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We study an isotropic Heisenberg spin- 1
2 model on a trellis ladder which is composed of two J1 − J2

zigzag ladders interacting through antiferromagnetic rung coupling J3. J1 and J2 are ferromagnetic zigzag spin
interaction between two legs and antiferromagnetic interaction along each leg of a zigzag ladder. A quantum
phase diagram of this model is constructed using the density matrix renormalization group method and linearized
spin-wave analysis. In the small J2 limit, a short-range striped collinear phase is found in the presence of J3,
whereas, in the large J2/J3 limit, a noncollinear quasi-long-range phase is found. The system shows a short-range
noncollinear state in the large J3 limit. The short-range-order phase is the dominant feature of this phase diagram.
We also show that the results obtained by DMRG and linearized spin-wave analysis show a similar phase
boundary between the collinear striped and noncollinear short-range phases, and the collinear phase region
shrinks with increasing J3. We apply this model to understand the magnetic properties of CaV2O5 and also
fit the experimental data of susceptibility and magnetization. We note that J3 is a dominant interaction in this
material, whereas J1 and J2 are approximately half of J3. The variation of magnetic specific heat capacity as a
function of temperature for various external magnetic fields is also predicted.
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I. INTRODUCTION

In the last couple of decades, frustrated low-dimensional
quantum magnets have been intensively explored in search
of various exotic phases like spin fluid with quasi-long-
range order (QLRO) [1–6], spin dimer with short-range or-
der (SRO) [2,3,7–9], vector chiral [10,11], multipolar phases
[10–13], etc. These phases arise in the presence of some
specific types of spin-exchange interactions which may en-
hance the quantum fluctuations in low-dimensional frustrated
systems like one-dimensional (1D) spin chains realized in
materials, LiCuVO4 [14], Li2CuZrO4 [15], Li2CuSbO4 [16],
(N2H5)CuCl3 [17], etc., and quasi-1D spin ladders mani-
fested in the form of SrCu2O3 [18], (VO)2P2O7 [19,20], etc.
Frustrated twisted ladders are also realized in materials like
Ba3Cu3In4O12 and Ba3Cu3Sc4O12 [21–24]. A majority of the
1D frustrated magnetic systems mentioned above are modeled
by a simple J1-J2 chain [1,3–8,15,25–33]. This model can ex-
plain the gapless spin fluid [1,4], gapped dimer [3,7], gapped
noncollinear (NC) [3–6], and decoupled phases [34].

In fact, many of these 1D systems like LiCuVO4 [14] and
Li2CuZrO4 [15] show three-dimensional ordering at low tem-
perature; therefore, interchain couplings are considered to un-
derstand the interesting physics below the three-dimensional
ordering temperature. However, there are materials with ef-
fective spin interactions confined to a quasi-1D ladderlike
structure, e.g., SrCu2O3 [18], (VO)2P2O7 [19,20], CaV2O5,
MgV2O5 [35,36], etc. These systems have antiferromagnetic
(AFM) spin-exchange interactions along both legs and rungs,
and there is also a weak interaction between two adjacent
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ladders. The ground state (g.s.) of these systems is a gapped
SRO phase [9]. The coexisting of spin gap and long-range
magnetic order in the ladder compound LaCuO2.5 is explained
considering interladder coupling [37,38].

The 1D J1 − J2 system, in the large J2 limit, is called
a zigzag ladder [4], where two chains are coupled through
zigzag bonds, for example, LiCuVO4 [14]. The isolated lad-
ders like zigzag and normal ladders have been extensively
studied [3,9,39–41]; however, the effect of interladder cou-
pling on these ladders is rarely studied. Networks of the
coupled zigzag ladders can form a trellis-latticelike structure
as shown in Fig. 1. The trellis lattice is composed of a number
of zigzag ladders coupled through normal rung bonds; alter-
natively, we can assume coupled normal ladders interacting
through zigzaglike bond interactions. In this lattice, spin-
exchange-interaction strengths J2 and J3 are along the leg and
rung of a normal ladder, respectively, and J1 is the zigzag bond
interaction strength between two ladders as shown in Fig. 1.

In this paper, we consider only two coupled zigzag lad-
ders and call it a trellis ladder because of its geometry. We
also impose periodic boundary conditions along the width
to mimic the trellis lattice. In various interaction limits, two
coupled zigzag ladders can behave like a two-leg honeycomb
ladder as considered in Ref. [42], where both J1 and J2 are
AFM, but J3 can be either ferromagnetic (FM) or AFM. This
system shows two types of Haldane phases for the FM J3, and
columnar dimer and rung singlet phases in the presence of
the AFM J3. Normand et al. have considered similar coupled
ladders with all three AFM J1, J2, and J3 interactions [43].
For large J2/J1, they have noticed dimerized g.s., whereas NC
long-range order (LRO) for large J3 (J ′

2). They have found
Néel LRO phase in the small J2 < 0.4 limit. Zinke et al. have
shown the effect of interchain coupling on the NC g.s. of the
J1 − J2 model [44], in a two-dimensional geometry. The effect
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FIG. 1. Two coupled zigzag ladders form a trellis ladder. The ex-
tended lines show the extension of trellis ladder to a 2D trellis lattice
structure. The arrows represent arrangement of spins and question
marks represent frustrated spins. The reference site is labeled by 0
and the distances of other sites along the same ladder are shown in
bold numbers, and normal numbers represent the distances on the
other ladder. l represents the zigzag ladder indices.

of interladder coupling on spin gap and magnon dispersion is
calculated using perturbation theory by Miyahara et al. [45].
They also try to model the magnetic susceptibility of SrCu2O3

and CaV2O5 using quantum Monte Carlo and mean-field-type
scaling methods [45]. However, the system with FM J1 and
AFM J2 and J3 has not been studied in the ladder geometry. In
this paper, we consider a spin- 1

2 trellis-ladder structure, which
is composed of two zigzag ladders with FM J1 and AFM J2,
and they are coupled by AFM J3 as shown in Fig. 1. Our main
focus of this paper is to construct the quantum phase diagram
(QPD) and also understand the effect of rung interaction J3

on the various exotic phases of zigzag ladder [5]. We notice
that in small J2/|J1| limit, g.s. has collinear striped (CS) SRO
on each zigzag ladder; however, spins on one zigzag ladder
are aligned antiferromagnetically with respect to the spins on
the other zigzag ladder [46]. The NC spin order sets in for
moderate values of J2. The presence of QLRO in the NC
regime at small J3/J2 limit is a striking effect of the J3. In
large J3 limit, rung dimer is the dominant g.s.

This paper is divided into four sections. In Sec. II, the
model Hamiltonian and numerical method are explained. The
numerical results are given in Sec. III. Linear spin-wave
analysis and experimental data fitting of CaV2O5 are given
in Secs. IV and V, respectively. All the results are discussed
and summarized in Sec. VI.

II. MODEL HAMILTONIAN AND NUMERICAL METHOD

A four-legged spin- 1
2 ladder made of two coupled zigzag

ladders is considered as shown in Fig. 1. The exchange
interactions between spins along the legs and rungs are AFM
in nature. The diagonal exchange interactions J1 in a zigzag
ladder are FM. We can write an isotropic Heisenberg spin- 1

2
model Hamiltonian for the trellis-ladder system as

H =
∑
l=1,2

N/2∑
i=1

J1 �Sl,i · �Sl,i+1 + J2 �Sl,i · �Sl,i+2

+ J3 �S1,i · �S2,i + HSz
i , (1)

where l = 1, 2 are the zigzag ladder indices. �Sl,i is the spin
operator at site i on zigzag ladder l . We consider J1 = −1, and
J2 and J3 are variable AFM exchange interaction strengths. We
use periodic boundary conditions along the rungs, whereas it
is open along the legs of the system.

We use the density matrix renormalization group (DMRG)
method to handle the large degrees of freedom in our system.
This method is a state-of-the-art numerical technique for a 1D
or quasi-1D system, and it is based on the systematic trunca-
tion of irrelevant degrees of freedom [47–49]. We use recently
developed DMRG method where four new sites are added
at every DMRG step [50]. This method, while constructing
superblock, avoids the old-old operator multiplication which
leads to the generation of a large number of nonzero but small
matrix elements in the superblock Hamiltonian. The number
of eigenvectors m, corresponding to the largest eigenvalues of
the density matrix, is kept for the renormalization of operators
and the Hamiltonian of the system block. We have kept m up
to 400 to restrict the truncation error less than 10−10. We have
used system sizes up to N = 300 to minimize the finite size
effect.

III. RESULTS

We first present an outline of the QPD which is con-
structed based on various quantities like correlation function
C(r), pitch angle θ , and bond order C(r = 1). The detailed
numerical and analytical calculations are discussed in the
following subsections. For J1 = 0, this system is composed of
two isolated normal ladders and two isolated zigzag ladders
for J3 = 0. In J1 = 0 limit, g.s. shows the formation of singlet
dimers along the rungs on the normal ladder [9]. On the other
hand, for J3 = 0, the system shows various phases arising
due to the presence of frustration in each zigzag ladder, at
different exchange coupling limits. For J2/|J1| < 0.25, the g.s.
of an isolated zigzag ladder has ferromagnetically ordered
spins and gapless excitations. In the intermediate parameter
regime, 0.25 < J2/|J1| < 0.67, NC order arises in this system
with a small finite spin gap [4–6,51]. The system behaves
like decoupled AFM chains exhibiting QLRO in spin-spin
correlation and gapless excitations in J2/|J1| > 0.67 limit [6].
We notice that if two zigzag ladders start interacting with
each other through rung coupling J3, it immediately opens
a spin gap in the system. The spin gap in the CS (SRO)
phase has been explicitly studied in Ref. [46]. In Sec. IV,
we discuss the linear spin-wave analysis of this model. At
the end, we apply this model to fit magnetic susceptibility
and magnetization of CaV2O5 in the large J3 limit. We also
predict the specific heat curve at high temperature which can
be verified experimentally.

A. Quantum phase diagram

The QPD of the Hamiltonian in Eq. (1) is shown in J2/|J1|
and J3/|J1| parameter space, and we focus mainly on the
phases in the presence of J3. The resulting phase diagram in
Fig. 2 shows two distinct phases: the CS (SRO) and NC spin
order. In the small J3 and J2 < 0.25 limit, an individual zigzag
ladder retains the FM arrangement of spins; however, the spins
on two different zigzag ladders are aligned antiparallelly with
respect to each other. Therefore, the g.s. of the whole system
has effective multiplicity Sz = 0. The spin-spin correlation
decays exponentially along each zigzag chain. This phase
can be called the CS (SRO) phase. As we increase J3, the
correlation length ξ decreases. The details of this phase have
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FIG. 2. The QPD of the model Hamiltonian in Eq. (1) for H = 0:
red solid line with circles represents the boundary between CS (SRO)
and NC (SRO) phases. The green dotted line with square symbols
in NC (SRO) regime represents the boundary line with ξ ≈ 1. NC
(QLRO) phase lies below the blue dashed line with diamonds. The
color gradient represents the pitch angle θ distribution in the J2 − J3

parameter space.

been discussed already in Ref. [46]. At a higher J3 value,
even for J2 < 0.25, a NC phase emerges but with small
amplitude and ξ in spin-spin correlation. For J2 > 0.25, spiral
arrangement of spins becomes more prominent for lower J3. In
the NC regime, C(r) is either QLRO (decay following power
law) called NC (QLRO), or SRO (exponentially decaying)
called NC (SRO) for the small or large J3, respectively. The
θ vanishes at the boundary between CS (SRO) and NC (SRO)
phases. In Fig. 2, color gradient represents θ distribution in the
parameter space. The red solid line with circles represents the
boundary between CS (SRO) and NC (SRO) phases in the g.s.
The region above the green dotted line with square symbols
represents the SRO phase where spin correlation length is
confined to its neighbor, i.e., ξ � 1. In the large J3 limit, the
correlation strength along the rung dominates, and it tends
to form singlet dimers along the rungs. The dimer phase is
characterized by large energy gap, and the spin correlation is
confined within the nearest neighbors (ξ � 1). Interestingly,
for the large J2/J3 limit, the g.s. is in a unique NC (QLRO)
phase. To best of our knowledge, QLRO phase exits with pitch
angle θ = π or π

2 [5,6], whereas this system shows QLRO
even with θ < π

2 . The NC (QLRO) phase lies below the
blue dashed line with diamond symbols. The phase boundary
between NC (SRO) and NC (QLRO) phases has a large error
bar due to the inability to distinguish between the power law
and exponential nature of C(r) in this parameter regime. To
verify these different phases, C(r), θ , ξ , and C(r = 1) are
studied in detail in the following subsections.

B. Spin-spin correlation C(r)

We calculate the longitudinal spin-spin correlation C(r) =
〈Sz

0Sz
r〉, where Sz

0 and Sz
r are the z component of the spin

operators at the reference site 0 chosen at the middle of a
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FIG. 3. The longitudinal spin-spin correlation C(r) are shown
along the zigzag leg with the reference spin situated on same zigzag
ladder in (a), whereas C(r) on the other zigzag leg is shown in
(b) for J2 = 0.1 and five values of J3 = 0.1, 0.3, 0.5, 0.7, and 0.9
with N = 122. In (c) and (d), C(r) in the same zigzag leg are shown
for J2 = 0.23 and 0.3 with same five values of J3. The solid lines
represent respective exponential fits.

zigzag chain and the site r at a distance r from zeroth spin,
respectively. In Fig. 1, the distance r is shown along the same
zigzag ladder with bold numerics with respect to the reference
site 0, whereas normal numerics represent distances on the
other zigzag leg. We note that in J2/|J1| < 1

4 limit, all the spins
are aligned parallelly on an individual zigzag ladder and have
short-range longitudinal correlation for finite J3. C(r) follows
an exponential behavior as shown in Fig. 3(a) for J2 = 0.1 and
J3 = 0.1, 0.3, 0.5, 0.7, and 0.9. We notice that each zigzag
ladder shows collinear arrangement of spins as C(r) > 0, but
it decays exponentially with r, i.e.,

C(r) ∝ exp

(−r

ξ

)
. (2)

The fitting curve represents an exponential function with
correlation length ξ . Figure 3(b) shows the C(r) of the same
reference spin with the spins on the other zigzag leg. The
negative values suggest antiparallel arrangement of spins rel-
ative to the reference spin leg. This behavior of C(r) confirms
the stripe nature of spin arrangement on each zigzag ladder.
Therefore, we call it a striped phase. On further increase in J2,
C(r) starts to oscillate at higher J3 even at the limit J2 < 0.25.
For J2 = 0.23, C(r) is shown in Fig. 3(c) for the same set of
J3 values. We note that NC (SRO) arises for J3 � 0.3. While
C(r) for J3 = 0.1 is fitted by Eq. (2), C(r) for other J3 can be
fitted with the equation below:

C(r) ∝ exp

(−r

ξ

)
sin(θr + c). (3)

The NC order can be easily noticed at lower J3 for J2 >

0.25. For J2 = 0.3, C(r) is shown in Fig. 3(d) and fitted by
Eq. (3). We note that ξ decreases with J3. For moderate J2, the
NC phase follows SRO behavior, whereas it shows QLRO in
the g.s. for higher J2 > 0.45 but for small J3. The transition
between NC (SRO) to NC (QLRO) seems continuous, and
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FIG. 4. For three values of J3 = 0.1, 0.5 and 1.0 with N = 298,
C(r) are shown in (a) and (b) for J2 = 0.5 and 0.7, respectively.
The solid curves represent respective sinusoidal fits with algebraic
or exponential decay.

hence it is difficult to find an accurate phase boundary. In
the QLRO regime, C(r) is fitted with sinusoidal power law
function written as

C(r) ∝ r−κ sin(θr + c). (4)

In Figs. 4(a) and 4(b), C(r) are plotted for J2 = 0.5 and
0.7, respectively, with J3 = 0.1, 0.5, and 1.0. For J2 = 0.5
and J3 = 0.1, C(r) fits with the power law in Eq. (4) where
κ ≈ 1, whereas C(r) follows exponential decay at J3 = 0.5
and 1.0 with ξ = 2.29 and 1.56, respectively. For J2 = 0.7
and J3 = 0.1 and 0.5, C(r) decays algebraically with κ = 1.15
and 1.37, respectively, but exponentially for J3 = 1.0 with
ξ = 1.99. We notice that the width of the NC (QLRO) region
increases with J2.

C. Pitch angle θ

In the NC phase, we calculate pitch angle θ from the fitting
parameter in Eqs. (3) and (4). θ/π is plotted as a function of
J2 for various values of J3, as shown in Fig. 5. θ/π versus J2

curves are fitted with function θ/π = a[1 − eb(J2−Jc
2 )], where

a, b, and Jc
2 are the fitting parameters. Jc

2 is the phase boundary
point between CS (SRO) and NC (SRO) phases for a given J2

and J3. θ increases from 0 to π/2 with J2. The θ ≈ π/2
region is confined to the high J2/J3 limit. The variation of θ

is represented by the color gradient in the phase diagram in
Fig. 2.

D. Correlation length ξ

The correlation length ξ extracted from fitting Eqs. (2) and
(3) is a measure of correlation length in CS (SRO) and NC
(SRO) phases, respectively. The nature of ξ in the CS (SRO)
phase is discussed in Ref. [46]. In the NC (SRO) regime, ξ

are plotted as a function of J2 for J3 = 0.5, 0.6, 0.7, 0.8, 0.9
in Fig. 6. The correlation length can be fitted by ξ = c +
dJ2, where c and d are the fitting parameters. We note that
ξ increases with J2/J3. A higher value of J2 needs more
strength in J3 to keep the same correlation length in the
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FIG. 5. The variation of pitch angle θ with J2 are shown for five
values of J3 = 0.1, 0.3, 0.5, 0.7, and 0.9. The open circles represent
θ for J1 − J2 spin- 1

2 model on a zigzag ladder with FM J1 and
AFM J2.

NC (SRO) phase. Surprisingly, this behavior is completely
opposite in the case of the CS (SRO) phase, where higher J2

requires lower J3 to sustain the same correlation length [46].
When ξ � 1, dominant correlation strengths become confined
within the three nearest neighbors among which the rung
bond correlation is dominant over other two bond strengths.
In fact, ξ � 1 represents the correlation length within nearest-
neighbor distance; as per our convention of distance, both
r = 1 and r = 2 are the nearest neighbors to the reference
spin. In this limit, the system behaves like a collection of
singlet rung dimers. The varying strength of nearest-neighbor
bond correlations depending on J2 and J3 are discussed in the
next subsection.

E. Nearest-neighbor bond correlation C(r = 1)

It is quite interesting to see the relative strength of nearest
neighbor C(r = 1) or longitudinal bond order in the parameter
space. The magnitude of C(r = 1) along the rung |CR|, along
the leg |CL|, and along the zigzag leg CD are shown for
J2/|J1| = 0.1, 0.4, and 0.7 in Figs. 7(a), 7(c), and 7(d), re-
spectively. The bonds along three directions are shown in the
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J
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2.5
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J3 = 0.5
    = 0.6
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    = 0.8
    = 0.9

FIG. 6. In NC (SRO) phase ξ − J2 curves are shown for five
values of J3 = 0.5, 0.6, 0.7, 0.8, and 0.9. The solid lines represent
respective linear fits.
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FIG. 7. Nearest-neighbor correlation function C(r = 1) at the
middle of the zigzag ladder is shown. The C(r = 1) along the rung
(CR, circle), diagonal direction (CD, square), and leg (CL , diamond)
are shown in the schematic in (b). C(r = 1) − J3 plots are shown
for J2 = 0.1, 0.4, and 0.7 in (a), (c), and (d), respectively. The lines
represent respective exponential fits.

schematic Fig. 7(b). We notice that CD and CL have positive
values for the CS (SRO) phase whereas, CL becomes negative
for the NC phase. In the NC phase, |CL| is dominant for small
J3, but |CR| dominates for J3 > 0.08 and 0.38 for J2 = 0.4
and 0.7, respectively. The effect of J3 on CD is weak, and
also the magnitude of CD is small. Therefore, we can safely
conclude that major contributions of energy come from |CR|
and |CL| in the NC phase. |CR| increases exponentially with
J3 and saturates to a value which is nearly equal to 0.25.

IV. LINEAR SPIN-WAVE ANALYSIS

In the CS (SRO) phase, spins on the same zigzag lad-
der are arranged ferromagnetically, whereas spins from dif-
ferent zigzag ladders are arranged antiferromagnetically to
each other. We perform the linear spin-wave analysis of the
Hamiltonian for this phase. We use the Holstein-Primakoff
transformation to the Hamiltonian in Eq. (1). The details of
the calculation are given in Appendix.

The Hamiltonian can be written in terms of bosonic oper-
ators a j, b j, a+

j , and b+
j , where a j/a+

j and b j/b+
j correspond

to spin-up and spin-down operators or spins on legs l = 1 and
l = 2, respectively. We consider only up to quadratic terms.
After Fourier transformation, the resultant Hamiltonian can
be written as

H = (2J1 + 2J2 − J3)Ns2 +
∑

k

s[(2J1(cos k − 1)

+ 2J2(cos 2k − 1) + J3)(a+
k ak + b+

k bk )

+ J3(a+
k b+

−k + akb−k )]. (5)

The above Hamiltonian can be transformed to a diagonal
form using the Bogoliubov transformation, i.e.,

ak = uck − vd+
k ,

(6)
b+

−k = −vck + ud+
k ,

where u2 − v2 = 1, u2 + v2 = Jk√
J2

k −J2
3

and 2uv = J3√
J2

k −J2
3

,

and Jk = 2J1(cos k − 1) + 2J2(cos 2k − 1) + J3. Applying
Bogoliubov transformation, we get

H = (2J1 + 2J2 − J3)Ns2 +
∑

k

ωk (c+
k ck + d+

k dk + 1), (7)

where ωk = S(
√

J2
k − J2

3 ).
The gs energy per bond is given by

ε =
(

J1 + J2 − J3

2

)
S(S + 1) +

∑
k

s

2π

∫ π

0

√
J2

k − J2
3 dk.

(8)

The ε can be minimized using dωk
dk = 0 and we find these

conditions, cos k = −J1
4J2

and cos k = −J1
4J2

±
√

(J1+4J2 )2−4J2J3

4J2
.

The second condition J3 � (J1+4J2 )2

4J2
for any real value of cos k,

gives the phase boundary between CS (SRO) and NC (SRO)
phases. This boundary is similar to that found by DMRG
calculation.

V. FITTING EXPERIMENTAL DATA OF CaV2O5

There are many vanadate compounds like CaV2O5,
MgV2O5, NaV2O5, etc., which are suspected to behave ef-
fectively like two leg ladders coupled by zigzag bonds form-
ing a trellis-latticelike structure. Among these materials, the
interladder coupling (J1) in CaV2O5 is expected to be fer-
romagnetic. The LDA+U calculations performed by Korotin
et al. [36] give an estimation of the J1, J2, and J3 exchange
interaction strengths as −28 K, 122 K, and 608 K, respec-
tively. In this compound, V 4+ ions have one electron the
in d-orbital and behave like spin- 1

2 ions. The experimental
magnetic susceptibility χ (T ) is taken from sample 1 and mag-
netization M(H ) is taken from sample 2 of Ref. [52] which are
represented by circles in Figs. 8(a) and 8(b), respectively. The
dimer model fitting of susceptibility data deviates significantly
from the experimentally observed data. The experimental data
is shown as a circle and the dimer fit is shown by the red
dashed line in Fig. 8(a). The model Hamiltonian in Eq. (1)
is used with J1 = −272 K, J2 = 272 K, and J3 = 612 K to fit
the experimental data of M(H ) and χ (T ). The fitting curve of
χ (T ) shown by the black solid curve is in excellent agreement
with experimental data for T > 160 K. As shown in Fig. 8(b),
the M − H curve fitted with the dimer model shown by the
red dashed line is quite off at high H , whereas our model
gives excellent fitting, as shown by the black solid line at T =
200 K. We predict the M − H curve at the other three different
T = 100, 300, and 500 K. We notice the enhancement of M
as a function of T , which is quite unusual. This behavior of
the M − H curve can be understood in terms of large singlet-
triplet gap. A moderate temperature enhances the possibility
to reach higher magnetic states for a given field H .

We also predict the magnitude of specific heat Cv as a func-
tion of T for four values of magnetic field H = 0, 10, 20, 50 T
as shown in Fig. 9. The Cv has broad peak at T ≈ 235 K. The
effect of magnetic field H is small. The Cv decreases with
H , but the suppression of Cv is visible only near the peak.
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FIG. 8. (a) Magnetic susceptibility χ as a function of temper-
ature T for CaV2O5 sample 1 [52] is shown by the circles. Solid
curve represents the fitted curve obtained by the trellis-ladder model
and dashed curve represents the fitted curve using dimer model.
(b) Circles represent magnetization M versus applied magnetic field
H curve at T = 200 K for CaV2O5 sample 2 [52]. The black solid
line is the fit using our model and the dashed line represents the
fit for a perfect dimer system at T = 200 K. The fitting parameters
are the same as used to fit χ − T curve. The other M − H plots for
T = 100 K, 300 K, and 500 K are shown by the solid lines using the
model in Eq. (1).

Initially, CaV2O5 was assumed to be only a dimer system
with singlet-triplet energy gap 660K [53]. We use the model
Hamiltonian in Eq. (1), and our fittings of χ (T ) and M(H )
with same model parameters suggest that J1 and J2 are only
1/2 of J3. It is found that our predicted values of J1 and J2 are
significantly different from the predicted values in Ref. [36],
whereas the value of J3 is similar with their calculated value
using ab initio method in the local density approximation
(LDA) + U limit.
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FIG. 9. Specific heat Cv (T ) are plotted as function of T with
J2/|J1| = 1.0, J3/|J1| = 2.25, and |J1| = 272 K for H = 0, 10, 20,
and 50 T. The zoomed Cv (T ) near the peak are shown in the inset.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the isotropic Heisenberg
spin- 1

2 model, given in Eq. (1), on the trellis ladder. The QPD
of this model is constructed. The phase boundaries of the QPD
are calculated based on the correlation function C(r), pitch
angle θ , and correlation length ξ using the DMRG method.
Our linear spin-wave analysis of this model predicts the phase
boundary of CS (SRO) and NC (SRO) phases, and it is quite
consistent with our DMRG results. We also use this model to
fit χ − T and M − H data of CaV2O5, and understand the
temperature T dependence of M − H curves and magnetic
field H dependence of Cv − T curves.

In fact, our lattice system can also be mapped to two-
coupled J1 − J2 Heisenberg spin- 1

2 chains. Zinke et al. studied
the effect of interchain coupling J3 on the NC phase in a
coupled 2D array of J1 − J2 spin chains using the coupled
cluster theory [44]. They showed that the collinear to NC
transition point Jc

2 increases with J3. However, our model
shows that the critical value Jc

2 decreases with J3. This incon-
sistency may be because of the confined geometry or ladder
structure in our case. The Jc

2 value at the phase boundary of
CS (SRO) and NC (SRO) phases decreases with J3, and it
can also be shown by linear spin wave analysis. As shown
in Fig. 5, the variation of θ for J2 > 0.3 decreases with J3

and this trend is consistent with literature [44]—this may
happen because of the deconfinement of a quasiparticle along
the rung of the model. In Fig. 2 of QPD, the majority of the
parameter space is a SRO phase which is basically a gapped
spin-liquid phase [20,54]; however, for small values of J3/J2,
an incommensurate (QLRO) phase appears, which is quite
unique in this ladder system. The J1 − J2 spin- 1

2 zigzag model
in similar parameter space shows either an incommensurate
(SRO) or decoupled phase [3,5]. The QLRO in the system may
be induced because of the dominant effective AFM interaction
along the leg.

We apply this model to understand the magnetic properties
of the CaV2O5, and have reliable fitting of the experimental
data [52]. We apply a criterion of simultaneous fitting of both
experimental χ − T and M − H curves. Our best fit suggests
that J2/|J1| is close to 1, and J1 is approximately −272 K.
For a given H , M(H ) for this system increases with T ,
whereas, in general, magnetization decreases with increasing
temperature. We notice that in a highly gapped system, higher
T allows the system to access the higher magnetic states
easily; therefore, it is much easier to magnetize this system at
moderate temperatures for a given H . Our calculated singlet-
triplet energy gap is 459 K, whereas the dimer model predicts
it as 660 K. The Knight shift and spin-lattice relaxation
measurements for CaV2O5 show energy gaps are 464 K and
616 K, respectively [55]. Our predicted energy gap is closer
to the Knight shift measurement. The modeling of χ (T ) of
CaV2O5 was done by Miyahara et al. using quantum Monte
Carlo method, and they showed that small J1 does not effect
the magnetic χ (T ), as shown in Fig. 6 of Ref. [45]. They
estimated the value of J1 = 45 K, J2 = 67 K, and J3 = 672 K.
Johnston et al. treated this system as collection of dimers,
and extracted the value of J3 = 667 K with small J1 and J2

[52]. Korotin et al. also calculated the value of J1 = −28 K,
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J2 = 122 K, and J3 = 608 K; however, their calculation also
assumes other types of interactions [36]. Our simultaneous
fitting of experimental χ − T and M − H data also suggests
it as a dominant dimer with J3 = 612 K, but −J1 and J2 are
only about half in magnitude of J3.

In summary, we study the QPD of the model Hamiltonian
in Eq. (1) on the trellis ladder. We show that J3 plays an impor-
tant role to localize the system. This system shows interesting
CS (SRO) and NC (QLRO), which is rare in ladderlike struc-
tures. This model Hamiltonian is used to fit the experimental
magnetic properties of CaV2O5 and we also show that the
interactions J1 and J2 are much larger than earlier predicted
values, and J1 is ferromagnetic in nature. In many zigzag lad-
der systems like LiCuVO4 [14], Li2CuZrO4 [15], Li2CuSbO4

[16], etc., where three-dimensional ordering occurs at low T ,
this model can be applied to understand the effect of interlad-
der coupling in the system. We have also predicted the M − H
and Cv − T curves which can be verified experimentally.
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APPENDIX

For up spins, the Holstein-Primakoff transformations take
the form

Sz
A j = s − a+

j a j,

S+
A j =

√
(2s − a+

j a j )a j, (A1)

S−
A j = a+

j

√
(2s − a+

j a j ),

For the down spin:

Sz
B j = −s + b+

j b j,

S+
B j = a+

j

√
(2s − a+

j a j ), (A2)

S−
B j =

√
(2s − a+

j a j )a j .

We use the linear approximation at classical limit,

Sz
A j = s − a+

j a j,

S+
A j =

√
2sa j, (A3)

S−
A j =

√
2sa+

j ,

for spin up, and for spin down:

Sz
B j = s − b+

j b j,

S+
B j =

√
2sb+

j , (A4)

S−
B j =

√
2sb j .

In terms of bosonic operators, the Hamiltonian takes the
form up to quadratic order as

H = (2J1 + 2J2 − J3)Ns2 +
∑

j

s[[J1(a+
j a j+1 + b+

j b j+1)

+ J2(a+
j a j+2 + b+

j b j+2) + J3a jb j + H.c.]

− (J1 + J2)(a+
j a j + b+

j b j ) − J1(a+
j+1a j+1 + b+

j+1b j+1)

+ J2(a+
j+2a j+2 + b+

j+2b j+2) + J3(a+
j a j + b+

j b j )]. (A5)

Fourier transforms of the bosonic operators are

a j =
∑

k

exp (−ik j)ak,

(A6)
a+

j =
∑

k

exp (ik j)a+
k .
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