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Field-induced pseudo-skyrmion phase in the antiferromagnetic kagome lattice
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We study the effects of an in-plane Dzyaloshinskii-Moriya interaction under an external magnetic field in
the highly frustrated kagome antiferromagnet. We focus on the low-temperature phase diagram, which we
obtain through extensive Monte Carlo simulations. We show that, given the geometric frustration of the lattice,
highly nontrivial phases emerge. At low fields, lowering the temperature from a cooperative paramagnet phase,
the kagome elementary plaquettes form noncoplanar arrangements with nonzero chirality, retaining a partial
degeneracy. As the field increases, there is a transition from this “locally chiral phase” to an interpenetrated
spiral phase with broken Z3 symmetry. Furthermore, we identify a quasi-skyrmion phase in a large portion of
the magnetic phase diagram, which we characterize with a topological order parameter, the scalar chirality by
triangular sublattice. This pseudo-skyrmion phase consists of a crystal arrangement of three interpenetrated
non-Bravais lattices of skyrmionlike textures, but with a non-(fully)-polarized core. The edges of these
pseudo-skyrmions remain polarized with the field, as the cores are progressively canted. Results show that this
pseudo-skyrmion phase is stable up to the lowest simulated temperatures and for a broad range of magnetic
fields.
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I. INTRODUCTION

Magnetic skyrmions are topological vortexlike spin struc-
tures where the spins point in all directions wrapping a sphere
[1]. In particular, in recent years, skyrmion crystal (SkX)
phases have triggered huge interest because of their important
role in electronic transport in connection with technological
application devices [2].

In this direction, the search for new systems with
skyrmions phases in a wide range of magnetic fields and
temperatures is a central issue in the field of topological
magnetic materials. One ingredient that may play a central
role in this topic is magnetic frustration, which may arise in
different ways [3,4]: disorder (such as that found in spin glass
models), competing interactions (for example, the antiferro-
magnetic first- and second-nearest-neighbor exchange model
in the square lattice), and geometrical frustration (where the
simplest example is the antiferromagnetic exchange model
in a triangular plaquette). In many cases, frustration may
lead to the emergence of different phenomena, such as huge
degeneracy of the ground state, broken symmetries, exotic
spin orders, and nontrivial elementary excitations.

The simplest situation where SkXs are stabilized corre-
sponds to ferromagnetic systems in a magnetic field including
competing Dzyaloshinskii-Moriya (DM) interactions [5–11].
The addition of local anisotropies can stabilize different
skyrmionlike crystal phases under a magnetic field, which
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lead to meronlike structures in metastable states [12–14]. It
was also shown that the SkXs can be induced by competing
interactions and nonmagnetic impurities in ferromagnetic and
mixed ferromagnetic-antiferromagnetic systems [15–18].

Recently, the emergence of skyrmion textures was actively
explored in frustrated lattices [19–24]. In fact, in a previous
work (see Ref. [20]), some of the authors (see also Ref. [24])
showed that in the antiferromagnetic triangular lattice the
competition between nearest-neighbor exchange couplings
and an in-plane DM interaction gives rise to a low tempera-
ture stable topological phase for a range of magnetic fields.
This phase is characterized by three interpenetrated skyrmion
crystals, one by a sublattice.

In this context, the highly frustrated kagome antiferromag-
net provides an alternative scenario for studying emergent
phenomena in magnets of strong frustration. A crucial point
of the antiferromagnetic kagome lattice is its high degeneracy
due to the geometry of the lattice, formed by corner-sharing
triangles. This feature, combined with the chiral anisotropy in-
duced by the DM interaction, could give rise to different types
of topologically nontrivial phases. In recent years, materials
with in- and out-of-plane DM interactions with an antifer-
romagnetic kagome structure have been thoroughly studied,
for example, by Mendels and Bert [25] (herbertsmithite) and
Elhajal et al. [26] (Fe- and Cr-based jarosites, etc.; for a review
see Ref. [27]). Last, but not least, the possibility to generate a
DM interaction in ultrathin films with perpendicular magnetic
anisotropy in multilayer structures leads to the emergence of
interfacial noncollinear spin textures (skyrmions and chiral
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domain walls) induced by DM interactions in such magnetic
films [28,29].

A key question that arises is what is the role of the magnetic
frustration and huge degeneracy in the formation of skyrmion
spin textures. Motivated by this, we consider the inclusion of a
specific DM interaction in the pure antiferromagnetic Heisen-
berg model on the kagome lattice and study the consequences
of the combination of high degeneracy, thermal fluctuations,
and anisotropic interactions. In particular, we explore the
possibility of skyrmionlike textures in the proposed model.

We show that, under the action of an external magnetic
field, there are a number of different exotic low-temperature
phases: at low nonzero magnetic field a phase without global
order, reminiscent of the pure Heisenberg model in the
kagome lattice but formed by clusters with nonzero local
chirality, is stabilized. Then increasing the magnetic field, it
leads to a three-sublattice order with broken sublattice sym-
metry. For a larger magnetic field, a three-sublattice pseudo-
skyrmion crystal (pSkX) structure is established with the
particularity that the hidden pSkX magnetic order appear in
a non-Bravais sublattice. The emergent pseudo-skyrmion unit
structures do not fully wrap the sphere but can be distin-
guished with the help of another topological parameter, the
sublattice chirality. These pseudo-skyrmion structures have a
remarkable feature: instead of being the result of overlapping
skyrmions, with a fully polarized core and a radius smaller
than the separation between them, as in [12], here the rims
are completely polarized in the direction of the external field,
while the cores are not. In fact, these cores get canted as the
field increases.

The rest of the paper is organized as follows: in Sec. II
we present and discuss the Heisenberg model on the kagome
lattice including the DM interaction and the Zeeman coupling
to an external magnetic field. In Sec. III we study the proposed
model through extensive Monte Carlo simulations and exam-
ine the different phases stabilized by the Zeeman coupling,
focusing on the topological pSkX. Conclusions are presented
in Sec. IV.

II. MODEL

We consider an antiferromagnetic Heisenberg model on the
kagome lattice, with in-plane DM interaction, immersed in a
magnetic field. The Hamiltonian is given by

H = J
∑
〈i, j〉

Si · S j + Di j · (Si × S j ) − h
∑

j

Sz
j, (1)

where the magnetic moments Si are three-component classical
unit vectors at site ri, 〈i, j〉 indicates the sum over nearest-
neighbor sites, and J > 0 is the antiferromagnetic exchange
coupling. The DM interaction is defined by Di j = D δr̂i j ,
where δr̂i j = (ri − r j )/|ri − r j | is a unitary vector pointing
along the nearest-neighbor bonds, as shown in Fig. 1. This im-
plies that this interaction is constrained to the kagome plane,
perpendicular to the external magnetic field h = hẑ. This
choice of DM interaction proves to be adequate to develop
skyrmion phases in both ferromagnetic and antiferromagnetic
systems [20]. In this work, without loss of generality, we fix
D/J = 0.2, a value of D/J that induces magnetic structures
with sizes compatible with the systems size of the simulations.

FIG. 1. Kagome lattice. The labels 1,2,3 indicate the three sublat-
tices (the dashed blue line indicates the unit cell). Small green arrows
are Dzyaloshinskii-Moriya vectors Di j , D jk , and Dik involved in sites
(labeled as) i, j, k.

The case D = 0 has been widely studied in the last few
decades [30–38]. It is well known that the antiferromagnetic
Heisenberg model for classical spins in the kagome lattice
presents a rich phenomenology due to its high degeneracy. In
zero field, magnetic moments form an infinitely degenerate
120◦ spin structure. Over the last few years, much effort has
been devoted to studying the mechanisms or interactions that
can lift this degeneracy and the consequent emergence of
nontrivial phases. One of these well-known effects is that due
to the inclusion of thermal fluctuations, the system goes from
a paramagnetic (at high temperature) to a cooperative para-
magnetic phase [30,35], while at low temperature the order-
by-disorder mechanism selects a submanifold of coplanar
states. A magnetic field partially relieves this degeneracy, and
state selection by thermal fluctuations is still at play. Thermal
fluctuations stabilize two coplanar states at finite fields with
different symmetries. At very low temperature, each type
of coplanar state can be studied through multipolar order
parameters [35]. The inclusion of further neighbor exchange
couplings can select and induce different magnetic orders
[39–41]. Furthermore, the addition of an out-of-plane DM
interaction favors a q = 0 noncoplanar state [26].

Due to the competition between the antiferromagnetic ex-
change J , which favors the coplanar configurations, and the
in-plane DM interaction, which favors the helical phases, we
expect that the combination of these two terms results in a rich
variety of chiral configurations which will be presented in the
next section.

III. MONTE CARLO SIMULATIONS AND THE
PHASE DIAGRAM

To explore the low-temperature behavior of the model
presented in the previous section, we resort to Monte Carlo
simulations. We use a combination of the Metropolis al-
gorithm and the overrelaxation method, doing microcanon-
ical updates and lowering the temperature in an annealing
scheme. We performed our simulations in 3 × L2 site clusters,
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FIG. 2. Magnetization curves vs external field h/J for L = 60
lattice size at T/J = 2 × 10−3. Average magnetization 〈M〉 (blue
open circles), magnetization modulus |M| (green open triangles), and
susceptibility χM = dM/dh (yellow open squares). The black arrows
indicate four features in these curves. The values of the fields where
these feature emerge, the critical fields, hc1, hc2, hc3, are indicated by
dashed lines. The critical field hc4 corresponds to the saturation field
where all the spins are polarized.

L = 36–60, with periodic boundary conditions; 105–106

Monte Carlo steps (MCSs) were used for initial relaxation,
and measurements were taken in twice as many MCSs.

As a first approach to identify and characterize the dif-
ferent low-temperature phases, we first inspect the standard

quantities, namely, specific heat Cv = 〈E2〉−〈E〉2

NT 2 , magnetiza-
tion M = 1

N 〈∑i Sz
i 〉, absolute value of the magnetization

|M| = 1
N 〈∑i |Sz

i |〉, and magnetic susceptibility χM = 〈 dM
dh 〉.

In Fig. 2 we show typical curves of magnetization M, its
absolute value |M|, and the susceptibility χM as a function
of the magnetic field at T/J = 2 × 10−3. We can identify
four features in these curves, indicated by vertical arrows:
a bump in |M| at hc1/J ∼ 1.5, a peak in the susceptibility
which matches a change in the behavior of |M| at hc2/J ∼ 2.1,
and a second peak in χM at hc3/J ∼ 4.4. The last feature
at the critical field hc4 ∼ 5.7 indicates the transition to the
state completely polarized with the magnetic field. To obtain
valuable information on the nature of each phase we compute
the static spin structure factor Sq in the reciprocal lattice to
identify the Bragg peaks that characterize the different spin
textures.

The components S⊥
q and S‖

q, perpendicular and parallel to
the external field, respectively, are defined as

S⊥
q = 1

N

〈∣∣∣∣∣
∑

i

Sx
i eiq·ri

∣∣∣∣∣
2

+
∣∣∣∣∣
∑

i

Sy
i eiq·ri

∣∣∣∣∣
2〉

, (2)

S‖
q = 1

N

〈∣∣∣∣∣
∑

i

Sz
i eiq·ri

∣∣∣∣∣
2〉

. (3)

In Fig. 3 we show representative snapshots [Figs. 3(a)–
3(c)] and the corresponding structure factors S⊥

q

FIG. 3. Snapshots of the spin textures and the corresponding structure factors for L = 42, D/J = 0.2, T/J = 2 × 10−3. As the external
magnetic field increases, different structures can be identified. For this plot we select one h/J value in representation of each phase: (a) and
(d) the locally chiral phase at h/J = 0.8, (b) and (e) interpenetrated spirals at h/J = 1.8, and (c) and (f) pseudo-skyrmion crystal at h/J = 2.8.
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[Figs. 3(d)–3(f)] of the low-temperature phases as a function
of the external magnetic field. In the S⊥

q plots, the first
Brillouin zone (1BZ, drawn with dashed lines ) and the
extended Brillouin zone (EBZ, drawn with dashed lines) are
indicated. By inspection of Fig. 3 we find the following:

(i) For very low magnetic fields h < hc1, the magnetic
structure retains some of the degeneracy present for the case
D = 0 and h = 0. From a typical snapshot, it can be seen that
elementary triangles form out-of-plane structures. Six bright
peaks emerge around every high-symmetry point Me in the
spin structure factor, as shown in Fig. 3(d). Half of these points
(18 in total) are inside the EBZ.

(ii) For slightly higher fields hc1 < h < hc2, the Zeeman
coupling induces a striped or spiral-like structure, with single-
q peaks in the Me region of the EBZ [Fig. 3(e)].

(iii) In a broad region of intermediate magnetic fields hc2 <

h < hc3 a nontrivial swirling structure emerges [see Fig. 3(c)].
Visually, it is reminiscent of the interpenetrated skyrmion
phase AF-SkX found in the triangular antiferromagnetic lat-
tice [20]. In the structure factor, 12 peaks emerge in the EBZ,
indicating a triple-q structure, which may be a hint of a hidden
skyrmionlike texture.

Now, we proceed to further explore and characterize in
detail these low-temperature phases.

A. Lower h/J multi-q states

At low external field, h < hc1, there is an interesting be-
havior of the system with temperature. At T/J > 0.03, the
system seems to be in a cooperative paramagnet (CP) phase.
This is illustrated in the structure factor, presented in Fig. 4(b),
showing similar behavior to that obtained for the pure kagome
antiferromagnet in the CP phase [34]. It is characterized by the
presence of “pinch points” in the Me points of the EBZ, which
are the signature of a classical algebraic spin liquid [42,43].
The CP and low-temperature phases are separated by a phase
transition at T/J ≈ 0.03, where the specific heat exhibits a
peak [Fig. 4(a)].

However, these low-temperature phases at low magnetic
field do not show a clear periodic magnetic structure. As we
mentioned before, although no clear order is seen, it is evident
that there are numerous unit triangles where the spins are
arranged in a noncoplanar way, with different orientations.
This is most clearly shown inspecting the nearest-neighbor
scalar chirality per plaquette χi jk , defined as

χi jk = Si · (S j × Sk ), (4)

where labels i, j, k indicate the positions ri, r j , rk of each
of the three spins of every elementary triangular plaquette of
the triangular lattice. In order to analyze the local distribution
of the nearest-neighbor scalar chirality in the plaquettes, we
plot a histogram of the local values of χi jk obtained from
snapshots of an L = 60 lattice at T/J = 2 × 10−3 for h/J =
0.4, 0.8 in Fig. 5. For a perfect translationally invariant chiral
state, a strong peak at a given value of χi jk is expected.
However, in this phase the values of χi jk are widely spread,
confirming the noncoplanar nature of the low-temperature
phases at low fields.

Due to the lack of periodicity of the magnetic structure, it
is not possible to make a direct connection between the real-

FIG. 4. (a) Specific heat as a function of temperature for low
magnetic field at h/J = 0.5 (yellow open squares), a spiral at h/J =
1.6 (green open triangles), and pSkX at h/J = 2.7 (blue open cir-
cles). (b) Structure factor obtained from Monte Carlo simulations at
temperature T/J = 8 × 10−2, h/J = 0.5, for D/J = 0.2.

space configuration and spin structure factor in the reciprocal
space [Figs. 3(a) and 3(d) represent a typical spin texture and
the structure factor S⊥

q , respectively]. To further study this
phase, we introduce what we call the “spherical snapshot”: it
shows the values of the spins in the sphere, where each point
represents the tip of the spin centered at the origin and the
three axes correspond to the three components of the spins.

FIG. 5. Histogram of the nearest-neighbor chirality χi jk per tri-
angular plaquette for two snapshots at T/J = 2 × 10−3, L = 60,
h/J = 0.8 (red) and h/J = 0.4 (blue).
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FIG. 6. Spherical snapshot at T/J = 2 × 10−3 for (a) the locally
chiral phase at h/J = 0.8 and (b) the spiral phase at h/J = 1.8. Each
color indicates a different triangular sublattice. The right column is
the top view of the spherical snapshot.

This representation is a very useful tool to identify features
of the spin configuration since it allows us to differentiate the
sublattices in the same plot and to compare, qualitatively, the
spin textures between similar or different phases. In Fig. 6(a)
we show the spherical snapshots for h/J = 0.8. Each color
indicates the spins of each of the three triangular sublattices of
the kagome lattice (see Fig. 1). Clearly, there is a symmetric
distribution of the spin values in the three sublattices. This
is consistent with the symmetric peak distribution in the
structure factor. Interestingly, even though the inclusion of
a small in-plane DM interaction induces the emergence of
noncoplanar arrangements, it is not enough to completely lift
the degeneracy at low magnetic fields, leading to this “locally
chiral” phase.

B. Spiral phase: hc1 < h < hc2

As the magnetic field increases, an interesting behavior
is found at low temperatures. For magnetic fields hc1 < h <

hc2, coming from the locally chiral phase described above, a
spiral-like texture emerges, where there is a clear real-space
splitting in the three triangular sublattices. This is shown in
the spherical snapshot presented in Fig. 6(b). The arrangement
is not symmetric: two of the sublattices are described by the
same modulation with different wave vector orientations, and
the Sz component takes all values of the unitary sphere. In the
remaining sublattice (indicated by blue points), the Sz com-
ponents are restricted to positive values, with an additional
modulation. Clearly, which sublattice is arranged in which
way depends on the MC realization, as can be observed from
the structure factor presented in Fig. 3(e), which corresponds
to a particular MC realization. However, the symmetry would
be restored when averaging several realizations, as we have

FIG. 7. Order parameter φtot as a function of the external mag-
netic field at T/J = 2 × 10−3, L = 60. Nonzero values of φ indicate
the sublattice magnetization is not the same for each sublattice. Inset:
φtot vs T/J at h/J = 1.8 for L = 48, L = 54, and L = 60.

checked. This simple analysis based on the inspection of the
spherical snapshot suggests that there is a sublattice symmetry
breaking induced by the magnetic field. To further explore this
and to detect the spontaneous sublattice symmetry breaking,
we introduce a Z3 complex order parameter φtot , defined as

φ	 = Sz
1 + wSz

2 + w2Sz
3,

φtot =
∣∣∣∣∣∣

1

L2

∑
	

φ	

∣∣∣∣∣∣, (5)

where w = exp(i 2π/3) and Sz
α is the z component of the spins

in each of the three triangular sublattices, indicated by α =
1, 2, 3, shown in Fig. 1.

In Fig. 7 we show this parameter φtot as a function of the
external magnetic field at T/J = 2 × 10−3 for lattice size L =
60. It can be seen that this parameter is nonzero only on this
spiral-like phase, where the symmetry between sublattices is
broken. This feature is stable with the system size, as can be
seen in the inset in Fig. 7 (φtot as a function of temperature for
h/J = 1.8 and L = 48, 54, 60).

C. Antiferromagnetic pseudo-skyrmion crystal

For hc2 < h < hc3, at low temperatures a highly nontrivial
chiral phase emerges, associated with a spin texture formed
by a particularly intricate three-sublattice splitting, which we
call a pseudo-skyrmion crystal (pSkX), very similar to the
one found in the antiferromagnetic triangular lattice [20]. In
the triangular lattice case, the hidden skyrmion texture can
be revealed by splitting the system in three interpenetrated
sublattices: in each sublattice a topological skyrmion crystal
SkX is stabilized.

In the kagome lattice case, the “pseudo-skyrmion” name is
due to the fact that these structures are similar to skyrmions
but their center is not fully polarized. As an example a typical
snapshot is shown in Fig. 3(c).

However, in the model considered here, despite its similar-
ities to the one proposed for the antiferromagnetic triangular
lattice, the picture is not that simple. For the kagome lattice,
there are also three interpenetrated sublattices of pseudo-
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1

0

-1

Sz

(a) (b) (c)

FIG. 8. (a) Snapshot for D/J = 0.2, h/J = 2.6, T/J = 2 × 10−3. Every colored hexagon indicates the rim of a pseudo-skyrmion in each
of the three interpenetrated pseudo-skyrmion sublattices. (b) A single pseudo-skyrmion structure. The different triangular sublattices of the
kagome lattice are indicated. (c) One of the pseudo-skyrmion sublattices.

crystals [see Fig. 8(a)], but these are not the three triangular
sublattices constructed from the three sites in the unit cell
of the kagome lattice. In Fig. 8(b), we isolate one such
pseudo-skyrmion from different sublattices at h/J = 2.6, and
in Fig. 8(c) we show one sublattice of the pseudo-skyrmion
crystal. A pseudo-skyrmion is formed by a hexagon of spins
joined by second-nearest-neighbor bonds at the center, and
it radially increases along third-nearest-neighbor bonds. The
third-nearest neighbors form the three triangular sublattices of
the kagome lattice. Spins belonging to each type of sublattice
in the pseudo-skyrmions are highlighted in Fig. 8(b). Then,
one way to extract information about the hidden structure is
through the total third-nearest-neighbor scalar chirality per
site (i.e., the sublattice chirality), defined as

χnn3 = 1

8π N

3∑
α=1

〈
N/3∑
m=1

χ (α)
mpq

〉
, (6)

where χ (α)
mpq is the local sublattice chirality, defined as Eq. (4),

but taking the three spins m, p, q in elementary triangles in
the triangular sublattices of the kagome lattice, α = 1, 2, 3. In
Fig. 9 we plot this parameter as a function of the magnetic
field in for T/J = 2 × 10−3 and L = 60.

In a regular skyrmion lattice, the total scalar chirality cor-
responds to the discrete version [44] of the topological charge
Q, defined as Q = 1

4π

∫∫
S · (∂xS × ∂yS) dxdy. The value of

the total scalar chirality is related to the number of skyrmions
since for each skyrmion Q = 1. In this case, due to the
nature of the low-temperature structure, we associate the total
sublattice chirality χnn3 with the topological charge Q. In the
low-field boundary of the pSkX phase (h/J ∼ 2.5), χnn3 takes
a value close to the number of pseudo-skyrmions that can be
constructed. For example, in a system with N = 8748 sites,
we found 36 pseudo-skyrmions, while the local (sublattice)
chirality χnn3 ≈ 31. This implies that the topological charge
of each skyrmion is not 1 but Q ≈ 0.86. Hence, we dub this
phase a pseudo-skyrmion phase. Another way to see this is
that the texture associated with each pseudo-skyrmion, when
projected onto the sphere, does not fully wrap the sphere.
Specifically, we find that the border of the pseudo-skyrmions
is completely polarized (parallel to the field), but the core is
not antipolarized; that is, the Sz component never reaches the

value Sz = −1. To illustrate this clearly, we show a typical
spherical snapshot obtained from simulations in Fig. 10 for
two values of the magnetic field, h/J = 2.6, 3.8, at T/J =
2 × 10−3 and L = 60. As before the spins from each site
of a given triangular sublattice are represented by different
colors. Two significant features are present in this plot: the
projections of the spins are divided in three “slices,” one
for each triangular sublattice, and the lowest value of the
projection along the field (found for the lowest magnetic field)
is Sz = −0.8.

Skyrmionlike structures that do not fully cover the sphere,
i.e., with Q < 1, have already been found, for example, in the
anisotropic triangular lattice [12] and in [45], where there is an
emergent intermediate phase between skyrmions and merons.
In the model presented here, as the magnetic field increases,
the pseudo-skyrmion cores are further canted, while the edges
of the magnetic structures remain parallel to the field. The
evolution of the spin textures as a function of the magnetic
field in the pSkX phase is shown in Fig. 10.

The radius of this pseudo-skyrmion changes slightly de-
pending on the field and system size. However, this phase

FIG. 9. Sublattice chirality density as a function of h/J for
L = 60 (green open triangles) at T/J = 2 × 10−3. Inset: sublattice
chirality density as a function of T/J for L = 48, 54, 60 at h/J =
3.5.
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FIG. 10. Spherical snapshots in the pSkX phase for L = 60, (a)
h/J = 2.6 and (b) h/J = 3.8 and(c) for the “chiral polarized” high-
field phase at h/J = 5.2 with T/J = 2 × 10−3, D/J = 0.2. Each
color indicates a different triangular sublattice of the kagome lattice.

is clearly present for all system sizes studied, as shown in
Fig. 9, and it is delimited for a certain range of magnetic fields,
here hc2 < h < hc3. The sharp “sawtooth” behavior of this
parameter in this phase (see Fig. 9) is due to the fact that the
radius of the pseudo-skyrmion changes with the field. A sharp
change implies that pseudo-skyrmions with different radii are
found at that field. These magnetic structures with different
radii are very close in energy, which explains the competition
between pseudo-skyrmion crystals of different (but similar)
sizes at lower temperatures. Despite this competition, this
pseudo-skyrmion crystal phase emerges and is stabilized at
low temperature and can be distinguished through χnn3, the
scalar chirality calculated in the elementary triangles of each
sublattice of the kagome lattice. No system size effects are
noticed in this phase; the inset of Fig. 9 shows χnn3 as
a function of temperature for h/J = 3.5 for three different
system sizes (L = 48, 54, 60), where, clearly, the behavior is
the same for all the cases.

In the high-field region hc3 < h < hc4 the spin moments are
further aligned as the magnetic field increases and the pSkX

FIG. 11. Complete T/J vs h/J magnetic phase diagram obtained
from Monte Carlo simulations. The solid green line was obtained
by analyzing the peaks in the specific heat, the dashed white lines
restrict the nonzero φtot area hc1 < h < hc2, and the CP phase was
obtained computing the structure factor Sq.

is destroyed. The projection along the field is not uniform, as
shown in Fig. 10(c) for h/J = 5.2, and χnn3 decreases from its
maximum value in hc3 to zero in hc4. We thus dub this phase
the chiral polarized phase.

With all this, combining the χnn3 parameter and the infor-
mation from the previous sections, we construct the temper-
ature vs magnetic field phase diagram, presented in Fig. 11.
There are four clear low-temperature phases: at low magnetic
fields, there is a locally chiral phase with no clear order.
In this region, at higher temperatures the system behaves
like a cooperative paramagnet. As the field increases, at low
temperatures, coming from the locally chiral phase, we find
an intermediate spiral phase. Here the sublattice symmetry is
broken: two out of three sublattices form a complete spiral,
and the third one has only positive projections along the ex-
ternal field. The most remarkable feature of the phase diagram
is an extended pSkX region which is stabilized in a broad
range of magnetic fields at low enough temperatures. In this
phase, pseudo-skyrmion structures are periodically arranged
in three nontrivial sublattices, which are, in turn, constructed
with groups of third-nearest neighbors. Therefore, we identify
this phase with a topological order parameter, the third-nearest
neighbor chirality. As the field increases, the spins are further
canted, the pseudo-skyrmions are destroyed, and the chirality
decreases with the field in a chiral polarized phase.

IV. CONCLUSIONS

The frustration in the kagome antiferromagnet is known
to give rise to a plethora of exotic phenomena. The com-
petition of different types of interactions and external fields
has been shown to both relieve the frustration and induce
topological phases. In this work, we present a study of the
low-temperature phases in the classical kagome antiferromag-
net with competing in-plane antisymmetric Dzyaloshinskii-
Moriya interactions under a magnetic field using extensive
Monte Carlo simulations. We find that, different from what
was found in previous studies in other less frustrated geome-
tries, the particular geometry of the kagome lattice gives rise
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to highly nontrivial magnetic orders. First, for lower fields,
although the system retains some degeneracy of the pure
kagome antiferromagnet, small clusters with local chirality
can be identified. Interestingly, at higher temperatures, in-
spection of the structure factor and the specific heat shows
that the system is in a cooperative paramagnet phase, as the
pure kagome antiferromagnet. As the field is increased, at
lower temperatures, a three-sublattice spiral order is stabi-
lized with broken sublattice symmetry: two triangular (third-
nearest neighbors) sublattices form a complete spiral, and
in the third one the spin projection along the field takes
only positive values. This allows us to construct a Z3 order
parameter φtot to identify the extension of this phase. Finally,
we find that the external field stabilizes a pseudo-skyrmion
crystal (pSkX) structure in a large portion of the magnetic
phase diagram, up to the lowest simulated temperatures. This
texture is characterized by a periodic arrangement of three
interpenetrated nontrivial sublattices formed by skyrmionlike
magnetic clusters. These clusters are not skyrmions since,
when projected on a sphere, the spins do not fully cover it.
They have a clear polarized border and a nonfully polarized
core. Moreover, due to the fact that these pseudoskyrmions are
constructed with groups of third-nearest neighbors, this phase
can be characterized by a topological parameter, the scalar

chirality defined in each of the three triangular sublattices that
constitutes the kagome lattice. For large enough fields, this
parameter decreases rapidly to zero, as the pseudo-skyrmions
are destroyed and the spins are further canted along the field.
In conclusion, we have presented and studied with extensive
Monte Carlo simulations a model that combines the high
geometric frustration of the pure exchange model in the
kagome lattice with antisymmetric Dzyaloshinskii-Moriya in-
teractions, which are known to induce topologically nontrivial
structures when an external field is applied. We have found
that these competing terms give rise to a rich magnetic phase
diagram, where highly nontrivial and topological phases are
stabilized at low temperatures. We hope our study further
contributes to the understanding of the connection between
topology and frustration, where the kagome lattice is one of
the most emblematic and relevant systems.
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