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Driven quantum dot coupled to a fractional quantum Hall edge
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We study a model of a quantum dot coupled to a quantum Hall edge of the Laughlin state, taking into account
short-range interactions between the dot and the edge. This system has been studied experimentally in electron
quantum optics in the context of single particle sources. We consider driving the dot out of equilibrium by a
time-dependent bias voltage. We calculate the resulting current on the edge by applying the Kubo formula to
the bosonized Hamiltonian. The Hamiltonian of this system can also be mapped to the spin-boson model and, in
this picture, the current can be perturbatively calculated using the noninteracting blip approximation. We show
that both methods of solution are in fact equivalent. We present numerics demonstrating that the perturbative
approaches capture the essential physics at early times, although they fail to capture the charge quantization (or
lack thereof) in the current pulses integrated over long times.
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I. INTRODUCTION

Electron quantum optics (EQO) is a field devoted to the
study and manipulation of single electron excitations. A
promising platform for EQO experiments has proven to be the
edge states of the fractional quantum Hall effect (FQHE) [1]:
Since the edge states are chiral, there is no possibility of
backscattering. An important ingredient in any EQO experi-
ment is a single-electron source and in the present paper we
study a model of such a device. The model is comprised of
a chiral FQHE Laughlin edge state, which we model as a
Luttinger liquid. The edge is coupled to a quantum dot via a
quantum point contact (QPC). By applying a time-dependent
gate voltage to the dot, one is able to obtain current pulses on
the edge. The setup is shown in Fig. 1. In a recent paper [2],
the present authors highlighted the effect of interactions in this
setup, resulting in a nonquantized charge in the pulses on the
edge. In this paper, we use a different set of techniques to
study the same problem, which allows us to extend our results
to different regimes.

For these purposes, we focus on the mapping, originally
proposed by Furusaki and Matveev [3], between the spin-
boson model and the chiral Luttinger liquid coupled to a
single energy level. The spin-boson model—which describes
a spin interacting with a bosonic heat bath—is an important
archetype of a quantum dissipative system [4–11]. Among
other applications, it has been used to describe decoherence of
qubits in quantum information science [12,13]. In this paper,
we present the details of the mapping between the spin-boson
model and a FQHE edge state coupled to a quantum dot
(QD) [3].

This correspondence proves to be useful for our purposes,
since many analytical and numerical techniques have been
developed for the spin-boson model, including the noninter-
acting blip approximation (NIBA) [14], generalized master
equation (GME) [15], stochastic Schrödinger equation de-
scription [6], Bethe-ansatz [16] solution, numerical renormal-

ization group [10,17], exact mapping between the spin-boson
and the Kondo model [3] and, most recently, tensor network
methods [18,19]. Conversely, it is possible to envisage the QD
setup as a quantum simulator for the spin-boson model.

For pedagogical purposes and as a consistency check of
the mapping from Luttinger liquid to spin-boson model, we
use perturbation theory to calculate the current downstream
from the dot within both original and dual descriptions. In
the bosonization language, the current is obtained from the
Green’s functions for the vertex operators, while in the spin-
boson language we apply the perturbative solution described
in Ref. [14], the so-called NIBA. Using perturbation theory
to the second order in the tunneling between the dot and the
edge we show that both pictures yield identical results. We
benchmark this perturbative solution against nonperturbative
schemes that are valid at special points in the parameter range
of the Hamiltonian. For example, in the case where the FQHE
edge is in the integer quantum Hall regime, the problem can
be solved exactly. Although this solution has been obtained
previously, we present a simpler derivation of the integer
quantum Hall result. The perturbative solution is shown to be
a very good approximation to that solution at early times.

There have been numerous theoretical works [11,20–36]
on single-particle electron emitters. However, in contrast to
the previous body of work, here we focus on the nonequilib-
rium setting, where the energy level of the QD varies with
time under applied time-dependent bias voltage. The time
evolution of the system in this setup is an interesting problem
both from the theoretical and experimental perspective.

Similar setups have also been implemented in recent ex-
periments [37–40]. In particular, in Ref. [37], the QD is
driven by a square wave voltage. This experiment studies
the edge in the integer quantum Hall regime. Current pulses
are detected on the edge downstream from the QD. See also
Refs. [1,41,42] for more details of experiments. We hope that
the formulas that we derive will be useful for experimentalists
when analyzing the measured current pulses. In particular, we
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FIG. 1. Schematic model of the experimental setup showing a
quantum dot (QD) coupled to an FQHE edge state. The edge is
coupled to the dot via a quantum point contact (QPC) at x = 0.
The gate voltage can be used to tune the tunneling λ(t ) between the
dot and the edge. A single energy level ε(t ) on the quantum dot is
controlled via applied bias voltage. We study the occupation number
N (t ) of the dot over time.

have the central result Eq. (25) for the current on the edge,
from which an even simpler analytical expression Eq. (29) can
be derived for a particular drive protocol.

The outline of the paper is the following. In Sec. II A, we
introduce the model and notations. Section II B presents the
mapping between the QD-FQHE model and the spin-boson
model, see also Ref. [2]. In Sec. III A, we bosonize the original
Hamiltonian and obtain a perturbative solution which is valid
at short times. In sSec. III B, we use the NIBA solution to
derive the expression for the current, and in Sec. III C we
present a comparison between the results obtained using these
approaches. Section IV presents numerical results comparing
the perturbative solution to two exact solutions valid in certain
parameter regimes. In Sec. V, we derive analytical results for
the current in a number of physically interesting limits. The
exact calculation in the case of integer quantum Hall edge
state and further details are presented in the Appendices.

II. THE MODEL AND ITS MAPPING TO
THE SPIN-BOSON PROBLEM

A. Model

In this paper, we study a model of a QD or antidot with a
single energy level that is coupled to a FQHE edge state. The
model is described by the time-dependent Hamiltonian

Ĥ (t ) = Ĥ0(t ) + Ĥtun(t ) + Ĥint, (1)

where the terms on the right-hand side correspond to the
Hamiltonian of the dot/antidot and the edge (Ĥ0), the tun-
neling at the QPC (Ĥtun), and the interactions between the
dot/antidot and the edge (Ĥint), respectively. The Hamiltonian
Ĥ0(t ) describing the dot/antidot and the edge without cou-
pling is given by the following expression:

Ĥ0(t ) = ε(t )Ŝz + v

2

∫
dx

2π
(∂xϕ̂)2. (2)

Here the first term on the right-hand side is the energy
of a QD/antidot with a single level, and we use operators
Ŝ+/Ŝ− to describe creation/annihilation of a spinless electron
or quasielectron on this level. A QD is situated on the outside
of the quantum Hall fluid and can only host electrons. If
we want to host Laughlin quasiparticles we need to consider

an antidot, which has to be located inside the quantum Hall
fluid. Since we want to consider both the cases of electron
and quasiparticle tunneling, we need to allow for both the
case of a dot and antidot. In the case of a dot, Ŝ+ creates a
electron with charge q = −e (with e > 0 being the elementary
charge), whereas in the case of an antidot we assume we have
quasielectrons tunneling so Ŝ+ creates a quasielectron with
charge q = −νe. Note that the case of holes or quasiholes is
equivalent to electrons or quasielectrons which tunnel in the
opposite direction, therefore we do not need to consider this
case separately. For conciseness, in the following we will use
QD to refer to either a dot or antidot, where it is understood
that we are considering a dot when electrons are tunneling and
an antidot when quasielectrons are tunneling.

While the spin operators describing the level on the dot
satisfy commutation relations which are different to those of
electron or quasielectron operators,we show in Appendix B
that the associated statistical phase does not enter the results
for the current and therefore our spin representation is justified
for our purposes. The presence or absence of a particle on the
dot is measured by the operator N̂ = Ŝz + 1/2. The energy
level of the dot is a function of time ε(t ) and is controlled by
an applied time-dependent bias voltage. In comparison with
the previous work [3,21,23,24,26–29], which focused on the
case of a constant bias ε(t ) = const, here we study a time-
dependent problem.

The second term in Eq. (2) is the bosonized Hamiltonian of
an FQHE edge with the length L describing a Laughlin state
at filling fraction ν = 1/(2n + 1) where n = 0, 1, 2, . . . [43].
The bosonic field can be expanded in its eigenmodes with
momentum k = 2πm/L, m ∈ Z as follows [44]:

ϕ̂(x) = −
∑
k>0

√
2π

kL
(b̂keikx + b̂†

ke−ikx )e−ka/2, (3)

where a is the short-distance cutoff. The commutation rela-
tions of the bosonic operators b̂k are given by [b̂k, b̂†

k′ ] = δkk′ .

The electron and the quasiparticle operators in the
bosonization language are vertex operators of the form [43]

ψ̂ (x) = 1√
2π

(
L

2π

)− γ 2

2

:e−iγ ϕ̂(x) :, (4)

where γ = 1/
√

ν or γ = √
ν for electrons with charge −e

and quasiparticles with charge −νe correspondingly, and : · · · :
denotes normal ordering. Note that we have omitted Klein
factors since in our problem they do not affect the results for
the current, see Appendix B. Using results of Ref. [44], we
rewrite the expression for the vertex operators as

ψ̂ (x) = 1√
2π

a− γ 2

2 e−iγ ϕ̂(x). (5)

The Hamiltonian describing tunneling of electrons or quasi-
particles between the dot and the edge is given by

Ĥtun(t ) = λ(t )ψ̂†(0)Ŝ− + H.c., (6)

where the tunneling amplitude λ(t ) is any time-dependent
function. Below we will focus on the the specific case of
λ(t ) = λθ (t ), which corresponds to the situation when the
tunneling has been suddenly turned on at t = 0. We have also
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studied the effects of a gradual switching of the tunneling
in the form λ(t ) = λ tanh(t/ts), where ts is some timescale.
However, we find that it does not change the qualitative
behavior of the current.

We model the Coulomb interactions between the dot and
the edge using the following Hamiltonian:

Ĥint = −γ
g

2π
∂xϕ̂(0)Ŝz, (7)

where we used a bosonized form of the charge density op-
erator on the edge ρ̂(x) = +e

√
ν∂xϕ̂/2π , and g > 0 is the

interaction strength. A detailed discussion of the effects of
Coulomb interactions has been presented in our previous
work [2], where we showed that the interactions of the form
Eq. (7) amount to rescaling of the interaction constant γ such
that

γ̃ = γ
(

1 − g

2πv

)
. (8)

By performing the unitary transformation discussed in
Sec. II B below, it can be seen that the Coulomb interaction
term can be eliminated by this rescaling. The equilibrium
occupation of the QD with the Hamiltonian Eq. (1) has been
investigated perturbatively in Ref. [3], where the authors
found two regimes depending on the strength of γ̃ . In the
weak-tunneling limit, if γ̃ >

√
1/2 there is a discontinuity

in the occupation number at ε = 0, whereas the latter is
continuous for γ̃ <

√
1/2.

B. Transformation to the spin-boson problem

In this section, we will study the dynamics of the dot-edge
system under the Hamiltonian Eq. (1) using a mapping to
the spin-boson model. This mapping is performed using an
unitary transformation introduced in Ref. [3]. Let us define a
unitary operator Û1 = exp[−iγ ϕ̂(0)Ŝz]. Using the transforma-
tion Ĥ1 = Û1

†
ĤÛ1 and expressing the bosonic fields in terms

of their modes via Eq. (3) we obtain

Ĥ1 = ε(t )Ŝz + (t )Ŝx +
∑
k>0

ωkb̂†
kb̂k − iŜz

∑
k>0

ηk (b̂k − b̂†
k ),

(9)
where ωk = vk and

(t ) = λ(t )

√
2

π
a− γ 2

2 , ηk = vγ̃

√
2πk

L
e−ka/2. (10)

The Hamiltonian in Eq. (9) has the standard spin-boson
form [5]. The first two terms of Eq. (9) represent a spin-1/2
degree of freedom coupled to a time-dependent magnetic
field B(t ) = ε(t )ẑ + (t )x̂. The last two terms describe the
bosonic bath and the coupling of the spin to the bath, respec-
tively. The spectral function of the bosonic bath is given by
the expression

J (ω) = π
∑
k>0

η2
kδ(ω − ωk ) = 2παωθ (ω)e−aω/v. (11)

This spectral function corresponds to the spin-boson model
with Ohmic dissipation and with a dimensionless coupling
constant α = γ̃ 2/2. We provide a detailed dictionary of the
mapping to the spin-boson model in Table I.

TABLE I. Dictionary of the spin-boson mapping.

QD + FQHE edge Spin-boson model

Occupation of the QD N̂ Spin Ŝz = N̂ − 1/2
Bosonic operators b̂k Heat bath bosons b̂k

Vertex exponent γ̃ Spin-bath coupling α = γ̃ 2/2
QD voltage bias ε(t ) Magnetic field Bz = ε(t )
Tunneling λ(t ) Magnetic field Bx = (t )
IQHE case γ̃ = 1 Toulouse limit α = 1/2

As the next step we refermionize the Hamiltonian Eq. (9)
using another unitary transformation Û2 = exp[iγ̃ ϕ̂(0)Ŝz]
such that Ĥ2 = Û2

†
Ĥ1Û2 arriving at the Hamiltonian which

has the same form as (1) but without the interaction term, and
with renormalized tunneling strength

Ĥ2,tun = λ̃(t ) ˆ̃ψ†(0)Ŝ− + H.c., (12)

where the tunneling is given by λ̃(t ) = a(γ̃ 2−γ 2 )/2λ(t ), and

the corresponding (t ) = λ̃(t )
√

2/πa− γ̃ 2

2 . After refermion-
ization, the vertex operators assume the following form:

ˆ̃ψ (x) = 1√
2π

a− γ̃ 2

2 e−iγ̃ ϕ̂(x). (13)

The mapping between the QD system and the spin-boson
model is useful, since the latter has been a well-studied prob-
lem. It is an archetype of an open quantum system and as such,
many numerical techniques have been developed for it. On the
other hand, the spin-boson model is difficult to model experi-
mentally. Suggested experiments include trapped ions [45,46]
and superconducting circuits [47,48]. The quantum Hall edge
setup discussed in this paper is an alternative experimental
proposal to study the spin-boson model in the sense of a
quantum simulator. Since we know the Hamiltonian for the
quantum Hall edge setup, one can perform the experiment to
learn about the spin-boson model in regimes that are difficult
to access numerically.

III. CALCULATION OF THE CURRENT

In this section, we derive the expression for the time-
dependent current using two different perturbative ap-
proaches. The first calculation is done in the bosonized Lut-
tinger liquid picture, whereas the second calculation uses
well-known results from the spin-boson model. Both give
the same answer, which provides a consistency check of the
mapping discussed above.

A. Perturbation theory approach for the bosonized Hamiltonian

Here we assume that the QD is weakly coupled (by tun-
neling) to the FQH edge, and we work in the interaction
representation where the tunneling Hamiltonian plays the role
of the interactions. The current operator is given by

Î (t ) = −q̃
dN̂

dt
= −iq̃[Ĥ2,tun(t ), N̂ (t )], (14)

where N̂ (t ) is the number operator on the QD. We note that,
as we have shown in our previous work [2], one has to take
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into account the renormalization of the charge

q̃ = q
(

1 − g

2πv

)
. (15)

Intuitively, this renormalization accounts for the fact that the
charge density on the edge will be depleted close to the QPC
due to Coulomb repulsion. To calculate the expectation of the
current to leading order in perturbation theory, we use the
Kubo formula

I (t ) = −i
∫ t

0
〈[Î (t ), Ĥ2,tun(t ′)]〉 dt ′, (16)

where we have assumed that the perturbation switches on at
t = 0. Using this expression, we arrive at the result for the
time-dependent current,

I (t ) = −q̃
∫ t

0
dt ′λ̃(t )λ̃(t ′)

× (ei�(t ′ )−i�(t )[(1 − na)�(t − t ′) − na�(t ′ − t )]

+ ei�(t )−i�(t ′ )[(1 − na)�(t ′ − t ) − na�(t − t ′)]),

(17)

where we defined �(t ) = ∫ t
0 ds ε(s) and na = 〈N̂ (0)〉 is the

initial occupation of the QD. The correlation function �(τ ) =
〈 ˆ̃ψ (0, τ ) ˆ̃ψ†(0, 0)〉 is given by the expression

�(τ ) = 1

2π
[ivτB sinh(τ/τB − ia/(vτB))]−γ̃ 2

, (18)

where we have introduced a characteristic timescale τB =
β/π associated with temperature T = 1/kBβ, see details of
the derivation of the expression for the current in Appendix A.
This perturbative expression for the current represents one of
the central results of our paper.

As usual in the case of the Kubo formula, we have obtained
an early time result. The expression of the current expectation
value Eq. (17) allows us to calculate the current profile at
short times. In the perturbative calculation, we assume that
during time t the change in the QD occupation number is
small. At high temperatures, the characteristic timescale is
t � 1

λ
(vτB)γ̃

2/2, whereas at low temperatures it is given by

t � (λ̃−1vγ̃ 2/2)
1

1−γ̃ 2/2 . The only dependence on the coupling λ̃

in the perturbative solution is an overall prefactor λ̃2. Thus the
shape of the perturbative current is independent of λ̃, which
corresponds to the limit of small λ̃. Therefore, this approach
cannot be used to calculate the change in an entire current
pulse, since this requires integrating over all times. However,
based on the arguments in Ref. [2], we know that this charge
will be less than the electron or quasiparticle charge due to the
interaction effects.

B. Noninteracting blip approximation for the spin-boson model

Using the Feynman-Vernon influence functional, the au-
thors of Ref. [14] presented a path-integral solution for the
time evolution of the reduced density matrix of the two-level
system ρσσ ′ (t ) by integrating out exactly the heat bath degrees
of freedom. Using this density matrix, one can obtain the
occupation of the dot N (t ) as well as the current profile I (t ).
For a general initial condition ρσ0σ

′
0
(t0), the time evolution of

the density matrix is given by the equation

ρσσ ′ (t ) =
∫

DσDσ ′A[σ ]A∗[σ ′]F[σ, σ ′]ρσ0σ
′
0
(t0), (19)

where the integral is taken over all possible spin paths σ (t ).
Here A[σ ] is the probability amplitude for the system to fol-
low the path σ (t ) in the absence of heat-bath fluctuations and
F[σ, σ ′] is the Feynman-Vernon influence functional [14,49]
which takes into account the heat bath, see Ref. [14]. Equa-
tion (19) is exact; however, to use it one has to evaluate the
path integral over all possible spin paths. In practice, the
path integral is turned into a sum over spin flips and we
integrate over all possible times at which spin flips occur. In
our numerical calculations, this series is truncated at a some
fixed number of spin flips.

The initial condition for this procedure corresponding to
the dot having initial occupation na is given by 〈σz〉(t = 0) =
2na − 1. Assuming the spin subsystem evolves from a pure
state, it is shown in Ref. [14] that the time evolution reads

〈σz(t )〉 = (2na − 1)P(s)
1 (t ) + P(a)

1 (t ), (20)

where P(s)
1 (t ) and P(a)

1 (t ) are obtained from the series ex-
pansion in . Each factor of  includes an additional time
integral, hence limiting the maximum order of perturbation
theory which we can evaluate numerically. Up to the second
order in , we have [50]

P(s)
1 (t ) = 1 −

∫ t

0
dt2

∫ t2

0
dt1(t2)(t1) cos(�(t1) − �(t2))

× e−Q′(t2−t1 ) cos(Q′′(t2 − t1) + Q′′(t1) − Q′′(t2))

and

P(a)
1 (t ) =

∫ t

0
dt2

∫ t2

0
dt1(t2)(t1) sin(�(t1) − �(t2))

× e−Q′(t2−t1 ) sin(Q′′(t2 − t1) + Q′′(t1) − Q′′(t2)).

The expansion to second order in  means that we consider
paths with at most two spin flips. In the context of the spin-
boson model, this truncation is called a NIBA. For an Ohmic
heat bath with spectral function Eq. (11), the exact expressions
for the functions Q′(τ ) and Q′′(τ ) are given in Ref. [51], and
which in the limit of small cutoff a read

Q′(τ ) = α ln(1 + (vτ/a)2) + 2α ln

(
β

πτ
sinh(πτ/β )

)
,

(21)

Q′′(τ ) = 2α arctan(vτ/a). (22)

These results together with Eq. (20) allow us to write an
expression for the current in the form

I (t ) = q̃

2
(t )Re

∫ t

0
dτ(τ )e−Q′(t−τ )−iQ′′ (t−τ )

× [2na cos[�(τ ) − �(t )] − ei(�(τ )−�(t ))]. (23)

C. Showing equivalence of solutions

In this subsection, we will show that the current profile that
was calculated using perturbation theory Eq. (17) is equivalent
to the result of the NIBA of the spin-boson model Eq. (23).
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FIG. 2. Sketch showing that the whole of t-space can be divided
into two regimes which overlap: the t 	 a

v
regime and the t � β

regime due to the fact that a
v

�� β. Since we prove the identity
Eq. (24) in both limits, we have proven it for all t .

First, we want to show that Q′ and Q′′ from Sec. III B are
related to the propagator � from Sec. III A by

�(t ) = 1

2π
a−γ̃ 2

e−Q′(t )−iQ′′(t ). (24)

Since �∗(t ) = �(−t ) and Q′(t ) = Q′(−t ) and Q′′(t ) =
Q′′(−t ), we can focus on the case t > 0. The important thing
to realize is that a

v
�� β, since a is a small distance cutoff

and the experimentally relevant regime is at low tempera-
tures. Therefore the whole of t-space can be divided into
two regimes which overlap: the t 	 a

v
regime and the t � β

regime, see Fig. 2. From Eq. (18) and from Eqs. (21) and (22)
it is easy to show that Eq. (24) is satisfied in both limits. Hence
we have proven their equality for all t . The identity Eq. (24)
can also be viewed as a consequence of the bosonization
formalism, it is equivalent to Eq. (78) in Ref. [44].

One can then show that Eqs. (17) and (23) are identical. We
prove this in Appendix C. We also prove that the current can
be written in the more useful form

I (t ) = q̃

2
(t )

∫ t

0
dτ(t − τ )

× cos
(
2α arctan vτ

a + �(t − τ ) − �(t )
)

(1 + (vτ/a)2)α
(

β

πτ
sinh πτ

β

)2α
. (25)

Since both solutions are entirely equivalent, when we refer
to the perturbative solution in the text below, we are referring
to either of the two solutions Eqs. (17) or (23).

IV. NONPERTURBATIVE APPROACHES

The two equivalent solutions we outlined above were both
perturbative in the spin-bath coupling; however, they were
applicable for all α. There are two special values of α for
which we can go further and solve the problem to all orders
in the coupling . In this section, we briefly outline these
two approaches and then show numerical data comparing
the perturbative solution Eq. (23) to these exact methods.
We show that at early times the perturbative solution gives
very accurate results and can therefore be used to model the
experimental setup of Ref. [37].

The value α = 1/2 is special, because it corresponds to the
case in which we have an integer quantum Hall edge [52]. This
means that we have a free fermion on the boundary and we can
solve the problem exactly. This solution has been derived by

previous authors [53,54], however, we present an alternative
derivation in Appendix D.

There is a further special point α = 0, in which case the QD
decouples completely from the edge and the problem becomes
trivial. If we are close to this point, viz. α � 1, then the entire
perturbative expansion in  can be resummed as shown in
Ref. [15]. The evolution of the dot is then given by the GME.
For more details of this approach, also see Ref. [2].

We expect the perturbative solution to be valid at short
times, for t < 1. In Fig. 3, we present our numerical results
for the current and the occupation number on the QD after a
linear voltage ramp with the rate ξ , so ε(t ) = ξ (t − t0). In this
protocol, the dot is occupied in the initial state. At early times,
ε(t ) is negative and so only very little charge leaks off the
dot as the dot equilibrates with the edge. For times t > t0 the
bias becomes positive and the current greatly increases. The
current shows oscillatory behavior with increasing frequency
as the bias increases with time. These are the characteristic
Rabi oscillations.

Figure 3(b) shows the case α = 1/2, corresponding to
a ν = 1 integer QHE state. We compare the exact solu-
tion (D17) to the perturbative result and find a good agreement
at early times. At later times, the perturbative result misses the
exponential decay of the current on the timescale 1/. The
inset shows that the occupation is initially very close to unity
when ε(t ) < 0 and then starts decreasing once ε(t ) > 0.

Figure 3(c) shows the result for α = 0.01, in which case
the GME is expected to be a good approximation at all
times. Our perturbative result agrees with the GME at early
times as expected. For t > 5, we start seeing a discrepancy
between the two curves since the occupancy of the dot is
starting to differ significantly from 1 and the corresponding
feedback effect leads to higher-order corrections to the current
that our perturbation theory misses. Again, the inset shows
the dot to be fully occupied until ε(t ) becomes positive. At
late times, the dot occupation tends to the Landau-Zener
result [2]. Comparing the α = 0.01 results to the α = 1/2
results, we see that the amplitude of the Rabi oscillations is
strongly suppressed in the latter case. This is consistent with
the crossover of the spin-boson model at α = 1/2 from the
coherent to the incoherent regime. In the coherent regime
there are strong oscillations, whereas in the incoherent regime
the spin changes monotonically after a quench [7,8].

Hence we see that in the two limits of α where we have
access to simple solutions that are valid for all times, our
perturbative result gives a good approximation to the current
at early times. However, for other values of α which may be
experimentally relevant, no such simple solution schemes ex-
ist and here the perturbative solution Eq. (17) or, equivalently,
the NIBA, is useful.

V. ANALYTICAL LIMITS OF THE CURRENT PROFILE

In this section, we show that we can obtain analytical
expressions for the perturbative current profile Eq. (23) in a
number of parameter regimes. We have three timescales [55]
in our perturbation theory result:

τB = β

π
,

1

�
= (∂ ln ε/∂t )−1,

1

ε0
. (26)
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FIG. 3. Comparison of the perturbative solution Eq. (17) with
two nonperturbative methods. We show the time evolution of
the current after a linear ramp ε(t ) = ξ (t − t0 ) with parameters
a = 0.005v−1, ξ = 42, t0 = 5−1. We plot −dN/d (t), where
N (t ) = 〈N̂ (t )〉. The insets show the time evolution of the occupation
number N (t ) on the QD. (a) Sketch of the sweep protocol. (b) For
α = 1/2, we compare the exact solution as derived in Appendix D
(yellow) with our perturbative result (blue). (c) For α = 0.01, we
compare the result from the GME (yellow) with our perturbative
result (blue). Detailed expressions for the GME are given in Ref. [2].
In both cases, the early time agreement between the solutions is
excellent.

1
�

is the typical timescale on which the bias ε(t ) varies and ε0

is the maximum amplitude of the bias. We assume the all the
associated energy scales are much smaller than the FQH gap,
which is of order 1meV for ν = 1/3 [56].

A. Zero bias result

In this setup, a particle starts on the dot at zero bias
ε = 0 and the tunneling is turned on suddenly at t = 0

5 10

tΔ

−4

−2

0

2

4

6

−d
N

/d
(t

Δ
)

×10−7

analytical expression Eq. (29)

full expression Eq. (25)

FIG. 4. Comparison of the full solution Eq. (25) with the analyti-
cal expression Eq. (29), which is valid in the limit ε0 � �. We show
the time evolution of the current when the dot is driven with a bias
ε(t ) = ε0 cos �t . We use the parameters � = 5, a = 0.01v−1,
and ε0 = 0.1. The agreement between the solutions is excellent as
long as vt 	 a.

(but remains weak). The particle leaks slowly off onto the
edge.

We consider general α = 1
2ν

as appropriate for the case
where an electron (as opposed to a quasielectron) is tunneling.
In the zero bias case ε(t ) = 0, although we only have the
early time current using perturbation theory, we can extend
the integration limit in Eq. (23) to infinity, since the integrand
vanishes quickly as τ 	 a

v
[57]. This integral is solved in [5]

I0 = q̃

πv
(2na − 1)λ̃2

√
π

2

�(α)

�(α + 1
2 )

(
πkBT

v

)2α−1

, (27)

I0

q̃

⎧⎨
⎩

> 0 na > 1/2
= 0 na = 1/2
< 0 na < 1/2.

(28)

This makes sense from a physical point of view, the occupa-
tion number of the dot tends to na = 1

2 as it reaches thermal
equilibrium with the edge.

We note that in Eq. (27) the zero temperature limit is
well defined for α � 1/2. On the other hand, for α < 1/2 we
require a finite temperature as an infrared cutoff.

B. Zero temperature, sinusoidal bias, α = 3
2

Experiments must be performed at temperatures well be-
low the FQH gap and therefore the zero temperature limit
is the most relevant. Focusing on the ν = 1/3 particle case,
when β → ∞ the expression Eq. (25) simplifies. Let ε(t ) =
ε0 cos �t and assume that vt 	 a and ε0 � � so we can
obtain the approximate form

I (t ) = q̃λ̃2

2v3

�

π
ε0

([
ln

(
a�

v

)
+ γE

]
sin �t + π

2
ea�/v cos �t

)
,

(29)

where γE ≈ 0.577 is the Euler-Mascheroni constant. We de-
rive this result in detail in Appendix E. We compare this ana-
lytical expression with the full integral expression Eq. (25) in
the numerics presented in Fig. 4 and see excellent agreement.
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From this result, we see that we will obtain a periodic current
with a phase shift relative to the driving bias. We expect this
phase shift to be an experimentally accessible signature.

We note that there is a logarithmic dependence on the
cutoff a in the expression Eq. (29). This cutoff dependence
is a generic feature for α > 1/2. Indeed, a similar behavior is
seen in numerical simulations of the spin-boson model using
tensor network methods [58]. We can show explicitly that the
results do not depend on the cutoff when α � 1/2.

VI. CONCLUSION

In this paper, we derived in detail the relations between
the QD problem and the spin-boson model. The bosonized
edge in the QD problem maps to the bosonic heat bath of
the spin-boson model. The QD corresponds to the two-state
system of the spin-boson model. We have perturbatively cal-
culated the current arising when a QD is coupled to an FQH
edge. We performed the calculations using the two alternative
descriptions. To lowest order in perturbation theory in the
spin-bath coupling λ, the solution obtained by bosonization
of the original Hamiltonian is shown to be equivalent to the
solution by mapping to the spin-boson model. This provides a
consistency check of the map.

Our approach provides a very simple expression that can
be used to compare to experimental results. We have shown
that the perturbative calculation on the bosonized Hamiltonian
agrees very well with two nonperturbative techniques. First,
the GME is a method for solving the spin-boson model when
the coupling α is small. Second, we derive an exact solution
of the noninteracting (IQH) problem. Numerical simulations
show that as long as the occupation number on the dot stays
close to its initial value, the agreement with our perturbative
method is excellent. However, these exact methods are only
valid in a limited parameter regime of the coupling α. The
perturbative solution is valid over the full parameter range of
the spin-boson model, i.e., any α.

For a periodic bias ε(t ) applied to the QD, there is a phase
shift between the bias ε(t ) and the resulting current I (t ). This
theoretical prediction is verifiable experimentally. To perform
the experiment, either the current on the edge after the dot
can be measured directly or other indirect methods can be
used. For example, one can couple a second quantum dot to
the edge and drive it out of phase with the first dot to obtain
zero current after the dot. An analogous experiment where
the particle emitted by the quantum dot is reabsorbed by a
quantum dot further along the channel was described for the
IQH case in Ref. [59].

Our perturbative calculation has also confirmed (see Ap-
pendix B) that neglecting the Klein factors in the bosonization
prescription yields the correct answer for this model.

We compared our prediction that the integrated charge in a
current pulse is renormalized away from −e due to Coulomb
interactions to the experiment in Ref. [37]. In particular,
Fig. 1 B of Ref. [37] shows the time-dependent current on the
edge. That experiment is performed for an integer quantum
Hall edge, i.e., ν = 1, hence, naively we would expect α =
1/2. However, as emphasized in Ref. [2] and again in this
paper, the Coulomb interactions between the dot and the
edge will renormalize α to a different value. We searched

for evidence of this interaction effect in the experimental
data of Ref. [37]; however, unfortunately the error bars on
the experiment are too large to detect the presumably small
deviation from α = 1/2. We believe, however, that the effect
is large enough that it would be seen in experiments with
improved accuracy.

Further theoretical work could be devoted to using
the powerful numerical techniques—such as the stochastic
Schrödinger equation—developed for the spin-boson model
to model the QD in experimentally relevant regimes. Recently,
there has been a proposal to use tensor networks to study the
spin-boson model [18].

Another possibility for further theoretical research would
be to make use of the mapping to the Kondo problem to
explore the Kondo regime of this problem more carefully. This
problem should be tractable with DMRG techniques.

In compliance with EPSRC policy framework on research
data, this publication is theoretical work that does not require
supporting research data.
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APPENDIX A: DETAILED PERTURBATION
THEORY CALCULATIONS

In this Appendix, we will derive the current profile Eq. (17)
using perturbation theory in detail. With the help of the spin
commutation relations, we can derive explicitly the current
operator from the Heisenberg Eq. (14):

Î (t ) = −iq̃λ̃(t )( ˆ̃ψ†(0, t )Ŝ−(t ) − Ŝ+(t ) ˆ̃ψ (0, t )). (A1)

Combining Eq. (A1) with the Kubo formula Eq. (16), we
obtain the current expectation value at time t as

I (t ) = −q̃λ̃(t )
∫ t

0
λ̃(t ′)〈[Ŝ−(t ) ˆ̃ψ†(0, t ), Ŝ+(t ′) ˆ̃ψ (0, t ′)]

− [Ŝ+(t ) ˆ̃ψ (0, t ), Ŝ−(t ′) ˆ̃ψ†(0, t ′)]〉 dt ′. (A2)

In the interacting picture, the operators evolve with time under
H0(t ),

Ŝ−(t ) = e−i�(t )Ŝ−(0), Ŝ+(t ) = ei�(t )Ŝ+(0), (A3)

where �(t ) = ∫ t
0 ε(s) ds. Combining Eqs. (A2) and (A3) and

defining the fermionic propagators

�+−(τ ) = 〈 ˆ̃ψ (0, τ ) ˆ̃ψ†(0, 0)〉, (A4)

�−+(τ ) = 〈 ˆ̃ψ†(0, τ ) ˆ̃ψ (0, 0)〉, (A5)
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we obtain the result

I (t ) = −q̃λ̃(t )
∫ t

0
dt ′λ̃(t ′)(ei�(t ′ )−i�(t )[(1 − na)�−+(t − t ′) − na�+−(t ′ − t )]

+ e−i�(t ′ )+i�(t )[−na�+−(t − t ′) + (1 − na)�−+(t ′ − t )]) (A6)

using the time-translational invariance of the propagator. Us-
ing the explicit form of fermion operator ˆ̃ψ in bosonization
language Eq. (5) and the result for two point functions of
vertex operators in Ref. [44],

〈eiγ̃ ϕ̂(τ )e−iγ̃ ϕ̂(0)〉 =
(

a

vτB sin
(

ivτ+a
vτB

))γ̃ 2

, (A7)

we can show that

�+−(τ ) = 1

2π

(
1

ivτB sinh
(

vτ−ia
vτB

))γ̃ 2

. (A8)

One can also show that �+−(τ ) = �−+(τ ) ≡ �(τ ) [60],
which converts Eq. (A6) to the final result Eq. (17).

APPENDIX B: KLEIN FACTORS AND
(ANTI)COMMUTATION RELATIONS

In the above calculation, we have neglected the Klein
factors. The reason is that we only have one chiral edge and

we are calculating the current. Klein factors become important
when we have different species of particles. In perturbation
theory, at all orders we have an equal number of ψ̂ and ψ̂† in
the expectation values and the Klein factors cancel,

ˆ̃ψ (x) = 1√
2π

a− γ̃ 2

2 F̂ e−iγ̃ ϕ̂(x), (B1)

where the Klein factors F̂ satisfy [44]

[F̂ , b̂k] = 0, [F̂ , N̂ ] = F̂ and F̂ †F̂ = 1, (B2)

where N̂ is the total number operator on the edge. Now if
we substitute the expression Eq. (B1) into Eq. (A2), then we
can commute the Klein factors past the spin operators and use
F̂ †F̂ = 1 to eliminate the Klein factors.

We also note that if we replace the spin operators by ladder
operators, viz. Ŝ+ = â†, then the Klein factors need to be
commuted past both â and â† in Eq. (A2) and so any statistical
phase will cancel out.

APPENDIX C: EQUIVALENCE OF TWO SOLUTIONS: DETAILS OF THE DERIVATION

We start off with the expression Eq. (17):

I (t ) = −q̃
∫ t

0
dt ′λ̃(t )λ̃(t ′)(ei�(t ′ )−i�(t )[(1 − na)�(t − t ′) − na�(t ′ − t )] + ei�(t )−i�(t ′ )[(1 − na)�(t ′ − t ) − na�(t − t ′)]).

(C1)

Substitute in the expression for � and use the fact that Q′(t ) = Q′(−t ) and Q′′(t ) = −Q′′(−t ) to find

I (t ) = − q̃

2π
a−γ̃ 2

∫ t

0
dt ′λ̃(t )λ̃(t ′)e−Q′(t−t ′ )(ei�(t ′ )−i�(t )[(1 − na)e−iQ′′ (t−t ′ ) − naeiQ′′(t−t ′ )] + c.c.), (C2)

where c.c. denotes the complex conjugate. We can sum the exponential to get and use 2 = λ̃2 2
π

a−γ̃ 2
to get

I (t ) = − q̃

2

∫ t

0
dt ′(t )(t ′)e−Q′(t−t ′ )([(1 − na) cos(�(t ′) − �(t ) − Q′′(t − t ′)) − na cos(�(t ′) − �(t ) + Q′′(t − t ′))). (C3)

Going back to exponential notation:

I (t ) = − q̃

2
Re

∫ t

dt ′(t )(t ′)e−Q′(t−t ′ )−iQ′′ (t−t ′ )([1 − na]ei�(t ′ )−i�(t ) − nae−i�(t ′ )+i�(t ) ), (C4)

I (t ) = q̃

2
Re

∫ t

dt ′(t )(t ′)e−Q′(t−t ′ )−iQ′′(t−t ′ )(2na cos(�(t ′) − �(t )) − e−i�(t ′ )+i�(t ) ). (C5)

Finally, renaming t ′ to τ , we obtain the desired expression Eq. (23). We also want to derive another useful expression. For na = 1,
we obtain from Eq. (C3):

I (t ) = q̃

2

∫ t

dt ′(t )(t ′)e−Q′(t−t ′ ) cos(�(t ′) − �(t ) + Q′′(t − t ′)). (C6)

Defining τ = t − t ′ and substituting in the expressions Eqs. (21) and (22) for Q′ and Q′′, respectively, we find

I (t ) = q̃

2
(t )

∫ t

0
dτ(t − τ )

cos
(
2α arctan vτ

a + �(t − τ ) − �(t )
)

(1 + (vτ/a)2)α
(

β

πτ
sinh πτ

β

)2α
, (C7)
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and the zero bias result is

I0(t ) = q̃

2
(t )

∫ t

0
dτ(t − τ )

cos
(
2α arctan vτ

a

)
(1 + (vτ/a)2)α

(
β

πτ
sinh πτ

β

)2α
. (C8)

For α = (2n + 1)/2 and (t ) = θ (t ), this I0(t ) tends to a constant on the short timescale a/v:

I0 = q̃

2
2

∫ ∞

0
dτ

cos
(
2α arctan vτ

a

)
(1 + (vτ/a)2)α

(
β

πτ
sinh πτ

β

)2α
. (C9)

Adding and subtracting I0 from Eq. (C7), we obtain

I (t ) = I0 + q̃

2
(t )

∫ t

0
dτ(t − τ )

1

(1 + (vτ/a)2)α
cos

(
2α arctan vτ

a + �(t − τ ) − �(t )
) − cos

(
2α arctan vτ

a

)
(

β

πτ
sinh πτ

β

)2α
. (C10)

APPENDIX D: EXACT SOLUTION FOR IQH

This section presents an exact solution valid at the special
point α = 1/2. The same result has been derived by previous
authors using different methods, either by considering small
time slices over which the bias is constant [53] or by calculat-
ing the S matrix [54]. Here, we present an alternative method
of calculating this result.

In this section, we represent the dot by fermionic creation
and annihilation operators â† and â. The transformation from
fermions to spin 1/2 allows us to map between this represen-
tation and the spin representation used in the main text. In the
integer case and in the absence of Coulomb interactions, the
Hamiltonian is

Ĥ = Ĥ0 + Ĥtun, (D1)

where

Ĥ0 = −iv
∫ L/2

−L/2
ψ̂†(x)∂xψ̂ (x) dx + ε(t )â†(t )â(t ) (D2)

is the free Hamiltonian. The first term of Eq. (D2) describes
the dynamics of an IQH edge with length L at filling fraction
ν = 1 [61]. Wen showed in Ref. [43] that the edge modes of
the IQH fluid are described by a free chiral fermion ψ̂ whose
velocity v depends on the confining potential. The second
term of Eq. (D2) represents the QD which we model as a
time-dependent energy level ε(t ). The coupling between the
IQH edge and the QD is modeled by the interaction term

Ĥtun(t ) = λ(t )ψ̂†(0)â + H.c. (D3)

To emphasize the position of the contact at x = 0, we de-
compose the fermion field ψ (x, t ) into the left and right
components,

ψ̂ (x, t ) = ψ̂L(x, t )�(−x) + ψ̂R(x, t )�(x), (D4)

where �(x) is the Heaviside step function and we use the
convention �(0) = 1/2 to symmetrize the contribution of the
left and right parts at the contact point. From the Hamiltonian
Eq. (D1), we derive the field equations

i∂t â(t ) = λ(t )

2
(ψ̂L(0, t ) + ψ̂R(0, t )) + ε(t )â(t ), (D5)

i ˙̂ψ (y, t ) = −iv∂yψ̂ (y, t ) + λ(t )δ(y)â(t ), (D6)

where we have already used the decomposition Eq. (D4).
Integrating Eq. (D6) from −ε to +ε, we arrive at the con-
straint [62]:

0 = iv(ψ̂R(0, t ) − ψ̂L(0, t )) − λ(t )â(t ). (D7)

With the help of Eq. (D7), we can eliminate ψ̂R from Eq. (D5)
and arrive at

i∂t â(t ) = λ(t )

2

(
2ψ̂L(0, t ) − i

λ(t )

v
â(t )

)
+ ε(t )â(t ). (D8)

Since the IQH edge is described by a chiral fermion ψ̂ , the
appearance of the QD only affects the right component of the
IQH edge [63]. With this observation, we can expand ψ̂L(x, t )
in terms of free modes

ψ̂L(x, t ) =
√

L

v

∫ ∞

−∞

dω

2π
eiω( x

v
−t )ĉω, (D9)

where the fermion operator ĉω annihilates a chiral mode at
energy ω on the IQH edge. Substituting Eq. (D9) into Eq. (D8)
and using the ansatz

â(t ) = g(t )â(0) +
∫ ∞

−∞

dω

2π
fω(t )ĉω, (D10)

we obtain differential equations for g(t ) and fω(t ). Solving
these differential equations, we derive the exact solution

g(t ) = e−ξ (t ), (D11)

fω(t ) = −i

√
L

v

∫ t

dt ′λ(t ′)e−iωt ′+ξ (t ′ )−ξ (t ), (D12)

where we have defined

ξ (t ) =
∫ t

−∞

[
iε(s) + λ(s)2

2v

]
ds. (D13)

In the next section, we set λ(t ) = λ�(t ) for conciseness. In
that case, we define �(t ) = ∫ t

0 ε(t ) dt and the timescale

τ0 = v

λ2
, (D14)

which is the timescale over which a current from the dot to
the edge decays and it can hence be viewed as a tunneling
timescale. With this result, we are able to derive the quantities
that can be measured in the physical setup with the general
applied bias voltage ε(t ).
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We define the current operator via Eq. (14). From the
exact time-dependent operator â Eq. (D10), we can derive the
expectation value of the current at any given time I (t ) = 〈Î (t )〉
using the Heisenberg picture. To calculate the expectation
value of the time-dependent operator, we need to set the initial
condition of the QD and introduce the Fermi distribution on
the IQH edge,

〈â†(0)â(0)〉 = na, (D15)

〈ĉ†
ω′ ĉω〉 = 2πv

L
δ(ω − ω′)nF (ω), (D16)

where nF (ω) = (eβω + 1)−1 is the Fermi distribution and we
define β = 1/kBT as usual. To obtain sensible results, we
need to introduce a cutoff frequency ωc 	 kBT , which adds
a factor eω/ωc to the frequency integrals. This cutoff makes
sense physically since the negative frequency fermion modes,
which are deep inside the Fermi sea, do not affect the low-
energy physics near the chemical potential. We write this in
the suggestive form ωc = v/a. Combining the exact solution
Eq. (D10) and the definition Eq. (14), after some algebraic
calculations, we obtain

I (t ) = q
λ(t )2

v
Re

{
e−2Reξ (t )na − e−2Reξ (t )

v

∫ t

−∞
dt ′

∫ t

−∞
dt ′′λ(t ′)λ(t ′′)

1

2π

π i

β

eξ (t ′ )+ξ∗(t ′′ )

sinh
(

π
β

(
t ′′ − t ′ − ia

v

))
+ 2

∫ t

−∞
dt ′ 1

2π

π i

β

eξ (t ′ )−ξ (t )

sinh
(

π
β

(
t − t ′ − ia

v

))
}

. (D17)

We can show explicitly that our space cutting solution obeys
charge conservation. We have the operator identity [64]

i∂t (â
†a) = iâ†∂t â + i(∂t â

†)â. (D18)

Combining the above equation with Eq. (D5) and its complex
conjugate, we obtain

i∂t (â
†a) = λ

2
(â†(ψ̂R + ψ̂L ) − (ψ̂†

R + ψ̂
†
L )a). (D19)

Now replacing â and â† using Eq. (D7), we find

∂t (â
†a) = v(ψ̂†

Lψ̂L − ψ̂
†
Rψ̂R), (D20)

which is nothing but the charge conservation equation. The
left-hand side of Eq. (D20) is the time variation of total charge
on the QD. The right-hand side of Eq. (D20) is the total cur-
rent from the IQH edge to the dot since the current that goes
into the contact point is v(ψ̂†

Lψ̂L ) and the current that goes
out of it is v(ψ̂†

Rψ̂R). If we add the Coulomb interaction term
Hint ∝ ψ̂†(0)ψ̂ (0)â†â to the Hamiltonian, then the equation of
motion Eq. (D6) is modified. However, it is easy to show that
even then, the charge conservation Eq. (D20) is still satisfied.

We now compare the exact solution to our perturbative
result Eq. (17). Setting γ̃ = 1 in Eq. (18) and using the as-
sumption vτB/a → ∞, we obtain Re�(t − t ′) = 1

2v
δ(t − t ′).

Setting λ(t ) = λ�(t ), we find the final result for the case
γ̃ = 1,

I (t ) = qnaλ
2

v
+ qλ2

πv
Re

[ ∫ t

0
dt ′ei�(t ′ )−i�(t )

× π i

β

1

sinh
(

π (t−t ′ )
β

− i πa
βv

)]
, (D21)

where we have used �(0) = 1/2. If we expand the exact
solution Eq. (D17) to second order in λ, then Eq. (D21) is
obtained, so indeed both methods agree. This equivalence is a
nontrivial cross-check of our perturbation theory method.

APPENDIX E: DERIVATION OF THE ANALYTICAL
EXPRESSION FOR THE CURRENT

For conciseness, we define the frequency scale ωc = v/a.
When β → ∞, the expression Eq. (25) simplifies to

I (t ) = e2

4

∫ t

0
dτ

cos(3 arctan(ωcτ ) + �(t − τ ) − �(t ))

(1 + (ωcτ )2)3/2
.

(E1)
Define

ζ (t − τ, t ) = �(t − τ ) − �(t ). (E2)

Now assume that ε0 � � so ζ � 1 and we can expand the
trigonometric functions:

I (t ) = e2

4

∫ t

0

dτ

(1 + (ωcτ )2)3/2

× (cos(3 arctan(ωcτ )) cos ζ (t − τ, t )

− sin(3 arctan(ωcτ )) sin ζ (t − τ, t )), (E3)

I (t ) ≈ e2

4

∫ t

0

dτ

(1 + (ωcτ )2)3/2
(cos(3 arctan(ωcτ ))

− sin(3 arctan(ωcτ ))ζ (t − τ, t )). (E4)

Now use the trigonometric identities

cos(3 arctan x) = 1 − 3x2

(1 + x2)3/2
, (E5)

sin(3 arctan x) = 3x − x3

(1 + x2)3/2
, (E6)

so with ε(t ) = ε0 cos �t ,

I (t ) ≈ e2

4

∫ t

0

dτ

(1 + (ωcτ )2)3

[
1 − 3(ωcτ )2

− ε0

�
(3ωcτ − (ωcτ )3)(sin �t (1 − cos �τ )

+ cos �t sin �τ )

]
, (E7)
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and rescaling the integration variable

I (t ) ≈ e2

4ωc

∫ ωct

0

dx

(1 + x2)3

[
1 − 3x2 − ε0

�
(3x − x3)

×
(

sin �t

(
1 − cos

�

ωc
x

)
+ cos �t sin

�

ωc
x

)]
(E8)

and

I (t ) = I0(t ) + I1(t ) sin �t + I2(t ) cos �t, (E9)

where

I0(t ) = e2

4ωc

∫ ωct

0
dx

1 − 3x2

(1 + x2)3
= e2

4ωc

ωct

(1 + (ωct )2)2

≈ 2

4ωc

1

(ωct )3
→ 0 (E10)

as ωct → ∞. Now

I1(t ) = e2

4ωc

ε0

�

∫ ωct

0
dx

(3x − x3)
(
1 − cos �

ωc
x
)

(1 + x2)3
. (E11)

Since ωct 	 1 and the integrand dies off at large x, we can
extend the upper limit of the integral to ∞. Then this integral
can be done exactly in terms of the Meijer G-function. We can
expand this for �

ωc
� 1:

I1(t ) = e2

4ωc

ε0

�

1

4

(
2 ln

�

ωc
+ 2γE

)(
�

ωc

)2

+ O
(

�

ωc

)3

.

(E12)
Now

I2(t ) = e2

4ωc

ε0

�

∫ ωct

0
dx

(3x − x3) sin �
ωc

x

(1 + x2)3
. (E13)

As before, extend the upper limit to infinity,

I2(t ) = e2

4ωc

ε0

�

∫ ∞

0
dx

(3x − x3) sin �
ωc

x

(1 + x2)3
, (E14)

and expanding this:

I2(t ) = e2

4ωc

ε0

�

π

4
e−�/ωc

[(
�

ωc

)2

+ O
(

�

ωc

)4]
. (E15)

Substituting Eqs. (E12) and (E15) into Eq. (E9), we obtain
Eq. (29).
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