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While general quantum many-body systems require exponential resources to be simulated on a classical
computer, systems of noninteracting fermions can be simulated exactly using polynomially scaling resources.
Such systems may be of interest in their own right but also occur as effective models in numerical methods for
interacting systems, such as Hartree-Fock, density functional theory, and many others. Often it is desirable to
solve systems of many thousand constituent particles, rendering these simulations computationally costly despite
their polynomial scaling. We demonstrate how this scaling can be improved by adapting methods based on matrix
product states, which have been enormously successful for low-dimensional interacting quantum systems, to the
case of free fermions. Compared to the case of interacting systems, our methods achieve an exponential speedup
in the entanglement entropy of the state. We demonstrate their use to solve systems of up to one million sites
with an effective matrix product state bond dimension of 1015.
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I. INTRODUCTION

Noninteracting or weakly interacting fermions play a cru-
cial role in many aspects of condensed matter theory and
quantum chemistry. For example, using density functional
theory, many materials can be accurately approximated by
weakly interacting fermions; Hartree-Fock theory is an ex-
cellent starting point for quantum chemical calculations; and
transport in electronic nanodevices is often captured by non-
interacting models. While the computational effort in all
these applications scales polynomially with the size of the
system that must be considered, the desire to obtain a real-
istic description—reached, for example, by including many
orbitals in a complex material or a microscopic multiband
model for a nanostructure—means that computing properties
of a noninteracting fermion model can nevertheless become a
computational bottleneck.

For interacting quantum systems, tensor networks have
in many cases become the tool of choice for numerical
simulations. They exploit the locality of entanglement in the
low-energy states of local quantum Hamiltonians for a more
compact classical description of these states. The prototypical
examples are matrix product states [1,2], which form the basis
of the density-matrix renormalization group (DMRG) [3].
Since its inception, DMRG has become the standard method
to solve one-dimensional quantum systems [4,5]. Many ex-
tensions of matrix product states to higher-dimensional sys-
tems have been suggested [6–13]; for recent reviews, see
Refs. [14–16].

In this paper, we will show that it is possible to apply
the benefits of tensor networks to noninteracting fermions to
obtain significantly more efficient numerical methods for the

simulation of very large free-fermion systems, allowing us to
simulate systems far beyond what is possible with existing
methods. While tensor network states have previously been
described for systems of free fermions [17–25], thus far they
have not been used primarily as numerical tools. In this
work, we will describe practical tensor network algorithms
to compute the many-body ground state as well as the dy-
namics of many-body states for free-fermion systems. Our
methods capture the full equal-time Green’s function of the
system, from which any physical observable can be computed.
While exact methods for this property scale cubically with the
system size, our approach scales linearly with the length of
a quasi-one-dimensional system and thus outperforms exact
methods significantly.

We work within the framework of Gaussian fermionic
matrix product states (GFMPS) [19]. These states are con-
structed using Gaussian fermionic states, which are the most
general class of states for which a Wick’s theorem holds, i.e.,
whose equal-time correlation functions are characterized fully
through the equal-time single-particle Green’s function. We
will review this formalism in Sec. II, where we also introduce
the required building blocks for Gaussian tensor network
algorithms, such as contraction and decomposition of tensors.
We introduce the specific case of GFMPS in Sec. III, where
we also discuss the key technical tool of our work: a canonical
form for GFMPS. This crucial technical step will allow us
to generalize many well-established numerical algorithms for
matrix product states, such as single- and two-site DMRG
as well as time evolution approaches such as TDVP [26,27]
to the Gaussian setting; this will be discussed in Secs. IV
and V. Finally, in Sec. VI we numerically demonstrate the
performance of our algorithms.
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A. Quadratic fermion systems

To set the stage, consider a lattice system of N sites,
each comprised of some number ns of fermionic modes. For
our purposes, it will be convenient to work in a basis of
self-adjoint, so-called Majorana fermions ci, with c†

i = ci and
{ci, c j} = 2δi j . A fermionic system comprised of conventional
complex fermions created by some operator a†

i can always
be rewritten in such a Majorana basis by taking c2i−1 =
ai + a†

i , c2i = −i(ai − a†
i ). We will be interested in quadratic

Hamiltonian, i.e., Hamiltonians of the form

H = −i
∑

i j

Hi jcic j + E , (1)

with E a constant offset. We denote the total number of
Majorana modes, which must be even in a physical system, by
M = 2

∑
ns. Thus, H is a real matrix of size M × M, which

we can choose without loss of generality antisymmetric,
HT = −H , and we will do so in the following.

To compute properties of such a system, one can fully
diagonalize the matrix H to obtain all single-particle eigen-
values and eigenvectors, from which all other observables can
be constructed. In the absence of any special structure of H ,
this will scale as O(N3). If, on the other hand, only a few
low-lying single-particle eigenstates (or a few states near a
particular energy, such as the Fermi energy) are desired and
the matrix A is sufficiently sparse (as is the case for short-
range hopping models), one can use sparse Krylov-space
diagonalization methods such as Lanczos or shift-and-invert
methods. These are generally expected to scale linearly in N
and the number of nonzero elements per row of A, as well as
exhibit some dependence on spectral properties such as the
energy gap. However, it should be emphasized that having
computed only a few low-lying states, physical observables
such as the density or, more generally, the equal-time Green’s
function cannot be computed.

There are many other methods that overcome this limita-
tion. A very efficient method to compute the spectral density
of some operator (as well as certain dynamical correlation
functions) in a time that scales only linearly with the number
of modes is the kernel polynomial method (KPM) [28]. There
is also a large variety of Green’s-function-based methods.
To compute the frequency-dependent Green’s function, the
recursive-Green’s-function (RGF) approach [29,30] can be
used. For a one-dimensional system, this method scales lin-
early with the length; for two- or three-dimensional systems,
the method can be applied by taking the system to be a
one-dimensional collection of “slices.” However, to obtain
equal-time properties, a frequency integral must be taken.
Finally, the nonequilibrium Green’s function approach [31]
incorporates systems driven out of equilibrium, for example,
by an applied voltage in a nanodevice. For a recent review
and a related wave-function-based approach, see Ref. [32].
Finally, in the context of density functional theory, several
approximate methods to solve the Kohn-Sham equation in
linear time have been developed (see, e.g., Ref. [33]). In
contrast to these methods, our GFMPS method is based on the
many-body wave function for a low-energy or time-dependent
state of the system and thus allows the straightforward cal-
culation of arbitrary expectation values without having to

integrate over frequencies. Furthermore, our approach gives
access to quantities such as the entanglement spectrum and
entanglement entropy of the state.

B. Gaussian tensor networks

The power of matrix product states is most easily under-
stood from the properties of the Schmidt decomposition. For
a quantum state |ψ〉 on a tensor product space HA ⊗ HB, it is
given by

|ψ〉 =
M∑

α=1

sα|Aα〉|Bα〉, (2)

where sα � 0 are real, and the Schmidt vectors |Aα〉, |Bα〉
are orthonormal bases for HA and HB, respectively. The von
Neumann entanglement entropy between A and B is given by
S = − Tr(ρA log ρA) = −∑ s2

α log s2
α and is bounded by S �

log(M ). Thus, coarsely speaking, the number of terms that are
relevant grows exponentially with the bipartite entanglement
of the state.

Given that low-energy states of local Hamiltonians are
weakly entangled in the sense that they exhibit area-law
scaling of the entanglement entropy [34–37], one can exploit
the properties of the Schmidt decomposition to construct
more compact representations of such states. In particular, it
is natural to assume that the Schmidt values sα decay very
quickly with α in such weakly entangled states [35–41]. This
directly leads to the construction of matrix product states,
which can be obtained by recursively performing a Schmidt
decomposition between all sites of a one-dimensional system
and truncating the sum on each bond to the D largest Schmidt
values sα . The computational cost of such a state will scale
exponentially with the bipartite entanglement entropy.

In systems of noninteracting fermions, the Schmidt de-
composition and thus also the bipartite entanglement take
a simpler form. This is due to the fact that the reduced
density matrix for a subsystem is itself a Gibbs state of a
quadratic Hamiltonian [42–45]. Thus, even its many-body
spectrum can be obtained through single-particle modes and
their eigenvalues, and the entanglement can be fully character-
ized through modewise entanglement [42,45] between single-
particle modes in each part of the bipartite system. In other
words, the Schmidt decomposition of a Gaussian state can
itself be expressed entirely in terms of Gaussian states. Cru-
cially, each mode can contribute a fixed amount to the bipartite
entanglement, and the maximum entanglement is thus linear
in the number of modes rather than logarithmic in the number
of terms in the Schmidt decomposition. This constitutes an
exponential compression of the Schmidt decomposition in the
Gaussian case.

To exploit this computationally, one can construct a
Gaussian fermionic matrix product state (MPS) in an analo-
gous fashion to the interacting case by recursively applying
the Schmidt decomposition on each bond of a given Gaus-
sian state. Owing to the structure of Gaussian states, such a
GFMPS will scale only polynomially rather than exponen-
tially with the amount of bipartite entanglement.

This exponential speedup also benefits more general tensor
networks. In the context of a conventional tensor network, a
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tensor is nothing but a high-dimensional array of numbers,
which are enumerated by an array of indices. The number
of indices is commonly referred to as “tensor rank” R (not
to be confused with the matrix rank), and each index runs
over integers 1, . . . , D, where D is referred to as the bond
dimension. A quantum state is expressed through such a
tensor network by identifying some indices of the tensors with
physical degrees of freedom and contracting (summing) over
the remaining ones in some predetermined pattern.

To understand the case of a Gaussian tensor network, it is
convenient to think of a rank-R tensor of bond dimension D
as a quantum state on the tensor product of R D-dimensional
Hilbert spaces. One can now consider the case where this
state is Gaussian, i.e., it satisfies a Wick theorem and can
thus be described completely through the expectation values
of quadratic operators. Such a representation is exponentially
more compact, i.e., requires only O(R log D) rather than
O(DR) numbers. Using techniques that we will discuss in
more detail below, one can generalize the contraction of
tensors and other important operations on tensor networks to
this framework.

II. COVARIANCE MATRIX FORMALISM
FOR GAUSSIAN TENSOR NETWORKS

We will now introduce Gaussian tensor networks on a more
technical level. This will establish the essential tools that we
will use for the construction of Gaussian MPS in Sec. III
as well as specific optimization algorithms in Sec. IV. We
first review the fermionic covariance matrix formalism. We
follow the conventions of Ref. [46]; for further details, see also
Ref. [47]. Throughout this section, we will assume a system
of 2n Majorana fermions described by a Hamiltonian of the
form (1).

A. Covariance matrix formalism

Gaussian states are states that are fully characterized
through their equal-time two-point correlation functions.
A convenient formalism for describing a (possibly mixed)
Gaussian state described by a density matrix ρ is the covari-
ance matrix (CM), which is given by

γi j = i

2
tr(ρ[ci, c j]). (3)

The covariance matrix γ is real and antisymmetric, and satis-
fies γ 2 � −1; for pure states,

γ 2 = −1. (4)

In the following, we discuss some further properties of
quadratic Hamiltonians and Gaussian states.

a. Energy of a state and normal form. The energy of a state
ρ under the Hamiltonian H [Eq. (1)] is

tr[Hρ] = −
∑

Hi j i tr(ρcic j ) + E

= −
∑

Hi jγi j + E

= tr(Hγ ) + E . (5)

Any real antisymmetric matrix A (such as H or γ )
can be brought into a canonical form by an orthogonal

transformation,

OAOᵀ =
n⊕

k=1

(
λk

−λk

)
, (6)

with λk � 0. If A is of odd size, additionally a single 0 block
appears. Note that ±λk are exactly the eigenvalues of the
Hermitian matrix iA.

We can use this to bring a Hamiltonian of the form Eq. (1)
into a normal form

H = − i

2

n∑
k=1

εk[η2k−1, η2k], (7)

where ηk are new canonical Majorana operators given by
ηk =∑i Okici, with OHOᵀ =⊕n

k=1( εk/2
−εk/2 ). The εk cor-

respond exactly to the non-negative half of the single-particle
eigenvalues of the equivalent Bogoliubov–de Gennes Hamil-
tonian. The ground state of H, which we will denote as
|0〉, is characterized by having iη2k−1η2k|0〉 = |0〉 for all k =
1, . . . , n, and thus has total energy E0 = −∑ εk . Its covari-
ance matrix in the basis of canonical operators ηk is thus given
by

γ̃0 = i

2
〈0|[ηi, η j]|0〉 =

⊕( 1
−1

)
. (8)

Using the orthogonal matrix O that brings A into the normal
form, we can obtain the covariance matrix in the basis of local,
physical Majorana operators ci as γ0 = Oᵀγ̃0O. Using Eq. (5),
we can verify that the ground-state energy is indeed E0 =
−∑ εk . Numerically, γ0 can be determined by diagonalizing
the antisymmetric matrix H (giving imaginary eigenvalues)
and then replacing them by the sign of the imaginary part. For
other approaches, see Ref. [48].

b. Expectation values and state overlaps. The expectation
value of arbitrary operators in a Gaussian state can be com-
puted using Wick’s theorem, which takes a particularly simple
form in the representation of Gaussian covariance matrices.
Consider a product of Majorana operators C =∏i∈I ci. The
expectation value of C in a state |φ〉 with CM γ is given by
[46]

〈φ|C|φ〉 = Pf(iγI ), (9)

where γI is the submatrix of M with row and column indices
in I, and Pf(·) denotes the Pfaffian.

The square modulus of the overlap between two states
is easily determined from the covariance formalism [46,49].
Consider two many-body states |A〉 and |B〉 with correspond-
ing covariance matrices γA and γB and the same fermion
parity, i.e., Pf(iγA) = Pf(iγB) = p. Then,

|〈A|B〉|2 = p2−n Pf(γA + γB). (10)

When the phase of the overlap is also desired, a complica-
tion arises from the fact that the covariance matrix formalism
does not capture the global phase of the state—clearly for
some fermionic state |ψ〉, all states eiφ|ψ〉 will have the same
expectation values of physical operators and thus the same
covariance matrix. To overcome this problem, one can intro-
duce a reference state |C〉 and observe that 〈C|A〉〈A|B〉〈B|C〉 is
invariant under multiplying any of the three states by a phase.
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Therefore, it can be computed from the covariance formalism;
for explicit expressions, see Ref. [46].

c. Composite systems. Consider a Gaussian state described
by a covariance matrix γ ′ on N modes and γ ′′ on M modes.
The joint state γ is characterized by the direct sum of the
covariance matrices,

γ = γ ′ ⊕ γ ′′ =
(

γ ′ 0
0 γ ′′

)
. (11)

To describe a general state of such a joint system, it is
convenient to introduce collective labels for the Majorana
modes in each subsystem. For example, we can denote the
N modes of the state γ ′ as a, and the M modes of the other
system as b. A general Gaussian state of the joint system thus
takes the block form

γ =
(

γaa γab

−γ
ᵀ
ab γbb

)
, (12)

where γaa contains the correlations of the a modes, γab the
correlations of a modes with b modes, etc. We will occasion-
ally write |a| for the number of modes in a, i.e., |a| = N .
More generally, for multipartite systems, such as a tripartite
system with modes a, b, and c, we can express γ in different
partitions, e.g.,

γ =
⎛
⎝γaa γab γac

γba γbb γbc

γca γcb γcc

⎞
⎠ =
(

γab|ab γab|c
γc|ab γc|c

)
, (13)

where we use a vertical bar to separate row and column
indices when ambiguous, e.g., γab|c holds the correlations of

the modes a and b vs c, i.e., γab|c = (
γac

γbc
). We will generally

follow this notation throughout this paper. Note that due to
the explicit labeling of the modes in this notation, the actual
ordering of the blocks in the matrix does not matter.

d. Partial traces. The dual operation to composing systems
is the partial trace, i.e., considering only the state of a sub-
system; we will make frequent use of it in this paper. Given
a system composed of N + M modes a and b with covariance
matrix

γ =
(

γaa γab

−γ
ᵀ
ab γbb

)
, (14)

the covariance matrix which describes the state of the a modes
(i.e., the system after tracing out the b modes) is given by γaa;
this follows immediately from the definition of the covariance
matrix.

B. Tensor networks and contraction

a. Formalism. Tensor networks are a way to describe
multipartite quantum states

|�〉 =
∑

i1,...,iN

ci1,...,iN |i1, . . . , iN 〉 (15)

by rewriting ci1,...,iN =∑αk

∏
C{is,αp} using tensors C{is},{αp}

which depend on only on a few (if any) physical indices
{is} and auxiliary indices (or entanglement degrees of free-
dom) {αp} each, where each auxiliary index is contained in

exactly two tensors, and where the auxiliary indices are con-
tracted (i.e., summed over). In the context of fermionic tensor
networks, it is convenient to instead consider each C{is},{αp}
as describing a pure state (“fiducial state”) |C{is},{αp}〉 =∑

C{is},{αp}|{is}, {αp}〉 of the physical and virtual indices
jointly, where the contraction is achieved by projecting pairs
of virtual indices onto a maximally entangled state |ωα,α′ 〉:

|�〉 =
(⊗

〈ωα,α′ |
)(⊗∣∣C{is},{αp}

〉)
. (16)

This framework is particularly suited for the case of fermionic
tensor network states, as it removes the requirement to spec-
ify an ordering of the fermionic tensors (and bonds), since
both 〈ωα,α′ | and |C{is},{αp}〉 have fixed fermion parity, and all
tensors C mutually commute (as they don’t share fermionic
operators), and similarly all bonds ω.

b. Contraction. In the case of Gaussian fermionic tensor
networks, the fiducial states are given by covariance matri-
ces γ which are indexed by the corresponding physical and
auxiliary modes. The maximally entangled state |ω〉 (which
can either be a product of maximally entangled states between
complex fermions or a product of pairs of Majorana fermions
in their joint vacuum) is itself Gaussian, such that each
contraction gives rise to a new Gaussian state. The basic step
is thus the contraction of two Gaussian tensors (i.e., states).
This corresponds to integrating out the auxiliary degrees of
freedom in a Gaussian integral and thus gives rise to a Schur
complement [47,50–52].

This leads to the following explicit expressions for contrac-
tion: Given two tensors

G =
(

Gaa Gac

−Gᵀ
ac Gcc

)
and H =

(
Hbb Hbc′

−Hᵀ
bc′ Hc′c′

)
(17)

(possibly with blocked indices), the tensor resulting from
contracting the c index of G with the c′ index of H is
given by

K =
(

Kaa Kab

−Kᵀ
ab Kbb

)
=
(

Gaa

Hbb

)

+
(

Gac

Hbc′

)(
Gcc 1
−1 Hc′c′

)−1(
Gac

Hbc′

)T
. (18)

Note that the contraction is oriented (swapping c and c′
changes the sign of the 1’s); we will from now on use the
notation c� c′ to indicate the order. The matrix inverse in
Eq. (18) can be carried out blockwise using Schur comple-
ments. Explicitly,

(
A 1

−1 D

)−1

=
(

(DA + 1)−1

(AD + 1)−1

)(
D −1
1 A

)
,

(19)
and as a special case which we will use later,

(
A 1

−1 0

)−1

=
(

0 −1
1 A

)
. (20)

For generalizations of this approach as well as the normal-
ization of the state after contraction, see Appendix B.
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FIG. 1. Graphical calculus for Gaussian fermionic tensor net-
works (see Sec. II Bc). (a) Tensors are described by their covariance
matrix γ , which has blocks of rows/columns labeled by the different
indices; the size of each block equals the number of Majorana modes
in the block. (b) Since γ describes pure and mixed state on equal
footing, we will sometimes draw even pure state tensors with both
ket and bra indices. (c) This allows, e.g., to naturally capture tracing
of an index in the graphical calculus.

c. Graphical calculus. Tensor networks can be conve-
niently expressed using a graphical calculus where each tensor
is described by a box with one leg per index (where each
index can contain any number of Majorana modes), Fig. 1(a).
Contraction of indices is indicated by connecting the cor-
responding legs; the orientation of the contraction will be
indicated by an arrow. This is shown in Fig. 2.

Note that the covariance matrix formalism (and thus
Gaussian tensor networks) does not distinguish between pure
and mixed states. Yet, we will generally use the tensor nota-
tion for pure states; when referring to the density operator,
we will instead draw the tensor twice, once for the “ket”
and once for the “bra” system [Fig. 1(b)]. In particular, an
essential operation will be tracing out part of a tensor, which
corresponds to contracting the “ket” and “bra” part of the
corresponding index, and which will be drawn as in Fig. 1(c).

C. Entanglement in Gaussian states and Schmidt decomposition

A crucial step in the DMRG algorithm is the Schmidt
decomposition, i.e., the decomposition of a bipartite entangled
state |�〉 in the form |�〉 =∑k λk|k〉|rk〉 with orthonormal
vectors {|k〉} and {|rk〉} (see also Sec. II D 1).

FIG. 2. Contraction of two indices r and l ′ (contraction is ori-
ented, denoted as r � l ′, and indicated by the arrow on the contracted
index). The CM � of the resulting state is obtained as a Schur
complement, as given by the formulas in the figure or Eq. (18). (Here
1xy denotes the identity matrix between modes x and y.)

The procedure for fermionic Gaussian states is quite anal-
ogous. Consider a pure bipartite Gaussian state

γ =
(

γaa γab

−γ
ᵀ
ab γbb

)
(21)

and assume for the moment that γab is square (i.e., the two
systems have the same dimension) and has full rank; this
corresponds to the case where all modes on either side are
entangled. Since γ is pure, we have γ 2 = −1, which implies

γ 2
aa = γabγ

ᵀ
ab − 1, γ 2

bb = γ
ᵀ
abγab − 1, (22)

as well as γaaγab = −γabγbb, or equivalently,

γbb = −γ −1
ab γaaγab. (23)

We now perform a singular value decomposition (SVD) of
γab, OγabQᵀ = �ab, where �ab is diagonal with positive
entries which are ordered descendingly, and O and Q are real
orthogonal, as they diagonalize the real symmetric matrices
γabγ

ᵀ
ab and γ

ᵀ
abγab, respectively. Equation (22) then immedi-

ately implies that also Oγ 2
aaOᵀ is diagonal with descending

entries. Following Eq. (6), we find that

OγaaOᵀ =
⊕

k

(
λk

−λk

)
(24)

(possibly after rearranging rows of O within degenerate
blocks; by performing the same permutation on Q, we can
ensure that OγabQᵀ remains diagonal). Therefore,

QγbbQᵀ = Q
(−γ −1

ab γaaγab
)

Qᵀ (25)

= −(OγabQᵀ)−1(OγaaOᵀ)(OγabQᵀ) (26)

must be again of the form

QγbbQᵀ =
⊕

k

( −λk

λk

)
, (27)

where the fact that the entries λk equal those in Eq. (24) follow
from (22), as well as that

OγabQᵀ =
⊕

k

(
μk

μk

)
(28)

with μk =
√

1 − λ2
k . Together, we find that the local rotations

O ⊕ Q transform γ to

(O ⊕ Q)γ (O ⊕ Q)ᵀ =
⊕

k

W (λk ), (29)

with

W (λk ) =

⎛
⎜⎝

λk μk

−λk μk

−μk −λk

−μk λk

⎞
⎟⎠, μk =

√
1−λ2

k,

(30)
where each block W (λk ) captures the correlations between
two a and two b Majorana modes (in this order). This is the
fermionic Gaussian equivalent of the Schmidt decomposition
(and of the Williamson normal form for bosonic Gaussian
states), a result first derived by Botero and Reznik [45].
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From this form, the von Neumann entanglement entropy
between the modes a and b is now easily found to be

SvN =
∑

k

H

(
1 − λk

2

)
, (31)

with H (p) = −p log p − (1 − p) log(1 − p).
In the more general case where γab does not have full rank

(or is not square), we can still perform an SVD of γab, which
in that case will give rise to blocks where γabγ

ᵀ
ab (or γ

ᵀ
abγab)

is zero. Equation (22) implies that the corresponding blocks
of γaa (γbb) decouple and are equal to

⊕
( −1
1 ), i.e., they

describe a mode in a pure (vacuum) state, which is thus not
entangled to any other mode. In the general case, we thus
obtain the form

(O ⊕ Q)γ (O ⊕ Q)ᵀ =
[⊕( −1

1

)]
⊕
[⊕

k

W (λk )

]

× ⊕
[⊕( −1

1

)]
, (32)

where the first (last) term in the sum lives only on the a (b)
modes, and the middle term captures their correlations; as
before, it is obtained from the SVD of γab, together with a
suitable rearrangement of degenerate modes.

Note that instead of performing the SVD of γab, we could
just as well have diagonalized γaa and γbb. The approach
chosen here has two advantages: First, it does not require the
eigenvalues to be matched, and second, the singular values of
γab relate to the square roots of the eigenvalues of γaa, thus
yielding a higher accuracy in finite-precision arithmetic (also
in the basis transformations O and Q) for weakly entangled
modes.

D. Tensor decompositions

Tensor decompositions, such as the SVD and the closely
related QR decomposition, are core ingredients in DMRG
and other tensor network algorithms. Their main role is that
they allow the state to decompose in terms of an orthonormal
basis; furthermore, they are an efficient way of obtaining
the Schmidt decomposition and thus information about the
entanglement, including the full entanglement spectrum. We
will start by introducing the Gaussian version of the SVD
and then discuss how to build different related decompositions
which are potentially easier or more efficient to implement.

1. Singular value decomposition

The SVD decomposes a matrix M = UDV †, where U and
V are isometries (U †U = 1, V †V = 1) and D is diagonal and
full rank. It is closely related to the Schmidt decomposition,
which for a state |�〉 =∑i j Mi j |i〉| j〉 is obtained from the
SVD of M as

|�〉 =
∑

dk|ak〉|bk〉 (33)

dk = Dkk, |ak〉 =
∑

Uik|i〉, |bk〉 =
∑

V ∗
jk| j〉. (34)

This can be viewed as an elementary tensor network: the state
|�〉 is given as the contraction of tensors U , D, and V ∗, where

FIG. 3. Gaussian fermionic SVD. (a) The SVD expresses a CM
γ as the contraction of three CMs L, �, and R, where L and R
are isometries when contracting a and b, respectively (i.e., La′a′ = 0,
Rb′b′ = 0), and � =⊕W (λk ), Eq. (30). (b) The derivation proceeds
by using the Schmidt decomposition of γ = (O ⊕ Q)ᵀ�(O ⊕ Q),
rewriting � as the contraction of itself with two maximally entangled
states ωL and ωR, and applying O and Q to a and b, respectively.

U and V ∗ have one auxiliary and one physical index each, and
D has only auxiliary indices.

We have discussed the Gaussian version of the Schmidt
decomposition in the previous section, Sec. II C. Building
on this, we will now describe how to view the Schmidt
decomposition as a tensor decomposition, i.e., how to view
the state as the contraction of a minimal tensor network of
three tensors. Specifically, the Gaussian SVD corresponds to
the decomposition of the covariance matrix γ of a bipartite
system ab into the contraction of three covariance matrices L,
�, and R, as indicated in Fig. 3(a) (including the labeling of
the modes). Here, the isometry condition U †U = 1 translates
naturally to La′a′ = 0, which is the CM of the maximally
mixed state 1, cf. Fig. 1(c), and correspondingly, Rb′b′ = 0;
furthermore, we require � =⊕W (λk ) [cf. Eq. (29)].

As a starting point, consider the covariance matrix γ

written as

γ = (O ⊕ Q)ᵀ�(O ⊕ Q) (35)

with orthogonal O and Q; note that at this point, we do not
need to make any assumption about �, i.e., the decomposition
can be more general than Eq. (29). We will generalize it to the
case with additional local degrees of freedom as in Eq. (32)
in a moment. The first step is to rewrite � as a contraction
of three tensors ωL, �, and ωR, as depicted in Fig. 3(b) (note
the relabeling of the indices of � ≡ �a′′b′′ |a′′b′′ )—this is the
equivalent of contracting with the identity tensor, i.e., writing
D = 1 · D · 1. The tensors ωL,R are given by

ωL ≡ ωL
aa′|aa′ =

(
0 1aa′

−1a′a 0

)
(36)

and

ωR ≡ ω̂b′b|b′b =
(

0 1b′b
−1bb′ 0

)
. (37)

They describe maximally entangled states between a and a′
and b′ and b, respectively (corresponding to the identity tensor
1). It is easy to check using Eq. (18) that contracting a′ � a′′
returns �, and likewise, for b′′ � b′ [53].

In a second step, we now take Fig. 3(b) and apply O and Q
to the a and b system, respectively. On the left-hand side, this
yields (O ⊕ Q)�(O ⊕ Q)ᵀ = γ , while on the right-hand side,
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ωL and ωR are transformed to

L = (Oᵀ ⊕ 1)ωL(O ⊕ 1) =
(

0 Oᵀ

−O 0

)
(38)

and

R = (1 ⊕ Qᵀ)ωR(1 ⊕ Q) =
(

0 Q
−Qᵀ 0

)
, (39)

respectively. Furthermore, the contraction and the application
of O and Q commute, as they act on different indices (and
as can be also checked explicitly). We thus find that γ can
be written as the contraction of L, �, and R, as in Fig. 3(a),
with L and R isometries. In the case where � is the Schmidt
decomposition, this yields the Gaussian analog of the SVD.

In the general case where the Schmidt decomposition
contains additional unentangled local degrees of freedom, as
in Eq. (32), these modes need to be attached to the a and
b system of ωL and ωR, respectively, before applying the
transformations in Eqs. (38) and (39); the resulting L and R
are still isometries, and the decomposition in Fig. 3(a) still
holds with � =⊕W (λk ). Note that we can always regard a
pair of decoupled modes as W (λk ≡ 1) if we do not want to
minimize the bond dimension (i.e., the dimension of �).

2. Truncation of bond dimension

An important scenario, in particular in two-site DMRG, is
to truncate the bond dimension. This corresponds to carrying
out an SVD M = UDV † of a matrix M and replacing it by
a matrix M ′ = (UW )(W †DV †) with an isometry W such that
WW † projects onto the χ largest singular values of D.

In the Gaussian scenario, given a CM γ this amounts to
carrying out the Schmidt decomposition Eq. (32) and keeping
only the blocks W (λk ) with the κ smallest λk , while replacing
the additional blocks with

W (λ = 1) ≡

⎛
⎜⎝

1
−1

−1
1

⎞
⎟⎠, (40)

i.e., decoupled modes. Those modes are henceforth counted
towards the decoupled modes in Eq. (32), and the truncated
SVD is obtained by applying the SVD construction, Fig. 3(a),
with � from the truncated Schmidt decomposition.

3. Variants: QR and related decompositions

In most applications, a full SVD is not needed. For ex-
ample, to obtain the canonical form of an MPS (see below
for details) one only needs to be able to rewrite a covariance
matrix γ ≡ γab|ab, with |a| � |b|, as the contraction of an
isometry and a tensor with equal-sized systems on both sides.
(In DMRG, a corresponds to the left virtual + physical modes
while b corresponds to the right virtual modes.) To this end,
we need to isolate modes in a that are not entangled with any
modes in b; we will denote the modes that are unentangled as
a0 and the others as a1, i.e., |a| = |a0| + |a1| and |a1| = |b|.
(We assume that all modes in b are entangled with modes in a,
as happens in practice; the generalization is straightforward.)
To achieve this, we find an |a| × |a| orthogonal transformation

O such that

(O ⊕ 1)γ (O ⊕ 1)ᵀ =
⎛
⎝ γa0a0 0 0

0 γa1a1 X
0 −Xᵀ γbb

⎞
⎠ (41)

where γa0a0 =⊕( −1
1 ), and X is |b| × |b|. Note that this is

a weaker version of the decomposition of Eq. (29), where no
transformation is applied on the b modes. To obtain this form,
it is sufficient to choose O such that

Oγab =
(

0
X

)
, (42)

with X a square matrix; this can be achieved, for example, by
determining the kernel of γ

ᵀ
ab (or the image of γab). The fact

that this implies γa0a1 = 0 can be verified by invoking purity
of the state. Once such an O is found, following the SVD

construction of Fig. 3(a) with Q = 1 and � ≡
(
γa1a1 X
−Xᵀ γbb

)
gives the desired result. For the case where |a| � |b|, the
equivalent transformation is obtained by acting with O on the
b modes. Note that for |a| = |b|, O can be chosen trivial.

Similarly, in order to obtain a decomposition which al-
lows the bond dimension to be truncated (such as in two-
site DMRG), it is sufficient to determine O such that γaa

is diagonalized; this allows one to determine which modes
decouple and yields the λk of W (λk ), which can be used to
identify and disentangle the least entangled modes, without
the need to determine Q.

III. GAUSSIAN FERMIONIC MPS

A. Construction

For the remainder of this manuscript we will focus on the
Gaussian fermionic version of matrix product states. A matrix
product state is a particular type of tensor network state in one
dimension, where the sites of the physical system are arranged
on a chain and one tensor is associated with each physical
site. The tensor is connected to its left and right neighbors. In
the following discussion, we will focus on the case of open
boundary conditions. For a chain of N sites, an MPS consists
of N rank-3 tensors. In the case of a Gaussian fermionic MPS
(GFMPS), it is thus fully specified by a set of covariance
matrices

γ s
ls psrs|ls psrs

, (43)

where s = 1, . . . , N denotes the sites of the chain (from left to
right), ps corresponds to the physical modes at each site, and
the dimensions |rs| = |ls+1| of the virtual modes rs, ls+1 are
the Majorana bond mode number of the bond (s, s + 1). As in
conventional MPS, the bond mode number, analogous to the
bond dimension, can be increased to systematically increase
the class of variational states, and an exact description is
recovered for |ls| ∼ O(N ). As noted in the Introduction, the
bond dimension M in a conventional MPS is related to the
Majorana bond number χ used here by M = √

2
χ

. For open
boundary conditions, there are no left modes on the leftmost
tensor and no right modes on the rightmost tensor, i.e., |l1| = 0
and |rN | = 0. It is therefore often convenient to omit these and
set γ 1 = γ 1

p1r1|p1r1
and γ N = γ N

lN pN |lN pN
. When clear from the
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FIG. 4. Construction of a Gaussian fermionic MPS. To each site
we associate a tensor γ s

ls psrs |ls psrs
(with l1 and rN trivial); the state

of the “physical modes” p1, . . . , pN is obtained by contracting the
“virtual modes” rs � ls+1.

context, we will often omit the site subscripts to the modes
and write, for example, γ s

l pr|l pr .
A description of the state on N sites is now obtained

by arranging the γ s on a line and contracting the adjacent
virtual indices rs � ls+1, as depicted in Fig. 4, which yields
a CM describing the physical modes p1, . . . , pN . Note that on
physical grounds, it is clear that the state obtained through
the above construction is independent of the order of the
contractions, even though this is not evident from the descrip-
tion of the contraction in the CM formalism through Schur
complements.

Owing to the properties of the Gaussian formalism, a
GFMPS always describes a normalized state up to an overall
global phase. This fact has the potential to complicate practi-
cal MPS algorithms somewhat: in the conventional formalism,
physical observables such as the energy are generally bilinear
in the individual tensor elements. Thus, optimization at least
over individual tensors manifestly is a quadratic and thus
well-behaved problem. Since GFMPS are a special case of
MPS, this must, in principle, also be true for GFMPS, but it
is not apparent in the Gaussian formulation. However, with
some extra steps the usual structure can be exposed and the
conventional and well-tested algorithms, such as single- and
two-site DMRG optimization as well as related time-evolution
algorithms, can be formulated. A central role is played by the
canonical form of the MPS. While this form is in practice
very useful for the stability and performance of conventional
MPS algorithms, it is not strictly required; in the Gaussian
case, on the other hand, we will find it to be essential. In
the following, we will first introduce the canonical form of
GFMPS and in the following sections will proceed to discuss
some important algorithms, such as efficient computation of
the total energy, single- and two-site optimization, and finally,
the time-dependent variational principle.

B. Canonical form

a. Definition. The first step in defining the canonical form
of an MPS is to choose a center “working” site s0 with respect
to which the canonical form is defined. Then, all tensors to
the left of s0 are brought into left-canonical form and the ones
to its right into right-canonical form. The definitions of these
are given by γ s

rr = 0 (left-canonical form, s < s0) and γ s
ll = 0

(right-canonical form, s > s0), as illustrated in Fig. 5. This
definition precisely corresponds to that in the conventional
MPS formalism. There, an MPS tensor is said to be left-
canonical if the contraction with its own adjoint over the
left and physical index yields the identity matrix [see tensor
diagram of Fig. 5(a)], or equivalently, the tensor—seen as a

FIG. 5. (a) Left- and (b) right-canonical form of a tensor γ s and
the corresponding condition on γ s.

map from right to physical and left index—is an isometry. The
contraction corresponds to tracing out the left and physical
system, and thus for GFMPS, the left-canonical form amounts
to requiring that the reduced density matrix of the r modes
be γ s

rr = 0. Correspondingly, for the right-canonical one has
γ s

ll = 0. Note that this is precisely the isometry condition we
used in the derivation of the Gaussian SVD.

b. Elementary move. The elementary move in establishing
and keeping the canonical form is the following: Given a site s
such that all tensors to the left of it are in left-canonical form,
transform γ s into left-canonical form by changing γ s and
γ s+1, without changing the state described by the GFMPS. We
focus on the left-canonical form, but the corresponding proce-
dure for the right-canonical form is completely analogous.

We proceed in two steps, as shown in Fig. 6: In step (I), γ s

is rewritten with two tensors, namely, a new tensor γ̂ s in left-
canonical form, contracted with a new tensor � on its right
virtual bond. In step (II), � is contracted with γ s+1, giving a
new tensor γ̂ s+1.

Step (I) is implemented by blocking (l p) ≡ a and per-
forming the SVD of γ s

ar|ar as described in Sec. II D 1, or
one of the simplified versions in Sec. II D 3, which yields
a decomposition of γ s into an isometry L ≡ γ̂ s and �, as
desired. (If a decomposition with nontrivial R [cf. Fig. 3(a)],
such as the SVD, is used, � and R need to be con-
tracted.) Specifically, it is sufficient to choose an O such that

FIG. 6. Bringing a tensor into left-canonical form. In step (I), γ s

is split into a left-canonical tensor γ̂ s and a tensor � on the bond. In
step (II), � is absorbed in the tensor γ s+1 to the right, yielding γ̂ s+1.
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Oγ s
ar = (0

Y ) with Y square, define

⎛
⎝ X 0 0

0
�

0

⎞
⎠ ≡ (O ⊕ 1)γ s(O ⊕ 1)ᵀ (44)

(on the left-hand side, the first two blocks correspond to a and
the third block to p), and let

γ̂ s ≡ (O ⊕ 1)ᵀ

⎛
⎝ X 0 0

0 0 1
0 −1 0

⎞
⎠(O ⊕ 1). (45)

For the sizes of X and � and more details on the procedure,
see Sec. II D 3. In the second step, � and γ s+1 are contracted
as indicated in Fig. 6, using Eq. (18).

In order to obtain the right-canonical form, the same steps
have to be followed; the only core difference is the inverse
contraction order, which in particular implies that the signs of
the ±1 in the SVD and the contraction have to be reversed.

c. Obtaining and updating the canonical form. Given this
elementary step, the GFMPS can be kept in canonical form
at all times using the same procedures that are used for
conventional MPS and described in detail in, e.g., Ref. [5].
In particular, given an initial GFMPS on N sites that is not
in canonical form, it can be brought into canonical form by
sweeping from one end to the other, i.e., in N elementary oper-
ations. All practical optimization or time evolution algorithms
for MPS perform local operations in each step and sweep
over the system from one end to the other (see also Sec. V).
Therefore, the state can be kept in canonical form by moving
the center s, i.e., the site such that all tensors left (right) of
it are left-canonical (right-canonical), by only a single site,
requiring only local operations.

IV. ENERGY COMPUTATION FOR GFMPS

We now explain how to compute and optimize the energy
of a GFMPS for a given Hamiltonian. We start with a simple
elementary step which takes a two-site Hamiltonian and a
two-site GFMPS in canonical form and expresses the energy
of the GFMPS as a linear function of one of the GFMPS
tensors through an effective single-site Hamiltonian. This will
allow us to derive an iterative formula for the energy which is
valid for any Hamiltonian, and which can moreover be used to
optimize the energy of a given working site. Subsequently, we
show how this formula can be specialized to different cases,
such as local Hamiltonians, to obtain more efficient ways to
compute the energy.

For sake of completeness, we recall from the Introduction
[Eqs. (1) and (5)] that a general Gaussian Hamiltonian is of
the form

H = −i
∑

Hi jcic j + E , (46)

(with H an antisymmetric matrix and E a constant offset), and
the energy of a state ρ with CM γ is given by

tr[Hρ] = tr(Hγ ) + E . (47)

We will henceforth denote this Hamiltonian by (H, E ).

FIG. 7. Elementary step for evaluating energies in MPS. Depen-
dence of the energy on one tensor γ (see text).

A. Energy in GFMPS: Elementary step

Let us first consider the scenario depicted in Fig. 7. We are
given two tensors Gpr|pr and γlq|lq, where Grr = 0, i.e., it is
in left-canonical form, and r � l is contracted, and consider a
Hamiltonian (H, E ) acting on pq. Following Eq. (18) for the
contraction, using Eq. (20) for the inverse, and rearranging
some terms, we find that the contraction yields a CM:

� =
(

Gpp 0
0 0+

)(
Gpr 0
0 1

)(
γll −γ

ᵀ
ql

γql γqq

)(
Gᵀ

pr 0
0 1 .

)
(48)

We can thus rewrite

tr[H�]

= tr

[
H

(
Gpp 0

0 0

)]
+ tr

[
H

(
Gpr 0
0 1

)
γ

(
Gᵀ

pr 0
0 1

)]
(49)

= tr[HppGpp] + tr[H ′γ ], (50)

with

H ′ =
(

Gᵀ
pr 0

0 1

)
H

(
Gpr 0

0 1

)
, (51)

where the size of the identities is |q| × |q|, and, of course,
|r| = |l|, and therefore H ′ has dimensions (|l| + |q|) × (|l| +
|q|). The effective Hamiltonian acting on the γ system—
comprised of the modes in l and q—is thus obtained from
the old Hamiltonian through

(H, E ) �→ (H ′, E ′ = E + tr[HppGpp]), (52)

with H ′ from Eq (51).
Note that if the right tensor were canonical and we instead

contracted l � r, the signs of the 1’s in Eq. (51) had to be
reversed.

B. Energy in GFMPS: Iteration formula

We are now ready to derive how the energy of a
given GFMPS for some Hamiltonian (H1,N , E1,N ), acting on
p1, . . . , pN , depends on the GFMPS tensor at a specific site ŝ.
It is based on iterated application of the elementary step above
and is illustrated in Fig. 8.

Consider an MPS in canonical form around ŝ, with H
acting on all physical sites p1, . . . , pN . For the description, we
assume the generic case 1 < ŝ < N , but the procedure is easily
applied to any ŝ. By applying the procedure derived in the last
section to γ 1 (corresponding to G above) vs the remaining
tensors (seen as one blocked tensor γ ), we obtain an effective
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FIG. 8. Scheme for the contraction of the Hamiltonian. We pro-
ceed stepwise from both ends (here shown from the left end), which
gives an effective Hamiltonian for successively smaller patches
which also acts on the dangling virtual bonds at the boundary, finally
yielding an effective Hamiltonian for γ ŝ.

Hamiltonian

H2,N l2←r1= (γ 1
p1r1

⊕ 1
)ᵀ

H1,N
(
γ 1

p1r1
⊕ 1
)
, (53)

where H2,N is acting on l2, p2, . . . , pN , and we relabel r1 to
l2, as indicated on top of the equality sign. We can repeat this
procedure,

Hs+1,N ls+1←rs= (
γ s

ls ps|rs
⊕ 1
)ᵀ

Hs,N
(
γ s

ls ps|rs
⊕ 1), (54)

until we reach site ŝ. Similarly, we can contract H from the
right, using

Hŝ,s−1 rs−1←ls= [
γ s

psrs|ls ⊕ (−1)
]ᵀ

Hŝ,s
[
γ s

psrs|ls ⊕ (−1)
]
, (55)

note the −1 due to the opposite contraction order, until we
reach ŝ.

In words, each step removes one site from the MPS and
instead updates the way in which the Hamiltonian acts on
the dangling virtual leg at the boundary (this update rule
thus involves the correlations between this dangling leg and
the physical leg in the bulk). This is illustrated for the left
boundary in Fig. 8. In order to update H , we have to take
the Hamiltonian part corresponding to the left+physical leg
which is being removed (site s) and transform it with γ s

l p|r ,

which relates those legs to the new dangling leg (and corre-
spondingly, from the right).

In order to compute the total energy, we must also keep
track of the E contribution. It is updated as

Es+1,N = tr
[
Hs,N

ls ps|ls ps
γ s

ls ps|ls ps

]+ Es,N ,

Eŝ,s−1 = tr
[
Hŝ,s

psrs|psrs
γ s

psrs|psrs

]+ Eŝ,s, (56)

with E2,N = tr[H1,N
p1 p1

γ 1
p1 p1

] = tr[Hp1 p1γ
1
p1 p1

], and accordingly,
Eŝ,N−1 = tr[HpN pN γ N

pN pN
].

We are thus left with a single-site Hamiltonian Hŝ,ŝ acting
on lŝ pŝrŝ such that the total energy is

Etot (γ
ŝ) = tr[Hŝ,ŝγ ŝ] + Eŝ,ŝ. (57)

C. Local Hamiltonians

Let us now consider the special case of local
Hamiltonians—for simplicity, we consider nearest-neighbor
Hamiltonians—and explain how the evaluation of the
Hamiltonian in this case can be accomplished in linear
time in the system size. Moreover, just as in conventional
DMRG, it is possible to store intermediate terms at each cut
such that the effort required to update this information when
moving by one site is independent of system size.

In the following, it will be convenient to also carry an
l1 and rN label, with the corresponding spaces being zero-
dimensional (in the CM). In any step of the computation, the
Hamiltonian will be of the banded form:

Hs,N =

ls ps ps+1 ps+2 . . .⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

As
� Bs

�

−(Bs
�)ᵀDs

� + h11 h12

−hᵀ
12 h22 + k11 k12

−kᵀ12 k22 + · · · . . .
. . .

. . .

(58)

Here, As
�, Bs

�, and Ds
� summarize the information from all

sites to the left of s, and h (k) is the two-site Hamiltonian term
acting on sites ps, ps+1 (ps+1, ps+2), respectively. One update,
step Eq. (54), maps this to

Hs+1,N =

ls+1 ps+1 ps+2 . . .⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

As+1
� Bs+1

�

−(Bs+1
� )

ᵀ
Ds+1

� + k11 k12

−kᵀ12 k22 + · · · . . .
. . .

. . .

(59)

with the update rule

As+1
� = γ

ᵀ
lr As

�γlr + γ ᵀ
pr (Ds

� + h11)γpr

+ γ
ᵀ
lr Bs

�γpr − γ ᵀ
pr (Bs

�)ᵀγlr

Bs+1
� = γ ᵀ

prh12

Ds+1
� = h22, (60)
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where γ ≡ γ s. We thus see that (i) the block-diagonal form of
Hs,N is preserved, (ii) the initial Hamiltonian is of this form
with A1

� = 0, B1
� = 0, D1

� = 0, and (iii) updating the infor-
mation about the Hamiltonian requires only local updates.

Analogously, we can also keep the integrated Hamiltonian
terms for all sites right of s through the update rule:

As−1
� = γ

ᵀ
rl A

s
�γrl + γ

ᵀ
pl (h22 + Ds

�)γpl

+ γ
ᵀ
rl B

s
�γpl − γ

ᵀ
pl (B

s
�)ᵀγrl ,

Bs−1
� = γ

ᵀ
plh

ᵀ
12 ,

Ds−1
� = h11, (61)

where again γ = γ s, and h acts on sites ps−1, ps (with
h11 corresponding to ps−1, etc.), starting with AN

� = BN
� =

DN
� = 0.
For a state with working site ŝ, we find that

Ĥ ŝ,ŝ =

⎛
⎜⎝

Aŝ
� Bŝ

� 0

−(Bŝ
�)ᵀ Dŝ

� + Dŝ
� −(Bŝ

�)ᵀ

0 Bŝ
� Aŝ

�

⎞
⎟⎠ (62)

with mode ordering l pr. Similarly, we can compute Eŝ,ŝ =
Eŝ
� + Eŝ

�, where E1
� = EN

� = 0, and

Es+1
� = Es

� + tr
[
Hs,N

ls ps|ls ps
γ s

ls ps|ls ps

]
= Es

� + tr

[(
As
� Bs

�
−(Bs

�)ᵀ Ds
� + hs

11

)
γ s

l p|l p

]
, (63)

and accordingly,

Es−1
� = Es

� + tr
[(

hs−1
22 + Ds

� −(Bs
�)ᵀBs

� As
�
)
γ s

pr|pr

]
,

(64)

where hs
11 (hs

22) are the left (right) part of the Hamiltonian term
acting between sites s and s + 1. Overall, the dependence of
the energy on γ ŝ is then given by

Etot (γ
ŝ) = tr[Hŝ,ŝγ ŝ] + Eŝ,ŝ. (65)

Since all update rules for the A, B, D, and E are local, they can
be updated (and thus the energy dependence on γ ŝ computed)
at a cost independent of the system size when moving the
working site.

The generalization beyond nearest-neighbor Hamiltoni-
ans follows the same pattern illustrated above, but the
Hamiltonian of Eq. (58) will have additional off-diagonal
terms. In particular, the first row/column, which contains cou-
pling terms between sites q < s and p � s, will be modified
as follows: (i) the terms As

� and Bs
� will contain additional

contributions from terms between q < s and s, and (ii) there
will be additional off-diagonal blocks similar to Bs

� for cou-
pling terms between q < s and p > s. The update rule (60)
is adapted by applying the rule for Bs+1

� for all similar off-
diagonal terms and including additional terms in As+1

� . The
update for the constant term can be adapted similarly. The
total number of blocks that need to be treated in each step
depends on the total number of Hamiltonian terms between
sites q < s and p � s.

D. Energy minimization

A core ingredient in DMRG algorithms is the optimization
of the energy as a function of a single tensor γ ŝ ≡ γ . As we
have seen, this energy dependence can be summed up in an
effective Hamiltonian Hŝ,ŝ ≡ H and constant offset Eŝ,ŝ ≡ E .
In order to minimize E (γ ) = tr(Hγ ) + E , we need to fill all
modes with negative energy. This can be done by going to the
eigenbasis of H ,

H ∼=
⊕

i

(
0 ei

−ei 0

)
, (66)

and choosing

γ ∼=
⊕

i

(
0 1

−1 0

)
. (67)

Numerically, this can be done by diagonalizing the antisym-
metric matrix H (giving imaginary eigenvalues) and then
replacing them by their sign, γ = sign(H ), or by following
the numerical approaches discussed in Ref. [48].

V. GFMPS OPTIMIZATION ALGORITHMS

We now describe some commonly used MPS algorithms
specifically in the context of GFMPS. Most importantly,
we will describe how to carry out the DMRG algorithm
in its formulation as a variational method over GFMPS.
In addition, we will discuss how to implement the time-
dependent variational principle (TDVP), which is suitable
for both time evolution and ground-state simulations, with
GFMPS, as well as a translational invariant version of those
methods.

A. Gaussian fermionic DMRG

The DMRG algorithm can be naturally described as a
variational method over the family of MPS with a given bond
dimension. The key idea is to sweep through the system and
sequentially optimize a small number (usually one or two)
of GFMPS tensors in each step. Each such optimization is
a quadratic problem and can thus be efficiently solved. In
the case where more than one tensor is optimized, the state
can be brought back into MPS form using the singular value
decomposition. While local convergence does not guarantee
global convergence of the energy, this algorithm is empirically
found to perform extremely well.

1. The algorithm

Gaussian fermionic DMRG, i.e., DMRG for a quadratic
fermionic Hamiltonian and with GFMPS as a variational
family, follows closely the conventional way of doing DMRG
with MPS (see, e.g., [4,5]). It consists of an initialization step
followed by a number of sweeps, where each sweep in turn
consists of a right and a left sweep. For concreteness, we will
consider the case of a nearest-neighbor Hamiltonian, but the
same steps equally apply to more complex Hamiltonians (with
suitable modifications regarding the computation of effective
Hamiltonians, cf. Sec. IV). The notation follows that used in
the previous sections. In addition, we will denote the complete
set of left and right boundary terms that enter the effective
Hamiltonian at position s by Bs

� = {As
�, Bs

�, Ds
�, Es

�} and
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Bs
� = {As

�, Bs
�, Ds

�, Es
�}, respectively. We begin by describ-

ing the variant where only one tensor is optimized at a time
(“single-site DMRG”).

(i) Initialization.— Fix a bond mode number for each bond
(s, s + 1), s = 1, . . . , N − 1, and choose a random (pure)
initial tensor γ s for each site s. Let BN

� = {∅, ∅, ∅, ∅}, where
by ∅ we denote a 0 × 0 matrix.
For ŝ = N, N − 1, . . . , 2 do:

(1) Bring γ ŝ into right-canonical form (Sec. III B).
(2) Compute Bŝ−1

� as given by Eq. (61), and store the
result.

After the initialization, we are left with a GFMPS with all
tensors in right-canonical form.

(ii) Right sweep.— Let B1
� = {∅, ∅, ∅, ∅}.

For ŝ = 1, . . . , N − 1 do:

(1) Compute Hŝ,ŝ from Bŝ
� using Eq. (62) (or a suitable

modification, based on Sec. IV, for longer ranged
Hamiltonians).

(2) Choose γ ŝ such as to optimize the energy tr[Hŝ,ŝγ ŝ].
(3) Bring γ ŝ into left-canonical form (updating γ ŝ+1

correspondingly).
(4) (Re-)compute Bŝ+1

� .

(iii) Left sweep.— The left sweep works analogous to the
right sweep, just that one iterates over ŝ = N, N − 1, . . . , 2,
and steps 3 and 4 are replaced by bringing γ ŝ into right-
canonical form and updating Bŝ−1

� , respectively.
To find the ground state, one performs several left and

right sweeps until convergence is reached. Convergence is
typically tested for using the ground-state energy (see also our
discussion in Sec. VI).

A straightforward generalization of this algorithm is to
the “two-site DMRG” algorithm, which optimizes two ad-
jacent tensors in each step. This coincides with the origi-
nal DMRG algorithm due to White [3]. Given a GFMPS
in canonical form around a center site ŝ during a sweep
to the right, the tensors on sites ŝ, ŝ + 1 are optimized by
first using the steps laid out in Sec. IV to obtain an effec-
tive Hamiltonian H (ŝ,ŝ+1),(ŝ,ŝ+1). One then finds the ground
state of this Hamiltonian on the modes lŝ, pŝ, pŝ+1, rŝ+1.
Using the singular value decomposition of Sec. II D 1 and
absorbing the middle tensor � into the right tensor, one can
put the state back into canonical GFMPS form with a new
center site ŝ′ = ŝ + 1; therefore, no extra steps are required to
keep the state canonical. When sweeping to the left, the same
steps are performed on sites ŝ − 1, ŝ, and in the final SVD � is
absorbed into the left tensor. During the singular value decom-
position, the bond dimension can be truncated as appropriate.

In conventional DMRG, the single-site algorithm needs
to be augmented with the technique described in Ref. [54].
This addresses two issues of the single-site algorithm, namely,
that the number of states on a bond is difficult to adapt
dynamically and a tendency to become stuck in local minima.
While this technique does not have a simple generalization
to the GFMPS case, we find in practice that for a fixed bond
dimension, the convergence of single- and two-site DMRG on
GFMPS is very similar; furthermore, given the much lower
cost of the GFMPS-based algorithms, it is often not necessary
to dynamically adapt the bond number.

2. Scaling and efficiency

All steps in the Gaussian fermionic DMRG (GFDMRG)
algorithm can be carried out at a cost of O[(χ + p)3], where
χ is the number of Majorana modes on each bond and p the
number of physical Majorana modes on each site. In practical
numerical implementations, the most costly step will usually
be the inversion required to contract two tensors, which can
be optimized using the block formulas of Eqs. (19) and (20).
The scaling of a single sweep with system size is O(N ).
The number of sweeps required to reach convergence heavily
depends on the underlying problem and cannot in general be
bounded.

Additional cost is incurred if the Hamiltonian is not nearest
neighbor. In particular, the number of additional blocks that
need to be included when computing the effective Hamilto-
nian at site s depends on the number of Hamiltonian terms that
couples sites p < s and q � s. Therefore, the scaling depends
crucially on details of the Hamiltonian. In a simple case, such
as periodic boundary conditions leading to a single additional
term between the left and the right end of the system, the
additional cost is constant, while in the most general case of
coupling between all sites an additional factor N2 could be
incurred.

In contrast to conventional DMRG algorithms, the perfor-
mance can be improved significantly by blocking a group of
nb sites together. To understand this, consider a system of
N sites with p Majorana modes on each site and a GFMPS
description with Majorana bond number χ . In this case, the
matrices of the MPS will be of size (2χ + p) × (2χ + p),
and the computational cost of a sweep will scale as L(2χ +
p)3. If we group nb sites into 1, we instead obtain a scal-
ing of (L/nb)(2χ + nb p)3. In general, one has χ � p, and
optimal performance will be achieved for nb > 1. For local
Hamiltonians, the optimal choice is nb = χ/2. For nonlocal
Hamiltonians, an additional advantage can arise because the
Hamiltonian may become less long-ranged if sites are blocked
together.

Finally, in the discussion so far we have considered general
Gaussian states rather than states with a fixed particle number.
In principle, Gaussian states with fixed particle number can
be described by matrices that are smaller by a factor of 2, thus
potentially leading to a speedup of order 23.

We will perform a more detailed analysis of the perfor-
mance for specific models in Sec. VI B 2.

B. Time-dependent variational principle

The time-dependent variational principle (TDVP) can be
adapted to use MPS [26] as a variational manifold to approxi-
mately solve the time-dependent Schrödinger equation both in
real and imaginary time. In Ref. [27], it is shown that TDVP
can be reformulated as a modification of the DMRG method,
with only a few modifications. In the following, we discuss
how to modify the GFDMRG algorithm described above to
obtain TDVP for GFMPS following the recipe of Ref. [27].

To perform the evolution for some sufficiently small time
step t (where real time evolution corresponds to real t , and
imaginary time evolution to t = iτ , τ > 0), steps 2, 3, and 4 in
step (ii) (right sweep) are replaced by the following sequence:
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(2a) Evolve γ ŝ under Hŝ,ŝ for time t .
(3a) Perform step (I) of the elementary move to bring γ ŝ

into left-canonical form, see Sec. III B and Fig. 6, i.e.,
bring γ ŝ into left-canonical form γ̂ ŝ by splitting off
the SVD �, but do not absorb � in γ ŝ+1 yet.

(4) (Re-)compute Bŝ+1
� using the new (left-canonical) γ̂ ŝ.

(Since Bŝ+1 does not depend on γ ŝ+1, this is already
the correct Bŝ+1.)

(2b) Compute the effective Hamiltonian H� for �, which
describes the dependence of the energy on �:

H� =
(

Aŝ+1
� Bŝ+1

� γ ŝ+1
pl

−(Bŝ+1
� γ ŝ+1

pl

)ᵀ
Aŝ
�

)
, (68)

and evolve � with H� for time −t .
(3b) Absorb the evolved � into γ ŝ+1.

A core ingredient used in steps 2a and 2b is to evolve a
state ρ with covariance matrix � with a time-independent
Hamiltonian H = i

∑
Hi jcic j either in real or imaginary time.

In the covariance matrix formalism, the Schrödinger equation
in real time takes the form

�(0) �→ �(t ) = O(t )�(0)O(t )ᵀ, (69)

with O(t ) = exp(4Ht ) [55]. For imaginary time, this is re-
placed by integrating [56]

�̇(t ) = −4[H + �(t )H �(t )]. (70)

For details on the implementation, such as the optimal
choice of time discretization as well as the generalization to
a two-site version of the algorithm that allows a dynamical
choice of the bond dimension, we refer the reader to Ref. [27].
Note that in the case where t → i ∞, we recover the DMRG
algorithm.

C. Infinite systems

It was already pointed out in Ref. [3] that DMRG is in
principle suitable for infinite systems. While this approach
initially enjoyed some success, for a long time DMRG for
finite systems was considered more accurate. More recently,
however, DMRG for infinite systems has been reinterpreted
in the language of matrix product states, which has allowed
for accurate and efficient methods for infinite, translationally
invariant MPS to be developed [5,57–59]. The underlying idea
of this reinterpretation is to consider an MPS made up of a
unit cell of K sites that repeats indefinitely; in the simplest
case, K = 1, the tensor is the same on each site of the lattice. It
turns out that most MPS algorithms can be generalized to such
an infinite, translationally invariant ansatz by reformulating
them in terms of eigenvectors of transfer operators along
the MPS.

While noninteracting systems can be solved directly in
the thermodynamic limit by expressing the problem in mo-
mentum space, such an approach may scale unfavorably
with the number of sites in the unit cell and does not
give access to real-space correlation functions without solv-
ing for all momenta and transforming back to real space.
Therefore, for a large number of sites in the unit cell, a
GFMPS approach directly in the thermodynamic limit will be
advantageous.

To illustrate how GFMPS can be generalized to the infinite
case, we will limit ourselves to the infinite DMRG (iDMRG)
algorithm and restrict the discussion to the aspects which need
to adapted in the GFMPS case. However, similar generaliza-
tions are also possible for other infinite MPS methods, such as
variational uniform MPS (VUMPS) [59]. We begin by briefly
reviewing the conventional iDMRG algorithm of Ref. [3],
where we specialize to the case of a two-site Hamiltonian H .
Our description follows closely Ref. [5], which we refer to for
details. The algorithm proceeds in the following steps:

(1) Compute the covariance matrix �n=1 corresponding
to the ground state of H on two sites and perform an
SVD such that � is given as the contraction of three
tensors An, �n, and Bn, where An and Bn are left- and
right-canonical MPS tensors, respectively.

(2) Extend the lattice by two sites in the middle and
consider an MPS where the tensor immediately to the
left (right) of the newly inserted sites is given by
An (Bn). Follow the steps outlined in Sec. IV, especially
Eqs. (60)–(62) (adapted for two center sites), to obtain
the effective Hamiltonian for the two sites newly added
in the center. Use Eqs. (63) and (64) to obtain the
constant part of the energy.

(3) Find the ground state �n+1 of this new effective
Hamiltonian and again perform a singular value
decomposition to obtain An+1, �n+1, and Bn+1. Return
to step 2.

All of the steps outlined here can be performed using tech-
niques already discussed. Note that this approach effectively
simulates a finite system of length 2n, where n is the number
of iterations performed. The energy obtained as the sum of
the constant term and the effective Hamiltonian for the center
sites is variational for this system of 2n sites. One generally
finds that for sufficiently large n, the tensors converge.

One can now take the tensors obtained in the last step and
use them to form an infinite, translationally invariant MPS
[5,57]. Let An, �n, and Bn be the tensors obtained in the last
iteration of the infinite DMRG algorithm, and �n−1 the central
tensor from the previous iteration. We then define, analogous
to Ref. [60],

�A = (�n−1)−1 �An λA = �n (71)

�B = An � (�n−1)−1 λB = �n−1. (72)

(In the following, we use the notation A�B to denote the
contraction of tensors; which indices are to be contracted
follows from the structure of the tensor network.) Here, �−1

denotes a square rank-2 tensor such that ���−1 yields the
maximally entangled state between the two sets of modes.
From the SVD, � is of the form � =⊕W (λk ) [see Eq. (30)];
for a tensor of this form, the inverse of this sense is given
by exchanging the left and right modes (i.e., mapping λk →
−λk). This can be verified explicitly using Eq. (18).

If the state is well converged and the bond dimen-
sion large enough, γ L,1 = λB ��A � λA ��B and γ L,2 =
λA ��B � λB ��A will be approximately left-canonical, and
γ R,1 = �A � λA ��B � λB and γ R,2 = �B � λB ��A � λA

will be approximately right-canonical. Expectation values
of local observables, such as the energy on a bond, can
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be obtained from the observation that the reduced den-
sity matrix for the two-site unit cell AB is given by
(λB ��A � λA ��B � λB)pA pB|pA pB , where the physical in-
dices in the subscript refer to the physical indices of �A

and �B. Note that for the average energy, one must com-
pute the energy for the AB and BA unit cells separately and
average.

VI. NUMERICAL RESULTS

Below we test our numerical implementation of the algo-
rithms presented in the previous sections for three relevant
cases: We first study a one-dimensional system that exhibits
nontrivial spatial correlation functions but can be exactly
solved, thus providing a simple comparison. Then we turn
to a two-dimensional system, which we solve on quasi-two-
dimensional cylinder geometries, to assess how accurately
our approach works beyond a strictly one-dimensional system
and when it performs better than exact approaches. Finally,
we study charge transport through a quantum point contact
in a simple geometry at finite bias voltage to demonstrate
the capability of TDVP to compute dynamical properties of
nanostructures.

While the models discussed in this section preserve par-
ticle number, we use the Majorana formalism described
throughout this manuscript without exploiting particle number
conservation.

A. The resonant-level model

First, we consider a one-dimensional system which still ex-
hibits nontrivial real-space correlation functions: the resonant-
level model, which appears as the noninteracting limit of a
number of impurity models (see, e.g., Refs. [61–64]). Here,
we follow the discussion of Ref. [65]. We consider a fermionic
impurity with a corresponding creation operator d† coupled
to a bath of fermions, which here is represented by a periodic
chain of L fermions with associated creation operators c†

i . The
Hamiltonian is given by

H = J ′(d†c1 + c†
1d ) + JTchain, (73)

Tchain =
L−1∑

i

(c†
i ci+1 + c†

i+1ci ) + (c†
Lc1 + c†

1cL ). (74)

Here, T is the kinetic energy operator on the chain and J sets
the bandwidth; we set the unit of energy to J = 1 and fix the
system to half filling, leaving J ′ as the only free parameter
aside from system size.

The quantity of interest is the correlation between the
impurity site and the sites in the bath, C(r) = 〈d†cr〉/J ′.
Owing to the noninteracting nature of the problem, this cor-
relation function can be computed exactly in the thermody-
namic limit (assuming a constant density of states around
the Fermi energy) and at zero temperature is found to be
given by

C(r) = A f (BJ ′2r), (75)

f (κ ) = −π

∫ ∞

−∞
dx

x cos(κx) + sin(κx)

[x2 + 1][1 + δ(x)]
. (76)
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FIG. 9. Rescaled real-space correlation function 〈d†cr〉 of the
ground state of Eq. (73) as a function of (rescaled) distance r · J ′2.
Other parameters are J ′ = 0.05J , and the number of sites per block
nb = χ/2 (see Sec. V A 2). χ denotes the maximum Majorana bond
number, and L is the size of the system including the impurity.
Dashed lines indicate a fit to the exact solution (75).

The constants A and B are independent of L and J ′ but
depend on the microscopic choice for the bath, such as the
Fermi velocity and density of states at the Fermi energy,
and are taken as fit parameters here; however, they can be
computed exactly for certain choices of the bath [65]. The
relevant universal behavior is that C(r) shows a characteris-
tic crossover from short-distance to long-distance behavior
around κ = BJ ′2r ≈ 1; for κ � 1, f (κ ) ∼ ln(κ ) + γ , while
for κ � 1, f (κ ) ∼ 1/κ .

In the previous literature, this crossover was illustrated
by collapsing many datasets for different values of J ′, each
covering a different range of κ . Since we are able to study
systems almost 3 orders of magnitude larger than previously
possible, we can exhibit the full scaling form in a single
dataset. This is shown in Fig. 9. Here, χ denotes the maximum
number of Majorana modes on the bonds of the MPS. This
corresponds to a conventional bond dimension of D(χ ) =√

2
χ

; for χ = 80, this works out to D ≈ 1012 and for χ = 100
to D ≈ 1015. The dashed line indicates the exact solution of
Eq. (75), with A, B chosen as best fit to the MPS data. We see
that agreement is essentially exact up to the largest distances,
which are weakly affected by finite-size effects.
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t

t′

FIG. 10. Lattice used to define the two-dimensional Hamilto-
nian, Eq. (77). Solid lines indicate bonds with strength t , and dashed
lines indicate bonds with strength t ′. For t ′ = t , the square lattice
is recovered, while for t ′ = 0 the brick-wall representation of the
honeycomb lattice is obtained. The dotted lines indicate periodic
boundary conditions in one direction, effectively wrapping the sys-
tem onto a cylinder.

B. Quasi-two-dimensional systems

For a more challenging test, we turn to a model of spinless
fermions hopping on a two-dimensional lattice,

Hhop = −
∑

t x′y′
xy (c†

xycx′y′ + c†
x′y′cxy), (77)

where c†
xy creates a fermion on the xth (yth) site in the

horizontal (vertical) direction, and the hopping elements t x′y′
xy

are chosen to give rise to the brick-wall lattice as sketched in
Fig. 10. There are three particular limits of this model that we
are interested in: (1) the limit where t ′ = t , where the system
simply becomes the square lattice; (2) the limit of t ′ = 0,
where it becomes the brick-wall lattice, whose connectivity
equals that of the honeycomb lattice; and (3) the limit of t = 0,
where it becomes a lattice of isolated dimers.

From the point of view of a matrix product state descrip-
tion, the most relevant property of the system is its entangle-
ment structure, which differs significantly between these three
limits. Most easily understood is the case of isolated dimers:
in this case, the spectrum is fully gapped with a gap of 2t , and
there is only entanglement between the sites that together form
a dimer, and no entanglement (or correlations) otherwise. The
state thus has a very simple MPS description. Upon adding
the t term and interpolating to the square lattice limit t = t ′,
the gap decreases and finally the system becomes gapless
at t = t ′. Correspondingly, the entanglement increases. The
square lattice hosts a gapless state with one-dimensional
Fermi surface. This leads to a logarithmic violation of the
area law [66–69] and thus represents the most difficult case
for a tensor network state approach. Finally, in the case of
the brick-wall/honeycomb lattice, the system is gapless but
with Dirac points instead of Fermi surfaces. In this limit, the
entanglement follows an area law despite the gapless nature
of the system.

In the following we will focus on the case of the
honeycomb/brick-wall lattice and defer a discussion of

the other cases to Appendix A. Due to the area law in the
honeycomb/brick-wall case, the maximum entropy that must
be captured in the MPS scales linearly in its width W . We
therefore choose χ proportional to the width of system W .

For the numerical simulations using DMRG methods, we
study this lattice on cylinders of circumference W and length
L, i.e., with a total of W · L sites. We map the sites to a
chain following each rung (of length W ) from bottom to top.
We have found that the single-site and two-site optimization
algorithm generally lead to comparable results and thus use
the single-site algorithm throughout. We perform at least five
sweeps and terminate when the absolute change in energy
between sweeps drops below 10−3.

1. Convergence of real-space correlation functions

To characterize how well the MPS ground state approx-
imates the exact one, we study the real-space correlations.
Figure 11 shows the decay of the equal-time Green’s function
along the long direction of the cylinder in the limit of a
brick-wall/honeycomb lattice, t ′ = 0. Here, we scale the Ma-
jorana bond number with the width of the cylinder, show-
ing χ = 2W, 4W, 6W . This choice is motivated by the area
law.

It is well known that for finite bond dimension, correlations
in an MPS decay exponentially at sufficiently long distances
[1]. At shorter distances, the correlations can approximate a
polynomial decay. This is clearly borne out in the data of
Fig. 11: for small Majorana bond number χ , the correlations
exhibit an artificial and unphysical exponential decay, while
for sufficiently large χ the exact polynomial decay O(1/l ) is
recovered to high accuracy.

2. Performance comparison against exact methods

We now examine the runtime of the MPS algorithm for
quasi-one-dimensional systems compared to exact, full diag-
onalization methods. Of course, absolute runtimes are im-
plementation specific and particularly in the case of MPS
methods, may depend sensitively on details such as the choice
of initial states, convergence criterion, and many others.
Therefore an analysis of the scaling of the method is more
pertinent.

Exact methods based on fully diagonalizing the hopping
matrix of the underlying problem will scale as the cube
of the matrix size, i.e., in the case at hand as O(W 3L3).
Estimating the cost of the MPS method is more challenging
since, in general, we cannot make any strong assertions on
the convergence with the number of sweeps [70] or the bond
dimension. However, we can quantify the cost of a single
sweep for fixed bond dimension. As stated in Sec. V A 2, the
cost is (N/nb)(2χ + nb p)3D, where N is the number of sites,
p the number of Majorana modes per site, nb the number of
physical sites that are grouped into one site of the MPS, χ

the Majorana bond number, and D the number of operators
that must be tracked to accommodate long-range hopping
terms, which depends on the details of the Hamiltonian and
nb. For the case of the quasi-one-dimensional system at hand,
as we have seen above, to achieve fixed accuracy we scale
χ ∼ W and block a number of sites nb = χ/2 for optimal
performance; therefore, nb ∼ W . For this case, it turns out
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FIG. 11. Real-space correlation functions for the ground state of
Eq. (77) with t = 1, t ′ = 0. Correlations are shown between two sites
of the same (odd) vertical position and different horizontal positions,
i.e., probing the decay of correlations along the cylinder. These
results are obtained using the single-site optimization algorithm with
W sites blocked into one for systems of aspect ratio 10, i.e., L=10W .
Exact results are obtained from a full diagonalization of the same
system.

that D is a constant independent of W . Therefore, the overall
scaling becomes LW 3. For the case where we fix the aspect
ratio, L ∼ W , we thus obtain a scaling of O(W 6) for the exact
methods and O(W 4) for the MPS method.

The memory usage of the exact method scales as (W L)2,
while the GFMPS approach scales as (W L/nb)(2χ + nb p)2.
For the choices made above (W ∼ L, χ, nb), this leads to
the exact method scaling as W 4 and the GFMPS approach
scaling as W 3. In practice, given our choice of aspect ratio, the
memory requirements of the exact approach are much greater
than the GFMPS approach and turn out to be the limiting
factor.
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FIG. 12. Run time to a converged solution for the ground state of
Eq. (77) with t = 1, t ′ = 0 for aspect ratio L = 20W , i.e., the largest
system has 602 × 20 = 72 000 sites. The dashed line indicates a best
fit of the GFMPS data for χ/W = 6 to aW 4, with a a fit parameter,
and the dotted line is a best fit of the exact method to aW 6. These
simulations are performed on four cores of an Intel(R) Xeon(R)
E5-2690 v3 @ 2.60 GHz.

We numerically confirm the scaling of the runtime in
Fig. 12, where we show the time to achieve a converged
solution instead of the time to perform a single sweep. The
GFMPS approach shows polynomial scaling consistent with
W 4 across a range of bond dimensions. This is consistent with
the empirical expectation that the number of sweeps scales at
most very weakly with the size of the system.

For the parameters chosen here and our implementation,
the crossover where the GFMPS method becomes faster than
exact approaches is around W = 14. This is most strongly
influenced by the aspect ratio: upon approaching the one-
dimensional limit, the GFMPS approach will become more
and more favorable.

C. Transport through a quantum point contact

To illustrate the power of the time-dependent variational
principle applied to GFMPS, we study a simple transport
problem, namely, the quantization of conductance through a
quantum point contact in a multichannel wire [71]. We model
the system as a square lattice of spinless fermions of size
W × L, i.e., as shown in Fig. 10 with hopping Hamiltonian
(77) for t ′ = t = 1. We add an on-site potential

Hpot =
∑[

−μ0 + VB exp

(
− (x − L/2)2

d2

)]
nxy, (78)

where nxy = c†
xycxy. This corresponds to a Gaussian potential

barrier of height VB and width d at the center of the system in
x direction and independent of y.

We initialize the system in the ground state of Hhop + Hpot

using the single-site DMRG algorithm and then apply a volt-
age V by evolving under the Hamiltonian Hhop + Hpot + Hbias
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FIG. 13. GFMPS simulation of the quantized conductance across
a Gaussian potential barrier of height VB in a W × 500 system. For
details, see main text.

with

Hbias = V

2

∑
y

⎛
⎝L/2−4d∑

x=1

nxy −
L∑

x=L/2+4d

nxy

⎞
⎠. (79)

Here, we use the sites that are more than 4d away from the
center of the barrier as leads and apply a symmetric bias
voltage, and consider the region between the leads as the
quantum point contact. We then measure the charge in the
left half of the system, Nleft =∑y

∑L/2
x=1 c†

xycxy, as a function
of time. Due to conservation of charge, we can compute
the current flowing across the junction as J (t ) = dNleft/dt .
Alternatively, we could evaluate the charge operator across the
junction.

After a transient time of order d , the current settles to a
plateau value that will last until the charge transport reaches
the end of the leads after a time of order L. We compute
the average current J̄ over this plateau and define the con-
ductance as G = J̄/V . According to well-known theoretical
calculations, in the limit of a smooth barrier the conductance
should be quantized as G = NG0/2, where N is the number
of conducting spin channels (i.e., for a usual spin-degenerate
system, N = 2K with K the number of spinful channels, but
here we consider a spinless system) and G0 = 2e2/h. We use
units where e = h̄ = 1, and thus G0 = 1/π .

For VB = 0, we expect the system to have W conducting
channels and thus G = W G0/2; as we increase the barrier
height, the number of channels is reduced one by one as
the lowest-momentum channels are cut off first. We confirm
this behavior in Fig. 13 for a system with W = 4, L = 500,
d = 10, and applied bias voltage V = 0.1. Our simulations
are performed with a GFMPS of Majorana bond number
χ = 50 and with nb = W , and TDVP is run with a time step
of dt = 0.05. We also note that since the Hamiltonian is
time-independent after the quench, a time t can be reached
in one step for exact simulations while requiring t/dt steps
in TDVP; however, one can easily generalize the TDVP

simulation to a time-dependent Hamiltonian, as would arise,
for example, when computing the ac conductance, without
incurring additional computational cost.

VII. CONCLUSIONS

In this paper, we have studied how to apply the DMRG
algorithm and other MPS-based algorithms to the simulation
of systems of noninteracting fermions. By combining the
advantages of the exponentially compressed description of
noninteracting fermionic states in terms of second moments
and the efficient description of states with bounded (area-
law) entanglement through matrix product states we were
able to simulate systems far beyond what is possible with
either method alone. The central insight of our GFDMRG
algorithm is the use of a suitable canonical form which allows
us to express the minimization of the energy as a function
of a given tensor as an eigenvalue problem, much like in
conventional DMRG. This enabled us to realize the variational
algorithm for noninteracting fermions in close analogy to
the conventional MPS-based formulation of DMRG, as well
as to generalize the method to other MPS-based algorithms
such as TDVP for time evolution or iDMRG for infinite
systems.

The computational cost of the GFDMRG method scales as
Lχ3 per sweep, with L the length of the chain and χ the num-
ber of modes per bond. Due to the exponential compression of
the representation in terms of second moments, the effective
bond dimension is D = 2χ/2. This allows us to simulate even
systems with an amount of entanglement that grows faster
than an area law, such as a Fermi surface or states after a
quantum quench, efficiently and to high accuracy for very
large system sizes. We have demonstrated the power of our
method for both one-dimensional and quasi-2D systems and
obtained results for up to one million lattice sites and effective
bond dimensions of 1015.

An interesting follow-up question is how to generalize the
method to two-dimensional systems using projected entangled
pair states (PEPS). A key point to be addressed is that in
our one-dimensional algorithm, the canonical form serves
a more central role than in conventional MPS simulations.
While in the latter case the canonical form is primarily used
to stabilize the method, in our case it is the key ingredient
which allows us to express the dependence of the energy on a
tensor as an eigenvalue problem in the first place. Therefore,
generalizing the method to two dimensions requires either
to understand how to solve the energy optimization problem
without using a canonical form or consider more special-
ized two-dimensional tensor networks that have a canonical
form.
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FIG. 14. Convergence of real-space correlations functions for the
ground state of Eq. (77) in the limit of a square lattice, t = t ′.

APPENDIX A: REAL-SPACE CORRELATIONS
IN THE PRESENCE OF A FERMI SURFACE

In Fig. 14, we show the real-space correlation functions,
analogous to Fig. 11, for the case of fermion hopping on
the square lattice, i.e., t = t ′. While these exhibit much more
structure than the correlations in the honeycomb case, which
is due to the interplay of finite Fermi momentum kF and
the quantization of momentum around the periodic direction
of the cylinder, they still have an envelope that decays as a
power law. Importantly, in contrast to the honeycomb case of
Fig. 11, the system violates the area law and thus an accurate
description requires a χ that grows faster than W . This can
be seen in the data: while for W = 6, χ/W = 6 is sufficient
to accurately describe the correlations, for W = 36 the same
χ/W cannot capture the correlations accurately beyond a
distance of roughly 102.

APPENDIX B: COMPUTATION OF OVERLAPS OF GFMPS

In this Appendix, we describe how to efficiently evaluate
the absolute value squared of the overlap of two GFMPS. We
focus on this instead of the overlap itself, since the phase of
the overlap is not fully determined by a Gaussian covariance
matrix; to see this, note that the covariance matrix of two
Gaussian states |φ〉 and eiθ |φ〉 is the same. For a more detailed
discussion of this issue and possible solutions, see Ref. [46].

We begin by slightly generalizing the contraction formal-
ism introduced in Sec. II B. In particular, Eq. (18) can be
generalized to the contraction of two indices b, c on a given
covariance matrix γ even when there is correlation between
the two, i.e., γbc|bc �= 0. This should be contrasted with the
case of Eq. (18), where the input covariance matrix is the
direct sum of two parts and the indices being contracted have
no correlations. Starting from the covariance matrix γabc|abc,
the CM after contracting b� c is given by

K = γaa + γa|bc

[
γbc|bc +

(
0 1

−1 0

)]−1

γ
ᵀ
a|bc. (B1)

Given two states ρ and σ with CMs γρ and γσ , their overlap
is tr(ρσ ) = 2−χ/2

√
det(1 − γργσ ), where χ is the number of

Majorana modes [47], cf. also Eq. (10). From this we can
immediately infer that the change in normalization induced
by contracting two indices b� c of a state with CM γabc|abc—
which is equivalent to projecting bc on a maximally entangled
state—is given by

N = 2−χ/2

√∣∣∣∣det

[
γbc|bc +

(
1

−1

)]∣∣∣∣, (B2)

with χ = |b| = |c| (this can be seen by multiplying with(
1

−1

)
in the determinant); note that this exactly corre-

sponds to the determinant of the inverse in the Schur com-
plement in the contraction Eq. (B1). This normalization also
holds for the case |a| = 0, i.e., when all indices are contracted.

In order to compute the overlap of two Gaussian states with
covariance matrices γ and �, we can form the joint covariance

matrix
(
γ

−�

)
and contract all indices using Eq. (B2); note

that in that case N is independent of the direction of the
contraction (i.e., replacing 1 ↔ −1). The minus sign reflects
the fact that contracting as defined here involves a particle-
hole transformation on � (corresponding to particle number
conservation of the maximally entangled state ω onto which
the bond is projected). To compute the overlap of two GFMPS
(cf. Fig. 15) we can perform the same procedure iteratively by
contracting the two GFMPS together from left to right. In each
step, the change in normalization must be tracked according
to Eq. (B2). Furthermore, the particle-hole transformation on
the second MPS requires the direction of the contraction of its
virtual indices to be reversed. A convenient way to carry out
the procedure is to perform the following contractions:

(1) L(1) = (−�1)� γ 1

(2) L′ = L(n) � γ (n+1)

(3) L(n+1) = (−�(n+1))� L′ and return to step 2.

Here, in slight abuse of previous notation, we use the sym-
bol � to denote the (directional) contraction of two tensors
(rather than indices), where the correct indices to contract are
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FIG. 15. Overlap of GFMPS. The overlap is obtained by con-
tracting the GFMPS with tensors γ s and the particle-hole trans-
formed GFMPS with tensors −�s. The contraction can be carried
out efficiently by contracting, say, from left to right, in each step
contracting first the upper and then the lower MPS tensor to a left
boundary tensor. In each step, the opposite contraction order in the
lower part must be observed.

specified in Fig. 15. In each contraction, including the very
last one, the normalization factor N is tracked; the overall

normalization of the overlap is then given by the product of
all normalizations. We denote this overlap as N (γ s, �s).

One can then obtain the normalized overlap of the two
states as

|〈γ |�〉|2 = N (γ s, �s)√
N (γ s, γ s)N (�s, �s)

. (B3)

The computation of the denominator is greatly simplified by
transforming each GFMPS into the left- or right-canonical
form. If the left-canonical gauge is chosen for all tensors, then
γ s

rr = 0, yielding a normalization 2−χ/2 for the contraction of
a bond with χ Majorana modes, and thus

N (γ s, γ s) =
∏

i

2−χ
γ

i,i+1/2, (B4)

with χ
γ

i,i+1 the bond number at link (i, i + 1).
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