric. Accordingly, a scalar product of
the vectors L and M equals

(LM) =
∑

k

gkkLkMk = −L1M1 + L2M2 − L3M3. (5.22)

Using the definitions (5.21) and (5.22), we multiply both
the sides of Eq. (5.19) by the vector Sp(t ) to obtain

∂t S2
p(t ) = 0, S2

p(t ) = q2
p. (5.23)

In Eq. (5.23), qp is a time-independent function of p. Further,
Eqs. (5.11) and (5.12) can be rewritten in the form

B(t ) = 2U0

∫
S3

p(t )
dp

(2π )2 , (5.24)

B1(t ) = −2Ũ0

∫
S1

p(t )
dp

(2π )2 . (5.25)

Assuming that the functions B(t ) and B1(t ) are periodic in
time with a period T0 one can see using Eqs. (5.19) and (5.23)
that Sp(t ) is also periodic with the same period.

Indeed, one writes in this case the equation for Sp(t + T0)
as

∂t Sp(t + T0) = 2Sp(t + T0)×Bp(t ), (5.26)

and one can write the solution in the form

Sp(t + T0) = wpSp(t ), (5.27)

where wp is a time-independent constant. Using Eq. (5.23)–
(5.25) one comes immediately to conclusion that wp = 1, and
the solution Sp(t ) is also periodic. The periodicity property
can be written as

B(t + T0) = B(t ), Sp(t ) = Sp(t + T0). (5.28)

So, one can expect periodic functions B(t ), B1(t ) providing
the minimum of the action S[B, B1], Eq. (5.10). Equations
(5.19)–(5.25) allow one to fix symmetries of the solutions

B(t ) = −B(−t ), B1(t ) = B1(−t ),

S3(t ) = −S3(−t ), S1(t ) = S1(−t ), S2(t ) = S2(−t ).

(5.29)

Comparing Eqs. (5.11) and (5.12) with Eqs. (3.12) and
(3.13) derived when minimizing the free energy functional
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F[b, b1], Eqs. (3.10) and (3.11), we conclude that

iB(t ) = b(it ), B1(t ) = b1(it ). (5.30)

It is very important that if B(t ) and B1(t ) are solutions of
Eqs. (5.11) and (5.12), then B(t − t0) and B1(t − t0) are also
solutions at an arbitrary t0 . It is clear that there can be many

solutions even at a fixed t0. For example, for B1(t ) = 0, one
comes in the limit k → 1 to Eq. (3.17) for any period of the
function B(t ). The relation (5.30) allows one to obtain proper
B(t ) and B1(t ) as soon as b(τ ) and b1(τ ) are obtained from
the condition for the minimum of the free energy functional
F[b, b1], Eq. (3.10).

Now, using Eq. (5.1) and (5.7), we can integrate over the
fermion fields η, η+ in Eq. (5.1) to obtain

N (t1 − t2) = −U 2
0

∫
tr[3G(t1 − t0, p1)]t1t1

dp1

(2π )2

∫
tr[3G(t2 − t0, p2)]t2t2

dp2

(2π )2 , (5.31)

where the bar stands for the averaging in t0 over the period
of the structure. Integration over t0 is absolutely necessary
because the extremum of the action functional is degenerate
with the respect to the time shifts, and one should integrate
over all the extremum states. Finally, using Eq. (5.11), we
write the correlation function N (t ) in the form

N (t1 − t2) = B(t1 − t0)B(t2 − t0), (5.32)

where the function B(t ) is the exact periodic solution of
Eqs. (5.11)–(5.15) [or Eq. (5.19)–(5.25)].

The loop current around the elementary cell is proportional
to

iU0tr[3G(t − t0, p1)] = B(t − t0). (5.33)

The periodicity of the exact solution guarantees a nondecay-
ing oscillating behavior of the function N (t1 − t2), Eq. (5.32).
As it is difficult to find the exact solution of Eqs. (5.19)–
(5.25), we use the approximate solution B0(t ) writing it with
the help of Eq. (5.30) as

B0(t ) = −ib0(it ), (5.34)

where b0(τ ) is the Jacobi elliptic function introduced in
Eq. (3.23).

The Jacobi elliptic function sn(iu, k) of an imaginary argu-
ment iu is related to an antisymmetric elliptic function sc(u|k)
with the period 2K (k) as [96]

sn(iu|k) = isc(u|k′), k2 + k′2 = 1, (5.35)

and one can write the order parameter B(t − t0) in real time in
the form

B0(t − t0) = −ib0(i(t − t0)) = γ ksc(γ (t − t0)|k′). (5.36)

In Eq. (5.33), t0 is arbitrary and integrating over the degener-
acy of the extremum one obtains immediately

B(t − t0) = 0, (5.37)

Comparing Eq. (5.37) with Eq. (5.33) we conclude that the
loop currents equal zero at any time t, which means that there
is no radiation, and the energy is conserved. As concerns the
correlation function N (t1 − t2), one should insert B(t − t0)
from Eq. (5.36) into Eq. (5.32) and average over t0.

The Fourier transform of the function sc(u|k′) is well
known [96]

sc(u|k′) = π

2kK (k′)
tan

πu

2K (k′)
+ 2π

kK (k′)

∞∑
n=1

(−1)n

×
exp
(− 2πnK (k)

K (k′ )

)
1 + exp

(− 2πnK (k)
K (k′ )

) sin

(
nπu

K (k′)

)
, (5.38)

where K (k) is the elliptic integral of the first kind.
The oscillating behavior of this function can, again, be

understood from Fig. 2(a). Indeed, the oscillation in the
imaginary time τ could be visualized as classical motion of
a particle in the potential w = 1

2 (u2(1 + k2) − u4). Therefore
the motion in real time should be described by motion in the
potential w̃(u) = − w(u) and is periodic.

Using the Fourier series for tan u

tan u = −2
∞∑

n=1

(−1)n sin (2nu),

we write the function sc(u|k′) in a more compact form

sc
(
u|k′) = − π

kK (k′)

∞∑
n=1

(−1)n tanh
πnK (k)

K (k′)
sin

nπu

K (k′)
.

(5.39)

Writing in Eq. (5.39) u = γ (t − t0) and substituting it into
Eq. (5.36) and (5.32), we write the correlation function N (t )
as

N (t ) = 2γ 2
∞∑

n=1

f 2
n cos (nω0t ), (5.40)

where

fn = π

2K (k′)
tanh

πnK (k)

K (k′)
, ω0 = πγ

K (k′)
. (5.41)

In the limit k → 1, one has the following asymptotic behavior
for the elliptic integral:

K (k) ∝ 1

2
ln

8

1 − k
, K

(
k′) ∝ π

2
, (5.42)

and Eq. (5.40) and (5.41) simplifies to the following form:

N (t ) ≈ 2γ 2
∞∑

n=1

[
1 −
(

1 − k

8

)2n]
cos (2γ nt ). (5.43)
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In the limit k → 1, the correlation function N (t ) shows an
oscillating behavior with the frequencies 2γ n (we put every-
where h̄ = 1). The energy 2γ is the energy of the breaking
of electron-hole pairs and one can interpret the result (5.43)
as oscillations between the static order and normal state.
The oscillating form of N (t1 − t2) resembles oscillations of
the order parameter in the nonequilibrium superconductors
[97–106] but, in contrast to those, the function N (t ) does
not decay in time. Nonperturbative quantum dynamic effects
have been studied in Ref. [104] using the imaginary time
representation. One obtains the nondecaying behavior because
now a thermodynamically stable state is considered. The
contribution of high harmonics n does not decay with n,

which originates from the existence of the poles in the first
term in Eq. (5.38). Apparently, this is a consequence of using
the function B0(t ), Eq. (5.34), instead of the exact solution
B(t ) in Eq. (5.32), and more accurate calculations would give
decaying amplitudes of high harmonics.

At the same time, the nondecaying form the function
N (t ) is guaranteed by the periodicity of the solution B(t ),
Eq. (5.28), and the corresponding possibility of expanding this
solution in Fourier series like those written in Eq. (5.38).

VI. OPERATOR ORDER PARAMETER

The correlation function N (t1 − t2) of the functions B(t )
was calculated by averaging the product B(t1 − t0)B(t2 − t0)
over the position t0. The same results for the correlation
functions can be obtained using an alternative description
based on the notion of an “operator order parameter” B̂. In
order to describe the oscillating behavior of the time crystal
one can formally introduce a Hamiltonian ĤTC of a harmonic
oscillator

ĤTC = (a+a + 1
2

)
ω0, (6.1)

where the energy ω0 has been introduced in Eqs. (5.40) and
(5.41), and a+, a are boson creation and annihilation operators
satisfying the commutation relations

aa+ − aa+ = 1. (6.2)

Instead of averaging over t0, we represent now correlation
functions a form of quantum mechanical averages with the
Hamiltonian ĤTC. For this purpose, we write for any t and t0
the following identity:

exp (inω0(t + t0))|n〉 = (eiω0(t+t0 )a+)n

√
n!

|0〉, (6.3)

where |n〉 means nth state of the Hamiltonian ĤTC, Eq. (6.1).
Further, we have a standard relation

a+(t ) = eiĤTCt ae−iĤTCt = aeiω0t , (6.4)

which allows us to write

einω0(t+t0 )|n〉 = 1√
n!

eiĤTC(t+t0 )(a+)ne−iĤTC(t+t0 )|0〉. (6.5)

Introducing operator A

A =
∞∑

n=1

fn
an

√
n!

, A(t ) = eiĤTCt Ae−iĤTCt , (6.6)

where fn is given by Eq. (5.41), and its Hermitian conjugate
A+, one obtains easily

A(t )|0〉 = 0,

A+(t )|0〉 =
∞∑

n=1

fn

(
a+(t )

)n
√

n!
|0〉 =

∞∑
n=1

fneinω0t |n〉. (6.7)

Now we consider two different methods of calculation of
correlation functions. Following the first method, we calculate
the correlation functions by averaging over t0,

∞∑
n=1

fneinω0(t+t0 ) = 0, (6.8)

∞∑
n1,n2=1

fn1 fn2 ein1ω0(t+t0 )ein2ω0t0 = 0, (6.9)

and
∞∑

n1,n2=1

fn1 fn2 ein1ω0(t+t0 )e−iω0n2t0 =
∞∑

n=1

f 2
n exp (iω0nt ), (6.10)

where the bar means averaging over t0.
On the other hand, we can write using Eqs. (6.7) and the

normalization of the states |n〉 the following relations:
∞∑

n=1

fneinω0(t+t0 ) = 〈0|A+(t + t0)|0〉 = 0, (6.11)

∞∑
n1,n2=1

fn1 fn2 ein1ω0(t+t0 )e−in2ω0t0 = 〈0|A(0)A+(t )|0〉, (6.12)

and
∞∑

n1,n2=1

fn1 fn2 e−in1ω0(t+t0 )ein2ω0t0 = 〈0|A(t )A+(0)|0〉. (6.13)

In the language of the quantized order parameter A, one can
replace with the help of Eqs. (6.11)–(6.13), the averaging over
the phase by a quantum mechanical averaging and write

N (t ) = γ 2(〈0|A(t )A+(0)|0〉 + 〈0|A(0)A+(t )|0〉), (6.14)

where |0〉 stands for the wave function of the ground state of
the Hamiltonian ĤTC, Eq. (6.1). At the same time, quantum
averages of the operators A and A+ vanish

〈0|A(t )|0〉 = 〈0|A+(t )|0〉 = 0. (6.15)

Actually, using this representation one can calculate multitime
correlation functions

N2p(t1, t2 . . . ., t2p)

= B(t1)B(t2) . . . B(tp)B(tp+1)B(tp+2) . . . B(t2p), (6.16)

with B(t ) determined by Eq. (5.36). Writing sin(nπu/K (k′))
in Eq. (5.39) as the sum of two exponentials one can multiply
all B(tl ) in Eq. (6.16) and average over t0 term by term. It can
be checked that each average can be written as a quantum-
mechanical average of products of operators A(t ) and A+(t ).

As a result, the correlation function N2p(t1, t2, . . . , t2p)
takes the form

N2p(t1, t2, . . . , t2p) = 1

(p!)2

∑
P

〈0|
∏

0�l�p

A(tl )A
+(tp+l )|0〉,

(6.17)
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where the symbol
∑

P means the sum of all permutations
of the operators A(tl ) and A+(tl ) in the product. Correlation
functions of odd number of times are equal to zero. At p = 1,
one obtains the correlation function N (t1 − t2), Eq. (6.14). In
the limit k → 1, Eq. (6.14) simplifies to (5.43).

Equations (5.32), (6.14), (6.16), and (6.17) demonstrate
equivalence between the averaging of classical order param-
eters over the positions in time and the quantum-mechanical
averaging of operator order parameters. This resembles the
equivalence between the coherent states and the number states
descriptions in quantum optics [107,109].

One can interpret the operator A as an operator order
parameter. This type of the order parameters extends the
variety of conventional order parameters like scalars, vec-
tors, matrices used in theoretical physics. As the quantum
mechanical average of the operators A and A+ vanishes, one
cannot expect any loss of energy due to, e.g., emission of light.
At the same time, already two-time correlation functions do
show oscillating behavior and this does not mean any loss
of energy. The system described by the Hamiltonian ĤTC,

Eq. (6.1), remains in the ground state, and the oscillations are
due to virtual transitions between the states. Remarkably, the
distance between the energy levels does not decay in the limit
of infinite volume, V → ∞, which demonstrates a coherence
all over the sample.

The two-time correlation functions of type (5.43) and
(6.14) describe inelastic quantum mechanical scattering and
corresponding experiments can be used for observing the time
crystals. The nondecaying time oscillations can be an impor-
tant property for designing qubits but, for making devices,
one should identify physically relevant systems described by
Eqs. (2.13)–(2.15).

VII. SPONTANEOUS BREAKING OF THE
TIME-TRANSLATION SYMMETRY: TIME-DEPENDENT

WAVE FUNCTIONS OF EQUILIBRIUM STATES
AND THEIR MEANING

The oscillating behavior of the correlation function N (t ),
Eqs. (5.40) and (5.43), has been demonstrated in the preceding
sections using methods of functional integration. Within this
method one starts writing physical quantities in a form of a
functional integral over anticommuting fermion fields. These
integrals are transformed to functional integrals over boson
fields, and one can calculate these integrals using the saddle-
point method. The oscillating in both imaginary and real
time order parameters appears as a result of minimizing an
effective free energy (action) functional of boson fields. As a
result, correlation functions oscillating in real time arise in the
thermodynamically stable state. This is the oscillating in time
order parameter B(t ) that is responsible for this striking effect.
Using a time-independent order parameter in Eqs. (5.31) and
(5.32), one would obtain a standard time-independent long-
range order in space only.

However, previous discussions in the literature on the
time crystals were based on the more traditional Hamiltonian
formalism (see, e.g., Ref. [10]). Assuming that the starting
Hamiltonian does not depend on time it is less straightforward
to understand an oscillating behavior of correlation func-
tions at large times. Therefore we sketch in this section the

derivation of the main results within the Hamiltonian ap-
proach and clarify why the results do not agree with the
conclusions of Ref. [10].

A. Hamiltonian approach

We start this subsection with writing a Hamiltonian Ĥ
corresponding to the action S[χ, χ+], Eq. (2.13). It describes
the system of interacting electrons in two bands 1 and 2

Ĥ =
∑

p

c+
p (ε+(p) + ε−(p)3)cp

+ 1

4V

⎡
⎣Ũ0

(∑
p

c+
p 1cp

)2

−U0

(∑
p

c+
p 2cp

)2
⎤
⎦. (7.1)

Two-component vectors cp = {c1
p, c2

p}, contain creation and
destruction operators c1

p and c2
p for the fermions of the bands

1 and 2, p = {α, p}, where α stands for spin (the spin
variable α is not very important here). Hamiltonian (7.1)
corresponds to the action S[χ ], Eqs. (2.13)–(2.15), and the
rest of the notations is the same. It resembles the BCS
[88] Hamiltonian in theory of superconductivity specially de-
signed for describing superconductivity. The electron-electron
interaction in Eq. (7.1) is short-ranged but the interaction
terms have a somewhat simplified separable form containing
summation over two momenta only. Equation (7.1) describes
a Hamiltonian of the grand canonical ensemble written at
fixed chemical potential μ [see also Eq. (2.5)]. Considering
grand canonical ensemble is standard in study of macroscopic
systems of interacting electrons. Solving the model with the
Hamiltonian Ĥ , Eq. (7.1), is equivalent to solving models with
a more general electron-electron interaction in the mean-field
approximation. In the limit of a large volume V → ∞, one
can replace the sum over the momenta by integrals using the
standard replacement

∑
p

(. . . ) → V
∫

(. . . )
dp

(2π )d
, (7.2)

(d is dimension) and see that Ĥ is proportional to the volume
V, as it should be. The form of the interaction in Eq. (7.1) cor-
responds the ‘infinite range’ interaction of effective electron-
hole pairs (in the BCS Hamiltonian one writes interaction
of electron-electron pairs), and that is why the mean-field
theory coincides with the exact solution for the Hamiltonian
Ĥ , Eq. (7.1). It is well known that, generally, the mean-field
approximation is not necessarily good in one and two dimen-
sions but it works very well in three or quasi-two-dimensional
models at least qualitatively. Therefore the Hamiltonian Ĥ is a
good starting point for studying ordered phases of the electron
systems in 3D or quasi-2D unless they are close to a phase
transition.

Of course, time is not present in Eq. (7.1). It is very
important for the results obtained in the present work that the
coupling constant Ũ0 is positive and sufficiently large. In a
recent publication [110], similar models were considered with
Ũ0 = 0 and −U0, and it was demonstrated that the instanton
lattice had a higher energy than the homogeneous state. The
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same result would be obtained if we used negative or not
sufficiently large positive Ũ0.

Having in mind that the mean-field approximation is ex-
act for the model described by the Hamiltonian Ĥ we use
this method for explicit calculations. One starts replacing Ĥ ,
Eq. (7.1), by a mean field Hamiltonian containing an effective
potential instead of the interparticle interaction. It can depend
on the imaginary time τ when thermodynamic properties
are studied or one can introduce a real-time dependence for
studying real-time correlation functions. Introducing a mean
field Hamiltonian is equivalent to decoupling the interaction
by integration over auxiliary fields as it has been done in
the previous sections. The effective free energy functional
obtained in this way depends on the auxiliary field and,
minimizing this functional, one obtains equations that are
equivalent to the mean-field equations. Of course, there can
be many solutions of the mean-field equations for the effec-
tive potential, and one should use the one corresponding to
the minimum of the free energy. The difference between the
free energies of different states is proportional to the volume
V, and in the limit V → ∞, one should find the one with the
lowest energy.

B. Time-dependent wave functions

Usually, one uses in quantum mechanics wave functions
�̃(t, X ) (X are coordinates of particles) that are solutions of
the Schrödinger equation

i
∂�̃(t, X )

∂t
= Ĥ�̃(t, X ). (7.3)

The time-dependent solutions �̃(t, X ) can be written in a form
of a superposition

�̃(t, X ) =
∑

n

cn�̃n(t, X ), (7.4)

where the time-dependent eigenfunctions �̃n(t, X ) equal

�̃n(t, X ) = �n(X ) exp (−iEnt ), (7.5)

and the time-independent wave functions �̄n(X ) satisfy the
stationary Schrödinger equation

Ĥ�n(X ) = En�n(X ). (7.6)

The time-dependent wave functions �̃n(t, X ) obey orthogo-
nality relations∫

�̃∗
n (t, X )�̃m(t, X )dX

=
∫

exp (i(En − Em)t )�∗
n (X )�m(X )dX = δmn. (7.7)

Solutions of the Schrödinger equation (7.3) are generally
time-dependent but can be represented in a form of Eqs. (7.4)
and (7.5) with the help of the time-independent eigenfunctions
�n(X ). The scalar product of two time-dependent wave func-
tions in Eq. (7.7) contains integration over the coordinates X
but not over time t .

As a spontaneous breaking of the symmetry is expected,
the symmetries of the Hamiltonian may differ below the
transition point from those of the original Hamiltonian Ĥ .

There are plenty of examples of such a behavior. One of the
examples, most close to the present case, is formation of a
charge density wave (CDW) in a model invariant with respect
to space translations. Below the transition, a periodic in space
order parameter appears, which leads to an additional periodic
dependence of electron wave functions on coordinates (Bloch
theorem). Thermodynamic quantities depend directly on the
amplitude of CDW but not on the modulation vector Q,

although the latter enters explicitly the mean-field Hamilto-
nian. At the same time, the space modulation can be observed
in two-point correlation functions. One cannot calculate phys-
ical quantities like, e.g., correlation functions at different
space points analytically without calculating first the order
parameter. Mean-field theory serves usually as an efficient
tool for studying how the original symmetries of the model
are broken. Fluctuations can in some cases be important in
low dimensions but in 3D or in quasi-2D, this procedure is in
most cases reliable. One can say that the CDW appears as a
result of the breaking of the space-translation symmetry of the
original space-translation invariant Hamiltonian.

The scenario concerning formation of the thermodynamic
quantum time crystal considered in this paper is similar.
The main difference with respect to the formation of the
CDW is the breaking of the time-translation symmetry of
the time-translation invariant (static) Hamiltonian. Being at
the moment more interested in the correlation functions of
real time, we will replace the Hamiltonian Ĥ , Eq. (7.1), by
a mean-field Hamiltonian Ĥmf (t ) quadratic in the operators cp

and c+
p , which simplifies the calculations. The Hamiltonian

Ĥmf (t ) contains periodic in time t order parameters B(t ) and
B1(t ) that have to be found from mean-field equations. It is
clear that the wave functions of Hmf (t ) will depend on time
in a nontrivial way different from Eqs. (7.5) and (7.6). At
first glance, one might think that such a mean field is simply
unreasonable because it violates the exact form of the wave
functions written in Eqs. (7.5) and (7.6).

In order to clarify this discrepancy, we adopt now the
scheme of the BCS theory [88,108,111] to the present situ-
ation. Although we have to find solutions of the Schrödinger
equation with the Hamiltonian Ĥ , Eq. (7.1), written for the
grand canonical ensemble, it is instructive to start with a
system of a fixed number of electrons.

A trial antisymmerized time-dependent wave function
�̃N (t ) of N electrons and N holes (spin indices are omitted
for simplicity) can be written as

�̃N (t ) = Ae−iEN t
N∏

j=1

ψ (re j − rh j ), (7.8)

where re j and rh j, j = 1, 2, . . . , N numerate coordinates of
electrons and holes. Functions ψ (re j − rh j ) satisfy a station-
ary Schrödinger equation for a single electron-hole pair, the
operator A antisymmetrizes the product of these functions,
and the energy EN is the total energy of N isolated pairs. The
Hamiltonian of a single electron-hole pair is taken in the form

ĥeh(r1, r2) = εe
(−i∇r1

)+ εh
(− i∇r2

)+ V (r1 − r2), (7.9)

where εe(−i∇r ) and εh(−i∇r ) are operators of kinetic energy
of the electron and hole, and V (r1 − r2) is an interaction.
Putting the pair in the center of mass we find the eigenvalue
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ε0 and the eigenfunction ψ (r1 − r2) from the equation

ĥeh(r1, r2)ψ (r1 − r2) = ε0ψ (r1 − r2). (7.10)

It is clear that the energy EN of noninteracting electron-hole
pairs equals

EN = Nε0. (7.11)

In principle, taking into account an effective interaction with
other electron-hole pairs can change the value ε0. In this case,
one should use an energy ε0N depending on N instead of ε0

and write

EN = Nε0N . (7.12)

Introducing Fourier-transform of the function ψ (r)

ψ (r) =
∫

gpeipr dp

(2π )d
, (7.13)

we write the function �̃N (t ) in the form

�̃N (t ) = A
N∏

j=1

⎛
⎝∑

p j

gp j e
ip j (re j−rh j )e−iε0N t

⎞
⎠

=
N∏

j=1

⎛
⎝∑

p j

gp j c
+
1p j

c2p j e
−iε0N t

⎞
⎠|0〉. (7.14)

In Eq. (7.14), the symbol |0〉 stands for the ground state,
and c1p j , c2p j and c+

1p j
, c+

2p j
are destruction and creation

operators for the state with momentum p of the jth pair. All
the transformations, Eqs. (7.8)–(7.14) have been exact so far,
and the time dependence of the function �̃N (t ) has the form
given by Eqs. (7.5) and (7.6) usual for static Hamiltonians.

The trial function �̃N (t ) is still too complicated and is
not helpful for solving the Schrödinger equation with the
Hamiltonian Ĥ , Eq. (7.1). Moreover, it is written for the fixed
number of electrons-hole pairs N, while the Hamiltonian Ĥ
has been introduced for the grand canonical ensemble. There-
fore let us write a trial function �̃ for the grand canonical
ensemble in the form of a superposition

�̃(t ) =
∞∑

N=1

λN�̃N (t ). (7.15)

The coefficients λN have to be chosen in a form that would
make it possible to find exact time-dependent solutions for
the Hamiltonian Ĥ, Eq. (7.1). This task is achieved writing
the function �̃(t ) as

�̃(t ) =
∏

p

(
up(t ) + vp(t )c1+

p c2
p

)|0〉. (7.16)

Equation (7.16) is written for ε1(p) > ε2(p) [at ε1(p) <

ε(p2), one should exchange the bands, 1 � 2], and |0〉 is the
state of the Hamiltonian of noninteracting particles (Fermi
step function). Equation (7.16) is very similar to the trial
function in the BCS theory [88] but the functions up(t ), vp(t )
depend on time, and the products c1+

p c2
p create electron-hole

pairs instead of the Cooper pairs. The superconducting analog
of the function �̃(t ), Eq. (7.16), has been used in Ref. [98] for
studying nonequilibrium states in superconductors. The de-
pendence of λN on N is sharp and 〈N2〉 − 〈N〉2 ∼ 〈N〉, where

〈N〉 is the average number of electrons at a fixed chemical
potential. At the same time, 〈N〉 � 1, and the variation of λN

is negligible when several electron-hole pairs enter or leave
the sample.

We emphasize that the function �̃(t ), Eq. (7.16), is the
most general form of the exact solution of the nonstationary
Schr ödinger equation with the Hamiltonian Ĥ , Eq. (7.1), and
this form is different from Eqs. (7.5) and (7.6). Of course,
Eq. (7.16) could be introduced as a guess without the prelimi-
nary discussion resulting in Eqs. (7.8)–(7.15). In this case, one
would have to just check that the function �̃(t ) is the solution
to the Hamiltonian Ĥ . However, this qualitative discussion
may be helpful for understanding the origin of the form of
the wave functions �̃(t ), Eq. (7.16). Taking time-independent
coefficients up and vp in the trial function �̃, Eq. (7.16),
corresponds to the standard mean-field approximation used in
Ref. [23].

Following the proposed mean-field procedure we replace
the Hamiltonian Ĥ , Eq. (7.1), by the mean-field Hamiltonian
Ĥmf (t ),

Ĥ → Ĥmf (t ) =
∑

p

c+
p Mmf

p (t )cp − V

(
B2(t )

U0
− B2

1(t )

Ũ0

)
,

(7.17)

where

M̂mf
p (t ) = ε+(p) + ε−(p)3 − i(B(t )2 + B1(t )1), (7.18)

and functions B(t ) and B1(t ) play the role of the order pa-
rameter. They are periodic in time with a period T0 [these are
the same functions as those introduced in Eqs. (5.6)–(5.12)].
Their explicit form of the time dependence can be obtained
from self-consistency equations

U0

2V

∑
p

〈c+
p 2cp〉mf = B(t ), (7.19)

Ũ0

2V

∑
p

〈c+
p 1cp〉mf = −B1(t ). (7.20)

In Eqs. (7.19) and (7.20), the angle brackets 〈. . . 〉mf stand
for the quantum mechanical averaging with the Hamiltonian
Ĥmf (t ), Eq. (7.17). Equations (7.19) and (7.20) are identical
to Eqs. (5.11) and (5.12).

In order to find wave functions �, one should solve the
effective Schrödinger equation

i
∂�̃(t )

∂t
= Hmf (t )�̃(t ). (7.21)

The solutions �̃(t ) of Eq. (7.21) are time-dependent but the
expansion, Eqs. (7.4)–(7.6), is no longer valid when the func-
tions B(t ) and B1(t ) are time-dependent. As we have seen, this
does not lead to any contradiction because Eqs. (7.4)–(7.6)
have been written for a system with a fixed number of the
electrons, while the solutions �̃(t ) has been obtained for the
grand canonical ensemble.

Using Eqs. (7.21) and (7.18), one comes to Bogolyubov-de
Gennes-like equations [111] for the functions up(t ) and vp(t )(

−i
∂

∂t
+ M̂mf

p (t )

)
φ̃p(t ) = 0, (7.22)

245128-18



MEAN-FIELD THERMODYNAMIC QUANTUM TIME-SPACE … PHYSICAL REVIEW B 100, 245128 (2019)

where

φ̃p(t ) =
(

up(t )

vp(t )

)
. (7.23)

It is very important that, if the periodic order parameters
B(t ) and B1(t ) are solutions of self-consistency equations,
the functions B(t − t0) and B1(t − t0) are also solutions. This
means that the state is degenerate, and one should integrate
over t0 at the end of calculations to take into account the
degeneracy. This procedure contrast calculations performed
when studying nonequilibrium phenomena where a certain
fixed time t0 is always present marking the beginning of a
process.

In the functional integral formulation of the preceding
sections, the necessity of integration over t0 simply followed
from the degeneracy of the minimum of the effective action
against the shift of time by t0. In mean-field theories, one
should first guess a mean-field solution and then check the
self-consistency. If one finds a solution for any shift of t0
(which is the case in the present situation), one should average
physical quantities over t0 at the end of calculations. From the
mathematical point of view, the necessity of the integration
over t0 is more transparent in the functional integral formula-
tion developed previously.

Of course, there is also a region of parameters of the model
where a time-independent order parameter

B = −iγ , B1 = 0, (7.24)

(γ is the gap in the spectrum) corresponding to the DDW state
[23] is more favorable but the time-dependent solutions are of
the major interest now and we concentrate on those.

A nontrivial form of the time dependence of the wave
functions �̃n(t ) (different from exp (−iEnt ), where En is
an eigenenergy) originates from the time dependence of the
order parameters B(t ) and B1(t ) appearing below a critical
temperature, and this is an unusual feature. However, using
the fact that the functions B(t ) and B1(t ) are periodic one can
construct an expansion alternative to Eq. (7.4) with the help
of the Floquet theorem [112] by writing a solution φpn(t ) of
Eq. (7.22) as

φ̃pn(t ) = exp(−iEpnt )φpn(t ), (7.25)

where φpn(t ) is a periodic function with the period T0,

φpn(t ) = φpn(t + T0), (7.26)

and Epn is quasienergy. The functions φpn(t ) and the
quasienergies Epn obey the equation(

−i
∂

∂t
+ M̂mf

p (t )

)
φpn(t ) = Epnφpn(t ). (7.27)

Comparing Eq. (7.27) with Eq. (5.16), we see that these are
the same equations for the same wave functions.

Introducing the scalar product one proves in the standard
way that the functions φpn(t ) form the orthonormal basis,

{φ+
pn(t ), φ(t )pn′ } ≡ T −1

0

∫ T0

0
(φ+

pn(t ), φpn′ (t ))dt = δnn′ . (7.28)

The figure brackets are used here to emphasize that, in the
Floquet theory, time integration is included in the scalar prod-
uct. This contrasts the scalar product, Eq. (7.7), used in the

conventional quantum mechanics with static Hamiltonians.
For time-independent order parameters B(t ) and B1(t ), the
functions φpn(t ) are constants. The periodic dependence of
the functions φpn(t ) on time contrasts the traditional time-
independence of the functions �n, Eq. (7.6). As the mean-
field scheme is exact in the model with the Hamiltonian Ĥ ,

Eq. (7.1), the time-dependent functions �̃pn(t ), Eq. (7.16)–
(7.27), are exact eigenfunctions of the Schr ödinger equation
with the Hamiltonian Ĥ , Eq. (7.1).

At first glance, it looks as if the time dependence of
φ̃pn(t ) violated basic principle of thermodynamic because the
conventional expression for the partition function Z ,

Z =
∑
states

exp (−En/T ), (7.29)

where the sum is as usual performed over all states, does not
contain time.

However, it is still possible to formulate a proper definition
of the partition function Z using the Floquet states (7.25) and
(7.26). It is worth emphasizing that we do not attempt here
constructing new quantum mechanics. As the main results
have already been obtained in the previous sections using
the functional integrals, the scheme suggested in this Section
serves merely as an illustration.

Although time t is explicitly present in Eqs. (7.17)–(7.27),
the quantum mechanical average of an operator Â(t ) contain-
ing time due to dependence on the periodic functions B(t )
and B1(t ) is time independent. Indeed, using Eqs. (7.25) and
(7.26), recalling that B(t − t0), B1(t − t0), and φpn(t − t0) are
also solutions of Eqs. (7.19), (7.20), and (7.22), and therefore
integrating over t0, the average of the operator Â can be
written as

Ap,nn = T −1
0

∫ T0

0
φ̃+

pn(t − t0)Â(t − t0)φ̃pn(t − t0)dt0

= T −1
0

∫ T0

0
φ+

pn(t − t0)Â(t − t0)φpn(t − t0)dt0

= T −1
0

∫ T0

0
φ+

pn(t )Â(t )φpn(t )dt . (7.30)

Equation (7.30) shows that Âp,nn is time-independent.
Actually, the Hamiltonian formalism presented in this

section is a natural generalization of the conventional one.
Although, the wave functions and order parameters depend on
time, one can construct thermodynamics in an almost standard
way. Usually, calculating the partition function Z one starts
with the Gibbs formula

Z = Tr exp(−Ĥ/T ) =
∑

n

(�̃+
n (t ), �̃n(t )) exp(−En/T )

=
∑

n

(�+
n , �n) exp(−En/T ), (7.31)

with the functions �̃n(t ) and �n introduced in Eqs. (7.5) and
(7.6). Equation (7.31) contains explicitly the sum over all
states. This is the standard formalism that can be used for
describing the normal metal phase or the DDW phase with
the order parameter given by Eq. (7.24).

Now we solve Eq. (7.21) using the Hamiltonian
Ĥmf (t − t0), Eq. (7.17). As the Hamiltonian Ĥmf (t − t0) is
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periodic in time, we use the Floquet theorem and write the
function �̃(t ) satisfying Eq. (7.21) in the form

�̃n(t ) = exp (−iEnt )�n(t ), (7.32)

where �n(t ) are periodic functions with the period T0 satisfy-
ing the equation(

Ĥmf (t ) − i
∂

∂t

)
�n(t ) = En�n(t ), (7.33)

and En is quasienergy.
It looks natural to replace �n(t ) and En in Eq. (7.31) by

�n(t ) and En and write taking into account the degeneracy
with respect to the shift of time t → t − t0 the following
formula for the partition function:

Z = T −1
0

∑
n

∫ T0

0
dt0(�+

n (t − t0),�n(t − t0)) exp (−En/T ).

(7.34)

Using the periodicity and the normalization, Eq. (7.28), of
the functions �̃n(t ), one comes after integration over t0 to the
following formula for the partition function:

Z =
∑

n

exp (−En/T ). (7.35)

Equation (7.35) may generalize the standard formula for
the partition function, Eq. (7.31), to the case of the time-
dependent wave functions. It shows that, although one obtains
time-dependent order parameters and wave functions, the
degeneracy with respect to the shift of time t → t − t0 and
the necessity of the averaging over t0 allows one to write, in
particular, a reasonable formula for the partition function Z.

Of course, Eqs. (7.34) and (7.35) are just a guess. It
would be interesting to prove the equivalence between such an
approach and the calculations in imaginary time τ carried out
in the preceding sections but this is beyond the scope of this
work. At present, we merely demonstrate that the appearance
of the time-dependent wave functions does not contradict
thermodynamics.

Although single-time correlation functions do not depend
on time, which becomes clear after integration over t0, two or
more time correlation functions can be dependent on differ-
ences of times.

C. Why the “no-go” theorem cannot be applied
to the present scenario

The results obtained in the previous sections do not agree
with conclusions of the “no-go” theorem [10], and it is worth
discussing this disagreement in details. Although it looks at
first glance that the proof of the theorem is general, it cannot
be used in the situation considered in the present work.

Actually, the publication [10] contains two different parts.
First, the authors prove that a two-time correlation function
of two arbitrary operators integrated over the volume of
the system cannot have the long-range time order at zero
temperature at T = 0. The consideration of this part is based
on an assumption of locality of the Hamiltonian but does not
imply a specific form of the latter. The second part containing
the proof for finite temperatures is different. It is based on

rigorous results of Ref. [113] obtained for quantum spin
models. Although this part is rigorous, the results can be used
for a certain class of spin models, while models of interacting
fermions have not been considered at all.

The results of the present work disagree with the results
of both the parts of the publication [10] and now we discuss
these two parts separately.

1. Long-range time order at T = 0

The proof of the theorem is performed at zero temperature
T = 0 using a rather simple chain of inequalities applied for
calculation of a two-time correlation function of two operators
(Eq. (6) of Ref. [10]). The quantum mechanical average
〈0| . . . |0〉 is performed using the ground state |0〉. However,
the final inequality (5) of that work has been obtained as-
suming implicitly that the wave function of the ground state
|0〉 did not depend on time. Indeed, this looked self-evident
for a time-independent Hamiltonian, and the authors did not
even mention that this assumption had been made. Within the
method of the functional integration used in the present paper,
the concept of the wave functions of the ground state was not
used for calculations. However, a direct comparison becomes
possible using the Hamiltonian approach developed in this
section.

The notion of the order parameter and spontaneous
breaking of the time-translation symmetry was not used in
Ref. [10], and therefore the question about a time-dependence
of the wave functions of the ground state could not arise.
Although all wave functions are time-dependent even
for static Hamiltonians due to the prefactor exp (−iEnt ),
Eqs. (7.5) and (7.6), this time-dependent prefactor cancels its
complex conjugate in quantum mechanical averages.

However, if time-dependent periodic order parameters ap-
pear as a result of the spontaneous breaking of the time-
translation symmetry, the eigenfunctions of the Hamiltonian
acquire the Floquet-type form, Eq. (7.32). The prefactor
exp (−iEnt ) and its complex conjugate cancel each other in
the average over the ground state in this case, too, but the
periodic functions �0(t ), Eq. (7.32), are still there. Finally,
the average over the ground state takes effectively a form
like 〈�0(t )| . . . |�0(t )〉 with time-dependent functions �0(t ),
which invalidates the proof given in the first part of Ref. [10].

It is worth emphasizing that we consider a grand canonical
ensemble with the fixed chemical potential, while the standard
form, Eq. (7.5), of the solution of the Schrödinger equation
is written for a Hamiltonian with fixed number of particles.
Therefore the inequalities of Ref. [10] are correct, e.g., for
a system of local spins but are not valid for the model
considered here.

In order to make a direct comparison of the present results
with those obtained in the first part of Ref. [10], it is instructive
to consider the correlation functions of an operator Â at two
different times t1 and t2. We can write the correlation function
C(t1, t2) in the standard way

C(t1, t2) = U 2
0

V 2

〈
�∗

0

∣∣Â(t1)Â(t2)|�0〉, (7.36)
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where �0 is the wave function of the ground state of the
Hamiltonian Ĥ , Eq. (7.1), and

Â(t ) = eiĤt Âe−iĤt . (7.37)

Actually, Eqs. (7.36) and (7.37), is the starting point of the
proof given in the first part of Ref. [10]. At the same time,
the function C(t1, t2) coincides with the function N (t1 − t2),
Eq. (5.1), provided the operator Â is chosen in the following
form:

Â =
∑

p

(c+
p 2cp), (7.38)

where c+
p and cp are the fermion operators introduced in

Eq. (7.1),

cp(t ) = eiĤt cpe−iĤt , (7.39)

and the Hamiltonian Ĥ , Eq. (7.1), is used for the calculations.
The function C(t1, t2), Eq. (7.36), can be rewritten in a

form

C(t1, t2) = C0(t1, t2) + C1(t1, t2), (7.40)

with

C0(t1, t2) = U 2
0

V 2
(A00)2,

C1(t1, t2) = U 2
0

V 2

∑
m =0

A0mAm0e−(Em−E0 )(t1−t2 ). (7.41)

In Eqs. (7.41), A0m are matrix elements of the operator Â
between the ground state 0 and a state m. It is the correlation
function C1(t1, t2) that has been estimated in Ref. [10]. Indeed,
subtracting from the function C1(t1, t2) its value at t1 = t2 and
taking the absolute value, we obtain

|C1(t1, t2) − C1(t2, t2)|

= 2U 2
0

V 2

∑
m =0

A0mAm0 sin
|Em − E0||t1 − t2|

2

� U 2
0

V 2
|t1 − t2|

∑
m =0

A0mAm0|Em − E0|. (7.42)

In the model considered here, the sum over m corresponds
to a sum over momenta p. Replacing the sum over p by the
integration with the help of Eq. (7.2) one can see that the
inequality (7.42) agrees with the inequality (5) of Ref. [10],
although it is obtained now in a less rigorous way. However,
this agreement does not mean that the time crystals are impos-
sible because the correlation function C0(t1, t2) in Eqs. (7.41)
is not necessarily equal to zero. The contribution C0(t1, t2) was
not considered in Ref. [10] at all.

The Hamiltonian Ĥ is written in such a way that the mean-
field theory becomes exact in the limit V → ∞. This allows
us to make the replacement (7.17) and follow the subsequent
steps, Eqs. (7.16)–(7.28). The quantum-mechanical average
C00(t1, t2) in Eq. (7.36) equals the product of the averages of
the operators Â(t1) and Â(t2). We assume that the initial sym-
metry of the Hamiltonian Ĥ (7.1) is broken due to existence
of the order parameters B(t ) and B1(t ). Then, neglecting the

function C1(t1, t2) we write

C(t1, t2) = U 2
0

V 2

∑
s

∑
p1,p2

〈
c+

p1
(t1)2cp1 (t1)

〉
s

〈
c+

p2
(t2)2cp2 (t2)

〉
s,

(7.43)

where the angular brackets stand for the quantum-mechanical
averaging over all degenerate states s corresponding to the
ground state. Using the self-consistency equations (7.19) and
(7.20), we obtain

C(t1, t2) = B(t1 − t0)B(t2 − t0) (7.44)

and come finally to Eqs. (5.40)–(5.43). The bar in Eq. (7.44)
stands for averaging over the time shift t0. This corresponds to
summation over all degenerate states.

Now it is clear at which point the present derivation has
deviated from the arguments of Ref. [10]. The authors of the
“no-go” theorem did not consider the spontaneous breaking of
the symmetry with the formation of the time-dependent order
parameter and therefore missed the possibility of the periodic
dependence of the two-time correlation function, Eq. (7.44).

2. Quantum spin models

The “no-go” proof presented in the second part of
Ref. [10] for finite temperatures is based on rigorous results
of Ref. [113]. No doubts, the results of Ref. [113] are correct
and rigorous but, as follows already from the title of that
publication, the authors considered quantum spin models,
which is sufficiently far away from what is considered here.
So, the rigor of the arguments of that work is not an argument
against the present results because the models considered
there are different from the model considered here. Indeed,
the scheme developed here for the fermion model simply
cannot be applied to spin models. Many-body fermion models
with interaction can in some cases be “bosonized” but no
general scheme making this mapping in arbitrary dimensions
exists. One-dimensional models are rather an exception than a
rule.

Although the arguments presented in Ref. [113] are gen-
eral, a very important restriction is imposed on the models
under consideration: the spin operators are local. This means
that their commutators decay fast when the operators are taken
at sufficiently distant points. This restriction is formulated
already in the abstract and in the beginning of Sec. 3 of
Ref. [113]. The criterion of the locality has been formulated
explicitly in Sec. 2 of an earlier work by one of the authors of
Ref. [114].

In fact, a pseudospin reformulation of the Hamiltonian
Ĥ , Eq. (7.1), can be carried out, and one has to answer the
question why the proof of Ref. [113] cannot be applied to the
present case. One can proceed introducing pseudospin opera-
tors ip similar to those introduced by Anderson in Ref. [115]
in the BCS model for superconductors. In the present case, the
pseudospin operators are introduced as follows:

̂1p = (c1+
p c2

p + c2+
p c1

p

) = c+
p 1cp,

̂2p = −i
(
c1+

p c2
p − c2+

p c1
p

) = c+
p 2cp,

̂3p = c1+
p c1

p − c2+
p c2

p = c+
p 3cp. (7.45)
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In a vector notation, one writes a vector operator

�̂p = c+
p �cp, (7.46)

where � is the vector of the Pauli matrices i, i = 1, 2, 3.
It is important to emphasize that the pseudospin operators

̂ are merely a convenient computational tool and have noth-
ing to do with real local spins.

It can easily be checked using the fermion anticommutation
relations for the operators cp, c+

p that the operators ̂i
p obey

spin commutation relations

[̂ip, ̂ j p′ ] = 2iei jk̂kp′δpp′ , (7.47)

where ei jk is the antisymmetric tensor. The Hamiltonian Ĥ ,
Eq. (7.1), can be rewritten in terms of the spin operators �̂p as

Ĥ =
∑

p

[ε+(p)np + ε−(p)̂3p]

− 1

4V

⎡
⎣U0

(∑
p

̂2p

)2

− Ũ0

(∑
p

̂1p

)2
⎤
⎦, (7.48)

where

np = c1+
p c1

p + c2+
p c2

p = c+
p cp (7.49)

is the density operator. As the operator np commutes with �̂p,
the term with np in Ĥ is not important. The most interesting
correlation function that determines the long-range order in
space, Eq. (7.43), takes in the pseudospin representation the
form

C(t1, t2) = U 2
0

V 2

∑
p1,p2

〈
̂2p1 (t1)̂2p2 (t2)

〉
. (7.50)

Equation (7.48), is quite convenient for calculations. For ex-
ample, Eqs. (5.19), (5.23), (5.24), and (5.25) can be obtained
from equations of motion for the operators �̂p by the quantum
mechanical averaging of the operators �̂p. The derivations are
very similar to those carried out in superconductivity theory
using the Anderson pseudospins [100–102].

So, the fermion model specified by the Hamiltonian Ĥ ,
Eq. (7.1), has been exactly rewritten in terms of the pseu-
dospin operators ̂p. The choice of these operators is un-
ambiguous because we are interested in studying the long-
range order in both space and time described by the function
C(t1, t2), Eqs. (7.36)–(7.39). Equation (7.50) allows one to use
these operators directly for the calculation of the correlation
function of interest. Attempts to find other spin operators do
not make a sense because the function C(t1, t2), Eq. (7.36),
would be considerably more complicated in terms of the
other operators, while a correlation function of several those
operators will not be related to the long-range order. One
should really use the operators ̂p, Eqs. (7.45), and we have
a well defined model, Eq. (7.48), for that.

Can the rigorous estimates of Ref. [113] repeated for the
model, Eq. (7.48), invalidate the hope of obtaining the thermo-
dynamic quantum time-space crystal? The answer is definitely
“no” because the operators ̂ written in real space are not
local, and the arguments of Ref. [113] cannot be repeated.

Indeed, writing the operators in space points as

̂i(r) = 1

V

∑
p

̂ipeipr, (7.51)

we obtain for the Hamiltonian Ĥ , Eq. (7.48), the following
formula (omitting the term with np):

Ĥ = V
[
(ε−(−i∇ )̂3(r))r=0 − 1

4

(
U0̂

2
2 (0) − Ũ0̂

2
1 (0)
)]

,

(7.52)

while the correlation function C(t1, t2) takes the form

C(t1, t2) = −U 2
0 〈̂2(t1, 0)̂2(t2, 0)〉, (7.53)

where

̂i(t, r) = eiĤt ̂i(r)e−iĤt . (7.54)

The Hamiltonian Ĥ , Eq. (7.52), is very different from those
for local spin models. Moreover, we write the commutation
relation for the pseudospin operators i(r) and  j (r′) at
different space points r and r′ as

[̂i(r), ̂ j (r′)] = 1

V 2

∑
p,p′

ei(pr+p′r′)[̂ip, ̂ j p′ ]. (7.55)

Using Eq. (7.47), we obtain

[̂i(r), ̂ j (r′)] = 2iei jk

V 2

∑
p

eip(r+r′)̂kp

= 2iei jk

V
̂k (r + r′). (7.56)

One can see from Eq. (7.56) that the commutator of the
pseudospins ̂i(r) at two different points r and r′ does not
vanish in the limit |r − r′| → ∞. Presence of the prefactor
V −1 in Eq. (7.56) does not make the operators ̂i(r) local even
in the limit V → ∞ because this prefactor is compensated in
equations of motion by the factor V in the Hamiltonian Ĥ ,
Eq. (7.52).

All this means that the operators ̂(t, r) are not local,
and applying the results of the work [113] based on the
assumption of the locality of the spins to the model considered
here is not justified. As the BCS model of superconductivity
can also be reformulated in terms of the similar Anderson
pseudospins, one cannot use the bounds of Ref. [113] for
studying properties of superconductivity either. In particular,
amplitude (Higgs) modes [97–103] are not known in systems
of local spins. So, the local quantum spin models cannot in
general describe electron-electron or electron-hole pairing in
fermion models with interaction, and the bounds obtained in
Ref. [113] cannot be applied to the model considered here.

D. Concluding remarks to Sec. VII

We conclude this section with the statement that the “no-
go” theorem of Ref. [10] is not applicable to the phenomenon
of the thermodynamic quantum time-space crystal considered
in the present work.

Strictly speaking, the results are obtained using the Hamil-
tonian Ĥ with a somewhat special interaction. Although the
original electron-electron interaction is short-ranged, the form
of the interaction in Eq. (7.1) corresponds to an “infinite-
range” interaction of the electron-hole pairs. However, mean-
field theories for systems of interacting electrons are well
justified for small ratios of the order parameter to the Fermi
energy, which holds in most cases.

The fact that one can use the wave functions in the standard
form of Eq. (7.5) is applicable for models with a fixed number
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of particles. At the same time, the grand canonical enesemble
of interacting electrons is discussed in the present work,
and the wave functions have a more complicated form that
cannot be reduced to Eq. (7.5). The spontaneous breaking
of the symmetry occurs in the grand canonical ensemble.
So, the nontrivial time-dependent form of the wave functions
obtained here does not contradict the standard form of the
wave functions, Eq. (7.5).

The consideration of the first part of Ref. [10] was based on
the assumption of the locality of the Hamiltonian. The authors
of Ref. [10] write explicitly that their proof is not applicable
to models with an infinite-range interactions. Although the
electron-electron interaction in the Hamiltonian Ĥ , Eq. (7.1),
is short ranged, it describes effectively an “infinite range”
interaction of electron-hole pairs. Could it mean that the
results obtained in the present paper are not general and are
specific to the considered model only? In this case, this would
mean that taking a more realistic interaction would destroy
the long-range time oscillations, and the results obtained here
would not be as interesting.

Fortunately, it does not seem to be so. Such a scenario
would be possible for a spin model with an infinite-range
interaction. Indeed, according to the estimates of Ref. [10]
that are definitely correct for the spin systems, making the
radius of the interaction finite would destroy the long-time
oscillations but does not apply to the infinite range interaction.
However, the infinite range of the interaction would lead to,
e.g., ferromagnetic or antiferomagnetic states rather to time
crystals. We do not see any chance to obtain the TQTC with
a time-dependent order parameter in the spin models, and
they are not considered here. The situation with the “infinite-
range” interaction of the electron-hole pairs in Eq. (7.1) is
completely different because the electron-electron interaction
is short-ranged and the Hamiltonian Ĥ is local.

This property can easily be seen using an important esti-
mate for local Hamiltonians written on top of p. 3 in the proof
of Ref. [10],

[Â[Ĥ, Â]] ∝ V. (7.57)

The proportionality to the volume V instead of V 2 should
indicate according to Ref. [10] the absence of the time crystal
behavior. The proportionality to V 2 is possible for the infinite-
range interactions in the spin models.

On the other hand, it is not difficult to calculate the same
commutator for the Hamiltonian Ĥ , Eqs. (7.1) and (7.48), and
operator Â, Eq. (7.38). The computation is easy with the help
of the pseudospins �̂, Eqs. (7.45)–(7.47), and one obtains

[Â[Ĥ, Â]] = −4
∑

p

ε−(p)̂3p

+ 8Ũ0

V

∑
p1 =p2

(
̂3p1̂3p2 − ̂1p1̂1p2

)
. (7.58)

Standard replacement of the sum over the momenta by the
integral, Eq. (7.2), leads to the conclusion that the estimate,
Eq. (7.57), holds in our case, too. This means that the Hamil-
tonian Ĥ , Eq. (7.1), with the “infinite-range” interactions
of the electron-hole pairs should be classified as a short-
range Hamiltonian in the proof of Ref. [10]. Existence of the
TQTC is a consequence of the breaking of the time-translation

symmetry, and the infinite-range interaction of the electron-
hole pairs is helpful but not necessary for the latter phe-
nomenon. A more general form of the electron-electron inter-
action in the Hamiltonian Ĥ cannot change the estimate (7.57)
because the interaction is short-ranged anyway.

VIII. HOW TO OBSERVE THE TIME-SPACE CRYSTAL
EXPERIMENTALLY?

As the average order parameter B(t ) equals zero,
Eq. (5.37), one cannot expect oscillating quantities like, e.g.,
currents. The oscillations should be seen in two-time corre-
lation functions like N (t ), Eqs. (5.1), (5.40), and (5.43). Of
course, possibility of an experimental observation depends on
systems that can be described by the action, Eqs. (2.1)–(2.11)
and (2.13)–(2.15). Apparently, one can find various models
exhibiting the time crystal behavior. However, since the ac-
tion, Eqs. (2.1)–(2.11) and (2.13)–(2.15), is suggested here
for description of cuprates and one can expect correlations of
magnetic moments oscillating in time and space (in contrast
to static magnetic moments in DDW theories), the polarized
neutron spectroscopy can be a proper tool. In this case, the
Fourier-transform of the function N (t ) determines directly
the cross-section of the inelastic scattering. It is important
that the magnetic moments are basically perpendicular to
the planes, which can help to distinguish them from the
antiferromagnetic spin excitations at (π, π ). Calculating the
Fourier transform N (ω) of the function N (t ), Eq. (5.40), and
comparing it with the one for the time-independent DDW
state 2πγ 2δ(ω) for the same model one can write at low
temperatures the ratio of the experimental responses at (π, π )
for these two states as

χ (ω, q) = χ0

∞∑
n=1

f 2
n δ(ω − 2nγ )δ

(
q − QAF

)
, (8.1)

where fn is determined by Eq. (5.41), and χ0 determines the
response χDDW of the DDW state, χDDW(ω) = χ0δ(ω).

Actually, anisotropic magnetic (π, π ) excitations have
been observed [116] in YBa2Cu3O6.9. The response χc(ω, q)
perpendicular to planes with wave vector q =(1.5, k, 1.73)
had a pronounced peak at k = 0.5 at ω = 26 meV at temper-
ature 94 K, while this peak was suppressed at 10K, which
was below the superconducting temperature Tc . At the same
time, the parallel component χa/b was not so sensitive to
temperature. Using the results obtained in the present paper
one might argue that the peak in the susceptibility χc(ω, q)
was due the oscillations of magnetic moments. Within this
picture, the time-space crystal state had to be suppressed by
the superconductivity.

Being quite general, the model specified by Eqs. (2.13)–
(2.15) may also be applied to other systems and one should
design proper experiments for each case.

IX. DISCUSSION

The main result of the present study is that the quantum
time crystals may exist as a thermodynamically stable state
in macroscopic systems even in the limit of infinite volume,
V → ∞. The nondecaying oscillations do not lead to an
oscillating behavior of classical quantities and the energy is
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conserved. The oscillations show up in correlation functions
of several times and can in principle be observed in, e.g.,
quantum scattering experiments. The order parameter of the
thermodynamic quantum time-space crystals is periodic in
both real and imaginary times as well as in space but its
average over the phases of the oscillations vanish.

The procedure of the averaging over the phase of the
oscillations is equivalent to a new quantum description in
terms of the operator order parameter. In this picture, the
oscillating behavior of correlation functions originates from
virtual transitions between states of an oscillator. The distance
between the energy levels equals the energy of breaking the
electron-hole pairs and does not decrease in the limit of
infinite volume, V → ∞.

All calculations have been carried out in the limit of low
temperatures for a simplified version of the spin-fermion
model with overlapping hot spots relevant for the super-
conducting cuprates. In this simplified version, the electron-
electron interaction is written in a form of an infinite-
range interaction of electron-hole pairs. This is a standard
approximation used for studying new phase transitions in
many-body electron systems first suggested by Bardeen-
Cooper-Schrieffer in their fundamental paper on theory of
superconductivity [88]. This type of simplified models allows
one to solve the problem exactly and gives results that could
be obtained from more general models using a proper mean-
field approximation.

The electron-electron interaction of the original model is
usually short-ranged, and its explicit form is irrelevant for
the phenomena studied by this method. The possibility of
using the mean-field approximation in the electron systems
is different from the one used in, e.g., spin models. In the
latter case, the mean-field approximation is usually justified
by using a long-range interaction between the spins, while
in the electron models one needs merely a small ratio of
the order parameter to the Fermi energy. Formation of charge
density wave (CDW) and many other phase transitions have
been predicted and described in this way without assuming
any special long-range interaction.

Of course, one has to investigate fluctuations near the
mean-field solution. Actually, it is possible to calculate the
fluctuations in the same way as it is usually done when study-
ing new phases in electron systems. In practical terms, one can
perform Hubbard-Stratonovich decoupling of the interaction
in the original Lagrangian, Eqs. (2.3)–(2.11), and integrate out
the fermion fields χ and χ∗. Then, one obtains a free energy
functional of the auxiliary fields b and b1 like the ones written
in Eq. (3.10). Generally, the fields b and b1 are functions of
not only time but also of coordinates. Following this scheme,
one finds the minimum of the functional F[b, b1] and expands
in the deviations δb and δb1 from the functions b(0) and b(0)

1 at
the minimum. The functions b(0) and b(0)

1 are just solutions of
the mean-field equations.

As a result, one obtains a positive-definite quadratic form.
Contribution of higher-order terms in δb and δb1 can be taken
into account by expansion in these variables and calculation
of Gaussian integrals. In low dimensions, some of these con-
tributions can be divergent, and one should use more sophis-
ticated schemes of calculations. However, in quasi-two- and

three-dimensional systems the corrections to the mean-field
solutions are convergent, and unless they are very large the
mean-field theory is a reasonable approximation. Preliminary
consideration for the present model shows that expansions
near the minimum of the free energy functional lead to con-
vergent integrals and they are not very large. A more detailed
investigation of this problem is left for future but for now the
mean-field theory does not look a bad approximation.

It is important to emphasize that a thermodynamically
stable time-crystal state corresponding to the minimum of the
free energy has been obtained for the first time. All previous
works on time crystals have been performed for nonequilib-
rium systems, which means that they were not at a minimum.
Therefore fluctuations could rather easily drive the systems
away from the initial state and destroy mean-field solutions.

An important problem that awaits its resolution is finding
the exact minimum of the free energy functional F[b, b1],
Eq. (3.10). Although the scheme of the calculations used for
drawing Fig. 3 is plausible, a more precise computation is
certainly needed. Of course, one can do this numerically but a
more detailed analytical investigation would be helpful. Alter-
natively, one could study Eqs. (5.19), (5.20), and (5.23)–(5.25)
for the pseudospins Sp(t ). It is well-known that corresponding
equations for superconductors are integrable [100–102], and
analyzing the possibility of the integrability of Eqs. (5.19),
(5.20), and (5.23)–(5.25) would be of a great interest.

One of the most exciting concepts of theoretical condensed
matter and high-energy physics is the spontaneous breaking of
symmetry. According to this concept, original symmetries of
the Hamiltonian can change below the phase transition due
to formation of the order parameter. For example, in the BCS
theory, the effective Hamiltonian does not conserve the parti-
cle number, appearance of CDW breaks the space-translation
symmetry, etc. The thermodynamic quantum time crystal
(TQTC) proposed here is conceptually very similar to CDW.
The main difference is that now the time-translation symmetry
is broken instead of the space-translation one. Both the phe-
nomena are described within similar computational schemes
(actually, in the present model both, the time and space sym-
metries are broken and one can speak of time-space crystal).

The inapplicability of the “no-go” theorem of Ref. [10] to
the results obtained here follows from the fact that the authors
did not imply the possibility of the spontaneous breaking of
the time-translation symmetry in their proof. Their additional
arguments based on the use of known rigorous results for
models of local spins cannot be applied to the electron models
considered here.

Although study of the time crystals is already a mature field
of research and a lot of interesting results have been obtained
using various models and techniques, TQTC is really a new
phenomenon because, in all the previous works, nonequilib-
rium phenomena were considered. Although the time crystal
as a thermodynamic state has been proposed by Wilczek in his
pioneering work [2], a subsequent study has shown that his
state was not in thermodynamic equilibrium. As the “no-go”
theorem of Ref. [10] has been widely accepted, no attempts
to obtain a thermodynamically stable time crystal have been
undertaken since then. The fact that the time crystal obtained
here is thermodynamically stable makes it different from
all time crystals obtained previously. One might argue that
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already a trivial two-level system like a spin in a magnetic
field gives a similar two-time correlation function N (t ) [10].
However, it is demonstrated here that this effect can exist in
a macroscopic systems in the limit V → ∞ in contrast to
the statement of that work. The fact that a phase transition
effectively results in the formation of energy levels with
nonvanishing in the limit V → ∞ level spacing and quantum
oscillations between the levels can in principle be observed in
physical quantities, is nontrivial and does not have any
analogs.

The novelty and importance of the TQTC in macroscopic
samples and its difference with respect to the nonequilibrium
time crystals can be understood in simple terms making a
qualitative comparison with three different types of elec-
tron systems in a magnetic field with nondecaying currents:
(1) an electron in an atom subjected to a magnetic field, (2)
ideal conductor in a magnetic field, and (3) superconductor in
a magnetic field. In case 1, a nondecaying electron current
flows around the atom and generates a constant magnetic
moment. In case 2, the applied magnetic field can also induce
nondecaying diamagnetic currents and a diamagnetic moment
but these quantities are sensitive to impurities phonons, etc.
They depend also on the prehistory because one obtains
different results using different experiments. The diamagnetic
currents are induced when one applies the magnetic field at
low temperatures. On the other hand, one does not obtain
any currents if one starts with the system in the magnetic
field at high temperatures, such that the current has vanished
due to the scattering of the electrons on phonons. Then, one
cools down the sample but does not obtain any current. The
dependence on the prehistory is typical for nonequilibrium
phenomena. Of course, one can maintain the currents applying
an oscillating magnetic field that would serve as driving force.

At last, in case 3, one has a genuine thermodynamic state
because, as soon as the applied magnetic field stops changing,
the current evolves to a constant value that does not depend
on the prehistory (Meissner effect). There are plenty of other
interesting effects distinguishing the superconductors from
the ideal conductors. The superconductors are characterized
by the quantum coherence all over the sample and arise as a
result of the spontaneous breaking of the symmetry.

It is clear why the phenomena 1–3 are different. The
phenomenon 1 is characterized by a constant value of the
current but is microscopic. Both the phenomena 2 and 3 are
macroscopic but 2 is a nonequilibrium phenomenon, while 3
is a thermodynamic quantum many-body state that appears
as the result of the spontaneous breaking of the symmetry.
We see on this example that although a nondecaying current
can exist in all these systems, their nature is different, and
one should study additionally other physical quantities to
understand what phenomenon one deals with.

Now we can understand easily the difference between the
three different types of the time-crystal-like states discussed
here. The microscopic two-level system showing the time-
oscillations is just trivial, and there is no sense to call it
time crystals. The nonequilibrium time crystals can be very
nontrivial but they imply driving forces or they can be very
sensitive to various perturbations, etc. In contrast, TQTC is a
genuine thermodynamic state because the oscillations of the
two-time correlation functions N (t ) do not depend on time at

all, and this dependence is not sensitive to impurities or other
static perturbations. Fluctuations are also less important in
TQTC than in systems out of equilibrium, and the mean-field
approximation is better justified. In a certain sense, TQTC is
an analog of the superconductors but the analogy to CDW is
more direct.

The correlation functions N (t ) can, in principle, be exper-
imentally observed in scattering experiments, and study of
the properties of the TQTC looks interesting and important.
The form of the two-band Hamiltonian, Eq. (7.1), is quite
general and one can anticipate applications to other materials
and devices. The nondecaying oscillations is a very important
property for qubits and one might think of interesting applica-
tions.

Description of phase transitions between the time-space
crystal state and normal metal or the state with the time-
independent order parameter can also be of a great interest
because they definitely differ from known phase transitions.

The thermodynamic quantum time-space crystal may be
a good candidate for the still mysterious pseudogap state in
superconducting cuprates. In many respects, its properties
like breaking time-reversal symmetry, gap in the electron
spectrum, etc. resemble those of the DDW state. At the
same time, no static magnetic moments oscillating with the
antiferromagnetic vector (π, π ) have been observed so far
in agreement with the predictions for the thermodynamic
time-space crystal. Instead, the present results show that
correlations of the magnetic moments oscillate in time and
can in principle be studied in experiments with polarized
inelastic neutron scattering.

ACKNOWLEDGMENTS

We would like to thank S. I. Mukhin, B. Z. Spivak, P. A.
Volkov, G. E. Volovik, and P. B. Wiegmann for useful discus-
sions. Financial support of Deutsche Forschungsgemeinschaft
(Projekt EF 11/10-1) and of the Ministry of Science and
Higher Education of the Russian Federation in the framework
of Increase Competitiveness Program of NUST “MISiS” (No.
K2-2017-085) is greatly appreciated.

APPENDIX: FINAL FORMULAS FOR THE FREE ENERGY
OF INSTANTONS AND ANTI-INSTANTONS

The integrals (4.14) and (4.17)–(4.20) can be simplified
changing the variables of the integration as

px = ±p

√
1 + u

2
, py = ±p

√
1 − u

2
,

E = ε−(p) = α − β

2
p2u + P (A1)

with −1 < u < 1. Then, the integral R for any nonsingular
function f (E ),

R =
∫

f
(
ε−(p)

) dp

(2π )2 , (A2)

can be written in the form

R = 2

(2π )2

1

α + β

∫ 1

−1

[∫ P(t )+�u

P(t )
f (E )dE

]
1

u

1√
1 − u2

du.

(A3)
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Further, the integral over u can be transformed integrating by
parts and we reduce R, Eq. (A2), to the following integral over
one variable:

R = 2

(2π )2

�

α + β

∫ 1

−1
f (P(t ) − u�) ln

√
1 − u2 + 1

|u| du,

(A4)

which simplifies considerably the original integration over p.
Finally, using parameters P̄ = P/γ and �̄ = �/γ , we

write the free energy �F as

�F

V T
= 1

π2

m�

α + β
(s0 + sint ). (A5)

Herein,

s0 = 2
∫ 1

−1

[
ln

√
(x − yu)2 + 1 + 1

|x − yu| − 1√
(x − yu)2 + 1

]

× ln

√
1 − u2 + 1

|u| du (A6)

and

sint = − I0

2

∫ 1

0

[
K0 + 1

4

(
K1 − M2

L

)
(1 − v2)2

]−1

× (1 − v2)dv, (A7)

where

K0 =
(

1 + U0

Ũ0

)∫ 1

−1

1√
(x − yu)2 + 1

ln

√
1 − u2 + 1

|u| du,

L =
∫ 1

−1

1

((x − yu)2 + 1)3/2
ln

√
1 − u2 + 1

|u| du,

M =
∫ 1

−1

x − yu(
(x − yu)2 + (1−k)2

4

)
((x − yu)2 + 1)3/2

× ln

√
1 − u2 + 1

|u| du,

K1 =
∫

1

((x − yu)2 + 1)3/2
(
(x − yu)2 + (1−k)2

4

)
× ln

√
1 − u2 + 1

|u| du,

and

I0 =
[ ∫

sgn(x − yu)√
(x − yu)2 + (1−k)2

4

1√
(x − yu)2 + 1

× ln

√
1 − u2 + 1

|u| du

]2

.

Equation (3.17) that determines the gap γ takes the form

α + β

U0
= 1

2π2

∫ 1

−1

y√
(x − yu)2 + 1

ln

√
1 − u2 + 1

|u| du.

(A8)

Equations (A6)–(A8) have been used for computation of the
surfaces in Figs. 3(a)–3(e).
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