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Parity-time (PT ) symmetry plays an important role both in non-Hermitian and topological systems. In
non-Hermitian systems, PT symmetry can lead to an entirely real-energy spectrum, while in topological
systems, PT symmetry gives rise to stable and protected Dirac points. Here, we study a PT -symmetric system
which is both non-Hermitian and topological, namely, a PT -symmetric Dirac semimetal with non-Hermitian
perturbations in three dimensions. We find that, in general, there are only two types of symmetry-allowed non-
Hermitian perturbations, namely, non-Hermitian kinetic potentials and non-Hermitian anticommuting potentials.
For both of these non-Hermitian potentials, we investigate the band topology for open and periodic boundary
conditions, determine the exceptional points, and compute the surface states. We find that with periodic
boundary conditions, the non-Hermitian kinetic potential leads to exceptional rings, while the non-Hermitian
anticommuting potential generates exceptional spheres, which separate regions with broken PT symmetry from
regions with unbroken PT symmetry. With open boundary conditions, the non-Hermitian kinetic potential
induces a non-Hermitian skin effect, which is localized on both sides of the sample due to symmetry, while
the non-Hermitian anticommuting potential leads to Fermi ribbon surface states.
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I. INTRODUCTION

Parity-time (PT ) symmetry, which inverts both time and
spatial coordinates, plays an important role in non-Hermitian
systems, where it can lead to purely real-energy spectra
[1–6]. This has been demonstrated recently in numerous
photonics experiments, where PT symmetry can be readily
implemented by balancing radiation gain and loss [7–11].
These experiments have deepened our understanding of
PT -symmetric non-Hermitian physics and have revealed a
number of interesting phenomena, such as unidirectional
invisibility and single-mode lasing, that could be exploited
for applications [12–16]. Intriguingly, it has been found that
large non-Hermitian perturbations can drive the system into a
PT -symmetry broken phase, where the PT operator and the
Hamiltonian no longer have the same eigenstates, even though
they commute [1,10]. As a consequence, the spectrum in the
PT -broken phase becomes complex. The PT -broken phase
is separated from the PT -unbroken phase by exceptional
points, i.e., degeneracies at which two or more eigenstates
become identical [6,17].

PT inversion is also an important symmetry in many
topological systems. In particular, in topological semimetals
it can lead to stable and protected band crossings, such as
Dirac nodal lines or Dirac points [18–22]. We note that for
the protection of these band crossings, only the combined
symmetry of P and T is required, while P and T can
be broken individually [23,24]. At these band degeneracies,
linearly dispersing bands cross each other, leading to fourfold
degeneracies [25–30]. The topology of these band crossings
is characterized by a binary Z2 invariant, i.e., either by a
quantized π -Berry phase or a Z2 monopole charge. By the
bulk-boundary correspondence, these invariants lead to drum-
head or Fermi arc surface states.

In this paper, we want to study a PT -symmetric sys-
tem, which is both non-Hermitian and topological, namely,
the PT -symmetric real Dirac semimetal [19,20] with non-
Hermitian potentials. The stability of the real Dirac points
in such a semimetal is guaranteed by a PT symmetry that
squares to +1, i.e., (PT )2 = +1. By a judicious choice of
basis, the Hamiltonian describing this Dirac semimetal can
be chosen to be purely real, in which case the PT oper-
ator simplifies to the complex conjugation operator K, i.e.,
PT = K. Despite early attempts on spinless non-Hermitian
Dirac semimetals [31,32], in view of recent developments on
topological gapless phases [33–43], several crucial questions
have not been addressed in the spinful non-Hermitian Dirac
semimetals in three dimensions: How do non-Hermitian po-
tentials deform the real Dirac points? What type of excep-
tional manifolds [44–46] do they generate? How does this
depend on the boundary conditions? What type of surface
states exists in PT -symmetric non-Hermitian Dirac semimet-
als, and is there a bulk-boundary correspondence that relates
them to the bulk topology?

In general, we find that for the PT -symmetric real Dirac
semimetal, there exist only two different types of symmetry-
allowed non-Hermitian potentials, namely, the non-Hermitian
kinetic potential and the non-Hermitian anticommuting poten-
tial. With periodic boundary conditions (PBCs), the kinetic
potential turns the Dirac point into an exceptional ring and
drives the semimetal into a PT -broken phase with complex
spectrum. With open boundary conditions (OBCs), on the
other hand, the Dirac semimetal with non-Hermitian kinetic
potential remains in the PT -unbroken phase (except for a
small region around the origin). Its eigenstates show a non-
Hermitian skin effect, where both bulk and surface states are
exponentially localized on the two surfaces of the semimetal.
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TABLE I. The phases of the PT -symmetric non-Hermitian
Dirac semimetals with different symmetry-preserving potentials un-
der different boundary conditions. The last column indicates whether
the PBC system is consistent with the OBC system.

Non-Hermiticity PBC OBC Consistent

kinetic PT broken PT unbroken no
anticommuting PT unbroken PT unbroken yes

The non-Hermitian anticommuting potential, in contrast,
deforms the Dirac points of the periodic system into excep-
tional spheres. These exceptional spheres separate the Bril-
louin zone into PT -broken and PT -unbroken regions. The
topology of these exceptional spheres is described by a Z2

monopole charge, similar to the Hermitian case [20]. With
OBCs, the non-Hermitian anticommuting potential gives rise
to Fermi ribbon surface states, i.e., two-dimensional regions of
surface states that connect the projections of the exceptional
spheres. Remarkably, within this two-dimensional region, the
surface states have vanishing real energy.

The aforementioned cases of different non-Hermitian po-
tentials and boundary conditions are summarized in Table I. A
common feature is that systems with PT -unbroken phases re-
tain the topological property of the original real Z2 monopole
charge, where the bulk-boundary correspondence can also be
established.

The rest of this paper is structured as follows. In Sec. II,
we present the continuum model of the PT -symmetric non-
Hermitian Dirac semimetal and discuss the symmetry-allowed
non-Hermitian potentials. In Sec. III, we introduce the lattice
model of the PT -symmetric Dirac semimetal and discuss the
case of PT -symmetric non-Hermitian kinetic potentials. In
Sec. IV, we discuss PT -symmetric non-Hermitian potentials
that anticommute with the Dirac Hamiltonian. Finally, we
conclude and discuss our findings in Sec. V.

II. CONTINUUM MODEL OF PT -SYMMETRIC
NON-HERMITIAN DIRAC SEMIMETAL

The Hermitian continuum model of the real Dirac
semimetal that respects PT symmetry, with PT 2 = +1,
reads [19,20]

HDirac(k) = kx�1 + ky�2 + kz�3, (1)

with the gamma matrices �1 = σ1 ⊗ τ0, �2 = σ2 ⊗ τ2, and
�3 = σ3 ⊗ τ0. Together with �4 = σ2 ⊗ τ1 and �5 = σ2 ⊗ τ3,
these gamma matrices form a matrix representation of the
Clifford algebra. Here, σ0 and τ0 are two-dimensional identity
matrices, and σi and τi with i = 1, 2, 3 are Pauli matrices.
Hamiltonian (1) is purely real and hence symmetric under
PT = K, which amounts to complex conjugation. The Dirac
point is characterized by a real Z2 monopole for the O(N )
Berry bundle, the reality of which is enforced by the PT
symmetry [20]. This kind of real Dirac points can be readily
realized in various types of metamaterials, for example, in
photonic lattices [47,48].

The Hermiticity of Eq. (1) is broken by the inclu-
sion of PT -symmetric non-Hermitian potentials. These non-
Hermitian potentials can be systematically explored by

considering the relation between the gamma matrices and PT
symmetry. Notice that under PT symmetry, �1 to �3 are
even, while �4 and �5 are odd. We find that there is a total
of three types of PT -symmetric non-Hermitian potentials:
γ0 = �1�2�3, γi = εi jk� j�k , and γ4/5 = i�4/5, where εi jk is
the Levi-Civita symbol, with i = 1, 2, 3. In momentum space,
while γ0 simply splits a Dirac point to two Weyl points sep-
arated by their imaginary energies, the non-Hermitian kinetic
potentials γi, which commute with one of the kinetic terms
in Eq. (1), and the non-Hermitian anticommuting potentials
γ4/5, which anticommute with the whole Hamiltonian, induce
entirely different phases not seen in Hermitian theory. Thus, in
this work, we focus on the latter two types of non-Hermitian
potentials. Since spectra and states in systems with periodic
boundary conditions (PBCs) may be drastically different from
those with open boundary conditions (OBCs), it is necessary
to consider the PT phases of systems with PBCs and OBCs
separately [49–52].

III. PT -SYMMETRIC NON-HERMITIAN
KINETIC POTENTIALS

In this section, we discuss PT -symmetric Dirac semimet-
als perturbed by non-Hermitian kinetic potentials with PBCs.
For this purpose, we first construct a minimum lattice model
for the Dirac points described by Eq. (1). Similar to Weyl
semimetals, Dirac points of PT -symmetric systems appear
only in pairs on a lattice, which follows from the Nielsen-
Ninomiya theorem [20]. Thus the minimal lattice model con-
tains at least a pair of Dirac points in the three-dimensional
Brillouin zone, which can be constructed as

H0(k) = sin kx�1 + sin ky�2

+ (M − cos kx − cos ky − cos kz )�3. (2)

For 1 < M < 3, the two Dirac points are located at (0, 0,±kc )
with kc = arccos(M − 2). In the continuum limit with
kx, ky → 0 and kz → ±kc, the lattice model reproduces the
form of the continuum model in Eq. (1), with the spectrum
around the Dirac point shown in Fig. 1(a). In a slab geometry
with OBCs, the model exhibits Fermi arc surface states that
are attached to the two Dirac points in the bulk.

The lattice model of the PT -symmetric non-Hermitian
Dirac semimetals can be simply constructed by including
symmetry-preserving non-Hermitian kinetic potentials λγi as

Hkin(k) = H0(k) + λγi, (3)

with λ a real quantity. With PBCs, as shown in Fig. 1(b), Dirac
points become exceptional rings under these non-Hermitian
potentials. The structure of exceptional rings becomes clearer
if we perform a unitary transformation with U = exp(iσ0 ⊗
τ1π/4) on the Hamiltonian, which yields

U −1Hkin(k)U =
(

HWeyl-ring(k) 0

0 H∗
Weyl-ring(k)

)
, (4)

where HWeyl-ring = sin kxσ1+ sin kyσ2+(M− cos kx− cos ky −
cos kz )σ3 + iλσi. Actually, HWeyl-ring is a Hamiltonian describ-
ing Weyl exceptional rings, which have been theoretically
studied [33,34] and experimentally realized [53]. The two
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FIG. 1. (a) The left panel shows the Dirac point in the three-
dimensional Brillouin zone described by Eq. (1). The energy spec-
trum on the gray plane (kx = 0) against ky and kz is shown in the right
panel. (b) The left panel shows the exceptional ring, which forms
after introducing a PT -symmetric non-Hermitian kinetic potential
γi. The corresponding spectrum on the gray plane (kx = 0) is shown
in the right panel. (c) The left panel shows the case for the PT -
symmetric non-Hermitian anticommuting potential γ4/5, which in-
duces an exceptional sphere. The corresponding energy spectrum on
the gray plane, where the yellow points indicate the band crossings,
is shown in the right panel.

Weyl exceptional rings in Hkin(k) can be directly distin-
guished by their imaginary energies. The energy spectrum of
Hkin(k) is complex in general, which means the system is in
the PT -broken phase.

A prominent feature of this system is that the band cross-
ings form rings of exceptional points, which possess a non-
trivial complex structure (see discussion in Appendix A).
Associated with the exceptional rings, a topological invariant
can be defined. As shown in Fig. 1(b), we can enclose the
exceptional ring with a blue circle S1, and the topological
invariant for the mth band with energy Em is defined as
νm(S1) = 1

2π

∮
S1 ∇k arg Em(k), which reflects the winding of

the energy eigenvalue on the complex energy plane [38,39].
Here, arg denotes the argument of a complex number. The
obtained topological invariant for the occupied band belongs
to nontrivial elements of the group Z/2, as discussed in
Appendix A.

We conclude that PT -symmetric Dirac semimetals with
non-Hermitian kinetic potentials and PBCs are always in the
PT -broken phase and the Dirac points become exceptional
rings. However, it has been shown in various works [36,40,49]
that the spectra and states can be quite different in non-

Hermitian systems with PBCs and OBCs. It is possible that for
the non-Hermitian kinetic potentials, the OBC system might
not correspond to the PT -broken PBC system, and instead it
might be in a different PT phase. In the following, we use the
transfer matrix method to characterize this difference.

A. Discrepancy between PBC and OBC systems

In non-Hermitian lattice systems, the correspondence be-
tween PBC and OBC systems does not always hold, as their
eigenstates and spectra can differ from each other. This kind of
discrepancy becomes especially crucial for topological phases
because it leads to the failure of bulk-boundary correspon-
dence. Such discrepancy can be qualitatively captured by the
transfer matrix T as it is capable of describing systems with
open and periodic boundary conditions [49]. The criterion for
the PBC and OBC systems to be consistent with each other is
that the transfer matrix is unimodular, i.e., | det T | = 1.

For our discussion, we choose the PT -symmetric non-
Hermitian kinetic potential as γ2 = �3�1, and take OBCs in
the y direction. The transfer matrix for propagation along
the y direction, according to Eq. (7) in Ref. [49], can be
constructed by identifying the coefficients of eiky and 1 in the
Bloch Hamiltonian of Eq. (3),

Hkin(k) = J (k̃)eiky + M(k̃) + J†(k̃)e−iky , (5)

with k̃ = (kx, kz ). The coefficients are found to be

J (k̃) = 1

2i
�2 − 1

2
�3, (6)

M(k̃) = sin kx�1 + Mk̃�3 + λγ2, (7)

where Mk̃ = M − cos kx − cos kz. Here, J (k̃) and J†(k̃) are
hopping matrices between two neighboring sites and M(k̃) is
the on-site matrix. The expansion coefficients 
n of states at
neighboring sites along the y direction are thereby connected
by these coefficients and can be expressed in the transfer
matrix equation form, 
n+1 = T 
n. The transfer matrix T is
obtained in terms of the on-site Green’s function G = [E1 −
M(k̃)]−1 and the singular value decomposition of J (k̃) =
V �W † as [49]

T =
(

�−1G−1
vw −�−1G−1

vwGww�

GvvG−1
vw

(
Gwv − GvvG−1

vwGww

)
�

)
, (8)

where GAB = B†GA with A, B ∈ {V,W }.
A straightforward calculation shows that the transfer ma-

trix is unimodular, i.e., its determinant is 1. However, from
numerical calculations, the OBC spectrum is found to be
drastically different from the PBC spectrum, which indicates
that the transfer matrix is not unimodular. These two seem-
ingly contradictory results can be resolved by noticing that the
system can be block diagonalized as shown by Eq. (4). Thus,
the transfer matrix can be brought into a block-diagonal form,
which reads

T =
(

T+
T−

)
, (9)

where

T± = 1

Mk̃ ∓ λ

(
sin2 kx + M2

k̃
− λ2 − E2 ± sin kx + E

± sin kx − E 1

)
.

(10)
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FIG. 2. (a) The OBC spectrum for the PT -symmetric Dirac
semimetal with a non-Hermitian kinetic potential. (b) Wave-function
profile of the OBC system. Blue curves are surface states, while
black curves are representative bulk states. The parameters are set
to be M = 2.0, λ = 0.3, and Ny = 50. (c) The location of the Dirac
points (red) in the transformed Hamiltonian of Eq. (15) and the
centers of the exceptional rings (blue) in the original Hamiltonian of
Eq. (3). (d) Topological phase diagram as a function of mass M and
non-Hermitian perturbation λ. The blue area denotes the region for
which Dirac points exist. The red line corresponds to the Hermitian
case.

The determinants of T± are

det T+ = Mk̃ + λ

Mk̃ − λ
, det T− = Mk̃ − λ

Mk̃ + λ
. (11)

In the PT -symmetric non-Hermitian systems with λ �=
0, though det T = det T+ det T− = 1 for the entire transfer
matrix, individually, neither det T+ nor det T− is 1. This means
there is a marked difference between systems with PBCs
and OBCs, and the bulk exceptional rings cannot predict
the topological boundary states in the corresponding finite
system. Therefore, the OBC system could be in a different
PT phase, which requires a separate investigation.

B. Reflection-symmetric non-Hermitian skin effect

Taking OBCs in the y direction with Ny sites, and PBCs in
the x and z directions, the OBC Hamiltonian corresponding to
Eq. (3) reads

Hkin(k̃) = 1

2i
�2 ⊗ (Ŝ − Ŝ†) − 1

2
�3 ⊗ (Ŝ + Ŝ†)

+ (sin kx�1 + Mk̃�3 + λγ2) ⊗ 1Ny , (12)

where Ŝi j = δi, j+1 is the right-translation operator in the y
direction.

As shown in Fig. 2(a), the spectrum of the OBC system is
complex in only a small region near the origin, and outside this

region, the system exhibits a PT -unbroken phase with purely
real spectrum. The corresponding wave-function profiles of
the OBC system are plotted in Fig. 2(b), which shows that
both bulk and boundary modes are localized at two oppo-
site boundaries. Indeed, as predicted by the transfer matrix
method, these phenomena in the OBC system are in stark
contrast to the PBC system with a completely PT -broken
phase. Thus, it is necessary to work directly with the OBC
Hamiltonian Hkin(k̃).

Notice that the reality of the spectrum is ensured in the
PT -unbroken phase. It has been shown that a nonunitary sim-
ilarity transformation can be found to convert a Hamiltonian
with real spectrum to be Hermitian [54]. For the real-space
Hamiltonian Hkin(k̃), the similarity transformation is found
to be H′

kin(k̃) = V −1
kin Hkin(k̃)Vkin, which yields

H′
kin(k̃) = 1

2i
�2 ⊗ (S − S†) − 1

2
�3 ⊗ (S + S†)

+ (
sin kx�1 +

√
M2

k̃
− λ2�3

) ⊗ 1Ny , (13)

where the similarity transformation operator is Vkin =
diag (β1, β2, . . . , βy, . . . , βNy ), with 1 < y < Ny the site in-
dex. Here, βy can be brought into block-diagonal form by the
unitary transformation

U −1βyU =
(

α−yρ

αyρ

)
, (14)

where ρ = (α + 1)σ0 + (α − 1)σ1 and α = [(Mk̃ −
λ)/(Mk̃ + λ)]1/2. Here the unitary operator is U =
exp(iσ0 ⊗ τ1π/4).

In non-Hermitian topological phases, the localization of all
eigenstates at the boundary is called the non-Hermitian skin
effect [40,55,56]. In previous studies, the localization is found
to be on a single boundary. In our system, the two boundaries
are symmetric as the reflection symmetry is preserved in the
y direction, R̂yHkin(k̃,−ky )R̂−1

y = Hkin(k̃, ky) with R̂y = σ0 ⊗
τ1. Hence, the non-Hermitian skin effect manifests itself as the
localization of both surface and bulk states at the two bound-
aries, as shown in Fig. 2(b). The skin effect can be understood
intuitively from the nonunitary similarity transformation Vkin.
Let |
′〉 be the eigenstates of the transformed Hermitian
Hamiltonian H′

kin(k̃). Then the eigenstates of the original
non-Hermitian Hamiltonian are |
〉 = Vkin|
′〉. According to
the explicit form of Vkin [see Eq. (14)], half components of
the states carry a localization factor of α−y, and the other
half of αy. Therefore, the eigenstates are evenly localized at
two opposite boundaries, resulting in a reflection-symmetric
non-Hermitian skin effect. Different from previous studies
[40,55,56], the non-Hermitian skin effect discussed here has
an intimate relation with symmetry, and locates on both sides
of the sample.

C. Dirac points and Fermi arc surface states

In this section, we focus on the topological properties
of the PT -symmetric Dirac semimetal with non-Hermitian
kinetic potential. As the OBC system does not correspond
to the PBC system, the topological surface states are thereby
not in accordance with the bulk exceptional rings. To reveal
the topological features of the OBC system, we start with
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the Fourier-transformed version of Hamiltonian (13). After
a Fourier transformation in the y direction, this Hamiltonian
corresponds to the Bloch Hamiltonian of

H′
kin(k) = sin kx�1 + sin ky�2

+ [
√

(M − cos kx − cos kz )2 − λ2 − cos ky]�3.

(15)

Remarkably, the above Hamiltonian exhibits real Dirac
points in the Brillouin zone in the Hermitian region, with a
Taylor expansion around (0, 0,±k′

c ), with k′
c = arccos(M −

1 − √
λ2 + 1). The Hamiltonian in Eq. (15) becomes

H′
eff(k) = kx�1 + ky�2 ± γk′

c
(kz ∓ k′

c), (16)

with the coefficient γk′
c
= √

1 + λ2
√

1 − cos2 k′
c. Clearly, this

is a Hermitian Hamiltonian for the real Dirac point described
in Eq. (1), for M in the region of

√
λ2 + 1 < M < 2 +√

λ2 + 1. Notably, the two Dirac points in Eq. (15) are now
relocated to k′

c = [0, 0,± arccos(M − 1 − √
λ2 + 1)], in con-

trast to the centers of the exceptional rings in Eq. (3) at kc =
[0, 0,± arccos(M − 2)]. We find that the distance between
two Dirac points is elongated compared to that between the
centers of the two exceptional rings, as shown by Fig. 2(c).
As highlighted by the red line in Fig. 2(a), the numerically
obtained Fermi arc surface states, with purely real spectra,
are found to be attached exactly to two red Dirac points in
the transformed Bloch Hamiltonian in Eq. (15), instead of the
centers of the exceptional rings in Eq. (3).

It is the main result of this section that with OBCs, in
the PT -unbroken phase, the PT -symmetric non-Hermitian
Dirac semimetal is equivalent to a Hermitian Dirac semimetal
with real Dirac points. From the transformed Hamiltonian
H′

kin(k), the bulk-boundary correspondence can be recovered
successfully. In Fig. 2(d), we plot the region in blue where
Dirac points exist in parameter space. Compared with the
Hermitian case (red line with λ = 0), the region with Dirac
points has been largely expanded. It is verified directly from
the non-Hermitian OBC Hamiltonian in Eq. (12) that the
topological surface states exist in the corresponding region.

IV. PT -SYMMETRIC NON-HERMITIAN
ANTICOMMUTING POTENTIALS

Now we turn to Dirac semimetals with PT -symmetric
non-Hermitian anticommuting potentials in this section. Here
we choose γ4 for our discussion. With PBCs, the lattice
Hamiltonian in momentum space reads

Hant(k) = sin kx�1 + sin ky�2

+ (M − cos kx − cos ky − cos kz )�3 + λγ4. (17)

As shown in Fig. 1(c), this non-Hermitian potential deforms
the two Dirac points into two exceptional spheres. We focus
on a single exceptional sphere, which can be described by the
continuum model

Hsphere(k) = kx�1 + ky�2 + kz�3 + λγ4. (18)

The energy eigenvalues are Esphere,± = ±(k2
x + k2

y + k2
z −

λ2)1/2. Clearly, the band crossing happens at k2
x + k2

y + k2
z =

λ2, which describes a sphere. Inside the sphere, the eigenval-
ues form complex-conjugate pairs and the system is in the
PT -broken phase. However, outside the sphere, the system
is in the PT -unbroken phase with purely real spectrum.
Notably, in the PT -unbroken phase, the double degeneracy
of bands is still preserved, as it appears in the Hermitian
case. We refer to the sphere as an exceptional sphere as it is
composed of exceptional points. The complex structure of the
exceptional sphere, as discussed in Appendix A, is associated
with a topological invariant, defined as follows.

The spatial codimension of the exceptional sphere in three
dimensions is zero, so that a zero-dimensional sphere S0,
which consists of two points of k1 inside and k2 outside
the sphere, can be chosen to enclose the exceptional sphere.
S0 is shown by two blue dots in Fig. 1(c). Similar to the
winding of the energy eigenvalues in the previous section,
the topological charge on S0 can be defined as νm(S0) =

1
2π

(arg Em,k1 − arg Em,k2 ), where Em is the energy of the mth
band. Notice that although the topological invariant adopted
in Refs. [32,57] for the PT -symmetric phase has the same
origin as νm introduced here, it cannot be directly applied to
the exceptional sphere here due to the twofold degeneracy of
the bands. As the spectrum is purely real outside and purely
imaginary inside the sphere, the topological invariant defined
above takes a nontrivial value.

To reveal the relation between the PBC and OBC systems,
we again adopt the transfer matrix method used in Eqs. (5)–
(8). The hopping matrix is found to be J (k̃) = 1/(2i)�2 −
1/2�3, and the on-site matrix is M(k̃) = sin kx�1 + Mk̃�3 +
λγ4. According to the expression for the transfer matrix T in
Eq. (8), its determinant is calculated to be | det T | = 1, which
is unimodular. We emphasize that different from the case
of the kinetic non-Hermitian potentials, there is no structure
of the transfer matrix, namely, it cannot be further reduced
by block diagonalization. The unimodular transfer matrix
indicates that PBC and OBC systems are consistent with
each other. It is expected that the conventional bulk-boundary
correspondence is preserved in this system.

A. Z2 monopole charge of the exceptional sphere

With PBCs, outside the exceptional sphere in momentum
space, the system is in the PT -unbroken phase. For each k
in this region, a set of eigenstates of Hant(k) can be found,
satisfying

|α(k)〉 = P̂T̂ |α(k)〉, (19)

which is the same as the Hermitian case. With
(P̂T̂ )2 = 1, the reality condition is imposed by
PT symmetry on each band, and thus the eigenstates
make a real Berry bundle in the PT -unbroken region, similar
to the Hermitian Dirac point case. In this section, we show
that the real O(N ) monopole charge, which is the same as for
the Dirac point, can be obtained from the real Berry bundle in
the PT -unbroken region.

The existence of a real monopole charge indicates that
if we enclose the gapless manifold, i.e., the exceptional
sphere, by a sphere S2 in the PT -unbroken region, we
cannot find a real and smooth gauge for the eigenvectors
on the entire sphere [20,58]. We choose the radius of S2
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to be k, with k > λ. For simplicity, the Hamiltonian is
scaled with 1/k, so that the continuum model becomes
Hsphere(k)/k = HDirac(k)/k + λkγ4, with λk = λ/k < 1.
Correspondingly, the S2 is scaled to a unit sphere. We need
to analyze eigenvectors on the north and south hemispheres
separated by an equator with stereographic coordinates.
On each hemisphere, the eigenvectors are real and smooth.
On the equator parametrized by the azimuthal angle φ, the
eigenvectors of the valence band for the north hemisphere are
|−, 1〉N = (cos φ,−

√
1 − λ2

k , λk + sin φ, 0)T and |−, 2〉N =
(λk − sin φ, 0, cos φ,−

√
1 − λ2

k )T , and for the south
hemisphere, they are |−, 1〉S = (

√
1 − λ2

k ,− cos φ, 0, λk +
sin φ)T and |−, 2〉S = (0, λk − sin φ,

√
1 − λ2

k ,− cos φ)T .
Here, T denotes the vector or matrix transposition. The real
transition function gRSN ∈ O(2) on the equator defined by
|−, α〉S = [gRSN ]αβ |−, β〉N is obtained as

gRSN (φ) =
(

cos φ − sin φ

sin φ cos φ

)
. (20)

The winding number for the transition function defined as a
map from S1 to O(2) is +1, which corresponds to a nontrivial
element of π1[O(2)] = Z2. Actually, the above expression for
the real transition function is in the same form as that of the
Dirac point, which can be seen by simply setting λ = 0. Thus
the exceptional sphere has the same real Z2 monopole charge
as the Dirac point in Eq. (1). It is noteworthy that the Z2

charge adopted here is independent of νm. The former reflects
whether a smooth gauge for the wave functions can be found
over the Brillouin zone, while the latter is explicitly associated
with the exceptional sphere itself. In the following, we discuss
the topological surface states and their relation with the bulk
topological invariants.

B. Fermi ribbon surface states

Taking OBCs in the y direction, the lattice model for
the Dirac semimetal with the PT -symmetric non-Hermitian
anticommuting potential reads

Hant(k̃) = 1

2i
�2 ⊗ (Ŝ − Ŝ†) − 1

2
�3 ⊗ (Ŝ + Ŝ†)

+ (sin kx�1 + Mk̃�3 + λγ4) ⊗ 1Ny . (21)

The OBC and PBC systems are consistent with
each other, as discussed previously with the transfer
matrix method. This is reflected in the OBC
system as the separation between PT -broken and
PT -unbroken regions, similar to PBC systems. As shown in
Figs. 3(a) and 3(b), the spectrum is purely real in the region
|E | > |λ| and purely imaginary in the region |E | < |λ|, where
E is the energy of the original Hermitian system.

To obtain the surface states, we adopt the ansatz |ψk̃〉 =∑Ny

i=1 β i|ξk̃〉 ⊗ |i〉 for the right eigenvector of the surface
states. Here, |ξk̃〉 is a spinor, i labels the lattice sites along
the y direction, and β is a scalar with |β| < 1. Solving the
Schrödinger equation Hant(k̃)|ψk̃〉 = E (k̃)|ψk̃〉, it is found
that β = M − cos kx − cos kz, and the surface states corre-
spond to the positive eigenvalue +1 of i�3�2. In the subspace
spanned by the eigenstates {�↑, �↓} of i�3�2 with eigenval-

FIG. 3. (a) Real and (b) imaginary parts of the OBC spectrum
for the PT -symmetric Dirac semimetal with non-Hermitian anti-
commuting potential. The parameters are M = 2.0, λ = 0.3, and
Ny = 50. (c) Fermi arc surface states in Hermitian Dirac semimetals
(λ = 0), colored according to their wave-function amplitude against
(kx, kz, y). The zero modes with E = 0 form an arc (black curve)
on the surface Brillouin zone. (d) Fermi ribbon surface states in
non-Hermitian Dirac semimetals (λ = 0.3), colored according to
their wave-function amplitude against (kx, kz, y). The zero modes
with Re E = 0 form a two-dimensional ribbon (black region) on the
surface Brillouin zone.

ues +1, the effective surface Hamiltonian is found to be

Hb(k̃) = sin kxσ1 + iλσ3, (22)

in the region of |β| = |M − cos kx − cos kz| < 1. The calcula-
tion details are shown in Appendix B. The energy eigenvalues
are Eb(k̃) = ±

√
sin2 kx − λ2, with the eigenstates |ψb(k̃)〉 =

(iλ + Eb(k̃), sin kx )T . As shown in Figs. 3(a) and 3(b), the
analytically obtained surface states are plotted in red, which
are in perfect agreement with the numerical results shown in
blue and green.

The topological surface states are found to be attached to
the projected center of the exceptional spheres at ±kc on the
kz axis, which verifies that the conventional bulk-boundary
correspondence is preserved. Remarkably, the zero-energy
modes (Re E = 0) now form a ribbon on the surface kxkz

Brillouin zone, which we call Fermi ribbon surface states.
For comparison, in Fig. 3(c), we show the Fermi arc surface
states in the Hermitian case, which connect the projection
of Dirac points on the surface kxkz surface Brillouin zone
(black curve). After introducing the non-Hermiticity, as can
be seen from the surface spectrum Eb(k̃), for −kc < kz <

kc, the non-Hermiticity extends the zero-mode region from
kx = 0 to −k0 < kx < k0, with k0 = arcsin λ, resulting in a
ribbon on the kxkz plane. Thus, the Fermi arc is extended to
Fermi ribbon surface states, as shown by the black region in
Fig. 3(d) where the wave-function profiles of the zero modes
are plotted. It is clear that the Fermi ribbon surface states are
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localized inside the ribbon region at the boundary. Notably,
the boundary of the ribbon consists of exceptional points,
and inside the ribbon, pairs of boundary modes with opposite
imaginary energies acquire balanced gain and loss due to
non-Hermiticity.

V. SUMMARY AND DISCUSSION

In summary, we systematically studied PT -symmetric
Dirac semimetals on periodic lattices perturbed by general
non-Hermitian potentials. We found that, in general, there are
only two different types of symmetry-allowed non-Hermitian
potentials, namely, non-Hermitian kinetic potentials and non-
Hermitian anticommuting potentials. For both non-Hermitian
potentials, we investigated the band topology, the bulk ex-
ceptional points, and the surface states. Interestingly, we
find that on a system with periodic boundary conditions,
the non-Hermitian kinetic potential induces exceptional rings,
while the non-Hermitian anticommuting potential leads to
exceptional spheres. The latter are characterized by a Z2

monopole charge, similar to the Hermitian case [20]. With
open boundary conditions, we find that the non-Hermitian
kinetic potential gives rise to a non-Hermitian skin effect
on both sides of the sample, while the non-Hermitian anti-
commuting potential generates Fermi ribbon surface states.
These surface states have vanishing real energy and exist in
a two-dimensional region of the surface Brillouin zone that
connects the two projected exceptional spheres. Moreover, the
Fermi ribbon surface states are bounded by one-dimensional
lines of exceptional points, i.e., by exceptional rings.

The PT -symmetric non-Hermitian Dirac semimetal stud-
ied in this work can be experimentally realized in metama-
terials, for example, in acoustic metamaterials [59], periodic
electric circuits [60], or photonic lattices [47,48]. In the latter
systems, radiation gain and loss are naturally present, leading
to non-Hermitian potentials. The type and strength of the
non-Hermitian potential can be controlled by adjusting the
different couplings between each photonic mode and the en-
vironment [31,37]. Notice that the creation of PT -symmetric
non-Hermitian potentials does not require perfect balanced
gain and loss. In a totally passive system, these potentials can
also emerge with a global loss offset in the passive background
[10]. It would be particularly interesting to realize the Fermi
ribbon states and exceptional rings at the surface of photonic
lattices, as these could potentially be used for applications,
e.g., for surface sensing.

Our work can be extended in a straightforward manner
to other semimetals with PT symmetry [19], for example,
PT -symmetric nodal-line semimetals. Other directions for
future work include the study of non-Hermitian topological
phase transitions [61] and the derivation of a general classifi-
cation of exceptional spheres based on not only fundamental
[32,57,62] but also crystalline symmetries.
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APPENDIX A: TOPOLOGICAL INVARIANTS OF
EXCEPTIONAL MANIFOLDS

In this Appendix, we calculate the Jordan normal forms
of the exceptional rings and spheres, and explicitly obtain the
topological invariants associated with them that are defined
by νm(S1) and νm(S0) in the main text. We show that this
kind of topological invariants is closely related to the Jor-
dan canonical form at exceptional points, and we propose
a Z/N classification of non-Hermitian Hamiltonians with
exceptional points.

1. Exceptional ring

The Hamiltonian for the exceptional rings in the continuum
limit reads

Hring = kx�1 + ky�2 + kz�3 + λγ2, (A1)

with the energy eigenvalues of Ering =
±

√
k2

x + k2
y + k2

z − λ2 ± 2iλky . The band crossing happens
at k2

x + k2
z = λ2 and ky = 0, which forms an exceptional

ring on the ky = 0 plane. By parametrizing the ring
as (kx, ky, kz ) = λ(cos θ, 0, sin θ ) and after a unitary
transformation by U , the Hamiltonian on the ring reads

Hexp-ring

= λ

⎛⎜⎝ sin θ 1 + cos θ 0 0
−1 + cos θ − sin θ 0 0

0 0 sin θ 1 + cos θ

0 0 −1 + cos θ − sin θ

⎞⎟⎠.

(A2)

It turns out there are only two eigenvectors on the exceptional
rings,

|ψ1〉 = (0 0 − 1 − cos θ sin θ )T ,

|ψ2〉 = (−1 − cos θ sin θ 0 0)T . (A3)

Because there are only two independent eigenvectors, it can
be indicated that the largest Jordan block is two dimensional.
Besides the above two eigenvectors, there are two associated
vectors with the Hamiltonian, satisfying Hexp-ring|ψ ′

1〉 = |ψ1〉
and Hexp-ring|ψ ′

2〉 = |ψ2〉. Together with eigenvectors, they
form a matrix P = (|ψ1〉, |ψ ′

1〉, |ψ2〉, |ψ ′
2〉), which reads

P =

⎛⎜⎝ 0 0 −1 − cos θ 0
0 0 sin θ −1

−1 − cos θ 0 0 0
sin θ −1 0 0

⎞⎟⎠. (A4)

Under the operation by P−1Hexp-ringP = Jring, the Jordan
canonical form of the Hamiltonian on the exceptional ring can
be obtained as

Jring =

⎛⎜⎝0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎠. (A5)

The Jordan canonical of the exceptional ring Hamiltonian
consists of two two-dimensional Jordan blocks. As we will
show, the nontrivial Jordan block is associated with a topo-
logical invariant that is calculated below.
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As the energy spectra become complex, it is possi-
ble that they possess a topological structure, which es-
sentially can be characterized by the topological invariant
νm(S1) defined in the main text. As shown in Fig. 1(b),
we can enclose the exceptional ring (red) by a small cir-
cle S1 (blue). The small circle S1 can be parameterized as
(δkx, δky, δkz ) = (0, ρ sin γ , λ − ρ cos γ ); then the eigenval-
ues for the conductance band on this path are

ES1,± =
√

ρ2 − 2λρ cos γ ± 2iλρ sin γ . (A6)

With ρ � λ, the eigenvalues can be approximated as ES1,± =
i
√

2λρe∓iγ /2. The topological invariant for ES1,+ can be ob-
tained as

ν(S1) = − 1

2π

∮
S1

∇k arg ES1,+(k)

= − 1

2π

∫ 2π

0
dγ ∂γ (−γ /2) = +1

2
. (A7)

2. Exceptional sphere

The Hamiltonian for the exceptional sphere in the contin-
uum limit reads

Hsphere = kx�1 + ky�2 + kz�3 + λγ4, (A8)

with the eigenvalues Esphere,± = ±
√

k2
x + k2

y + k2
z − λ2 . The

exceptional surface with zero eigenvalues can be parame-
terized by (kx, ky, kz ) = λ(sin θ cos φ, sin θ sin φ, cos θ ), and
after a unitary transformation by U , the Hamiltonian on the
sphere is

Hexp-sphere = λ

⎛⎜⎜⎝
cos θ sin θe−iφ 0 1

sin θeiφ − cos θ −1 0
0 1 cos θ sin θeiφ

−1 0 sin θe−iφ − cos θ

⎞⎟⎟⎠.

(A9)

From this Hamiltonian, the eigenvectors on the exceptional
surface are

|ψ1〉 = (cos θ eiφ sin θ 0 − 1)T ,

|ψ2〉 = (e−iφ sin θ − cos θ 1 0)T , (A10)

which span a two-dimensional eigenspace. Similar to the
exceptional ring case, the largest Jordan block is two dimen-
sional. Together with the two associated vectors, which satisfy
Hexp-sphere|ψ ′

1〉 = |ψ1〉 and Hexp-sphere|ψ ′
2〉 = |ψ2〉, they form a

matrix P = (|ψ1〉, |ψ ′
1〉, |ψ2〉, |ψ ′

2〉), which reads

P =

⎛⎜⎝ cos θ 1 e−iφ sin θ 0
eiφ sin θ 0 − cos θ 1

0 0 1 0
−1 0 0 0

⎞⎟⎠. (A11)

The Jordan canonical form of the Hamiltonian on the ex-
ceptional sphere can be obtained by performing P onto the
Hamiltonian, Jsphere = P−1Hexp-sphereP, which results in

Jsphere =

⎛⎜⎝0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎠. (A12)

In the next section, we calculate the topological invariant
associated with the exceptional sphere, as defined by νm(S0)
in the main text. The exceptional sphere can be enclosed by
a zero-dimensional sphere S0, as shown in Fig. 1(c) by two
blue dots k1 and k2. The eigenvalue for the conduction bands
for k1 is E1 =

√
k2

1 − λ2 and for k2, it is E2 =
√

k2
2 − λ2.

The magnitudes of k1 and k2 satisfy k1 < λ and k2 > λ.
By the definition of our topological invariant in the main text,
the topological charge can be computed as

ν(S0) = 1

2π
(arg E1 − arg E2) = 1

2
, (A13)

which indicates that the exceptional sphere is topologically
stable.

3. Z/N classification of non-Hermitian Hamiltonians
with exceptional points

The topological invariants defined for the exceptional ring
and sphere have their roots in the Jordan canonical form. In
this section, based on the general form of Jordan block, we
generalize the definition of these topological invariants. We
propose a Z/N-type topological invariant for non-Hermitian
Hamiltonians H (k) with exceptional point of order N . The
order of the exceptional point is defined by the dimension
of the nondiagonal Jordan block of the Hamiltonian at the
exceptional points. For order N exceptional points at k0, the
nondiagonal Jordan block is of the form

JN (k0) =

⎛⎜⎜⎜⎜⎝
E0 1 0 . . . 0
0 E0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . E0

⎞⎟⎟⎟⎟⎠
N×N

, (A14)

with the energy eigenvalue E0 at the exceptional point. In the
neighborhood (|δk| = ε) of the exceptional points, we can
adopt the Newton-Puiseux series to investigate the bifurcation
of eigenvalues, which is E = E0 + ∑+∞

i=1 Eiε
i/N [63,64]. The

eigenvalue to the leading order is

E = E0 + E1ε
1/N + o(ε1/N ), (A15)

where

EN
1 =

∑
i

〈v0|∂H (k)

∂ki
|u0〉∂ki

∂ε
. (A16)

Here, 〈v0| and |u0〉 are the left and right eigenvector satisfying

〈v0|H (k0) = 〈v0|E0 and H (k0)|u0〉 = E0|u0〉. (A17)

The right-hand side of Eq. (A16) is complex and can be
expressed in the form of |EN

1 |eiθ (k). Thus the eigenvalue to
the leading order becomes

E (k) = E0 + |E1|eiθ (k)/N . (A18)

By encircling the exceptional points in k space with a circle
S1, a topological invariant can be defined as

v =
∮

S1

dk
2π i

∂k arg E (k), (A19)

which belongs to the group Z/N .
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APPENDIX B: EFFECTIVE SURFACE HAMILTONIAN FOR
THE FERMI RIBBON SURFACE STATES

In this Appendix, we calculate the topological surface
states for the case of exceptional sphere in the bulk. The PBC
Hamiltonian in momentum space reads

Hant(k) = sin kx�1 + sin ky�2

+ (M−cos kx −cos ky−cos kz )�3 + λγ4. (B1)

Taking OBCs in the y direction with Ny sites, the Hamiltonian
in real space reads

Hant(k̃) = 1

2i
�2 ⊗ (Ŝ − Ŝ†) − 1

2
�3 ⊗ (Ŝ + Ŝ†)

+ (sin kx�1 + Mk̃�3 + λγ4) ⊗ 1Ny , (B2)

with Mk̃ = M − cos kx − cos ky. Here the translational opera-
tors are

Ŝ =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0
1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

. . .
. . .

...
0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠,

Ŝ† =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0

0 0 0 0
. . . 0

...
...

...
...

. . . 1
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (B3)

with dimension Ny.
With the boundary conditions, the translational symmetry

in the y direction is broken, while in the x and z directions, it is
still preserved. Thus we adopt the ansatz for the surface states
as |ψk̃〉 = ∑Ny

i=1 β i|ξk̃〉 ⊗ |i〉, with |ξk̃〉 a spinor, i the lattice
sites along the y direction, and β a scalar with |β| < 1.

Solving the Schrödinger equation Hant(k̃)|ψk̃〉 =
E (k̃)|ψk̃〉, we find it gives two constraints,{

sinkx�1 + 1

2i
(β − β−1)�2

+
[

Mk̃ − 1

2
(β + β−1)

]
�3 + λγ4

}
|ξk̃〉 = E (k̃)|ξk̃〉 (B4)

and [
sin kx�1 + 1

2i
β�2 +

(
Mk̃ − 1

2
β

)
�3 + λγ4

]
|ξk̃〉

= E (k̃)|ξk̃〉. (B5)

From the difference between the above two equations, it can
be obtained that

i�3�2|ξk̃〉 = |ξk̃〉, (B6)

with β = M − cos kx − cos kz.
Clearly, the boundary states correspond to the positive

eigenvalue +1 of the operator i�3�2. We choose the eigen-
vectors with eigenvalue +1 of i�3�2 as

|�↑〉 = 1√
2

(−i 0 0 1)T , (B7)

|�↓〉 = 1√
2

(0 − i 1 0)T . (B8)

The effective surface Hamiltonian can be obtained by
the projection to the subspace spanned by the eigenstates
{|�↑〉, |�↓〉},

Hb(k̃) =
(〈�↑|Hant(k)|�↑〉 〈�↑|Hant(k)|�↓〉

〈�↓|Hant(k)|�↑〉 〈�↓|Hant(k)|�↓〉
)

= sin kxσ1 + iλσ3, (B9)

in the region of |β| = |M − cos kx − cos kz| < 1.
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