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Enhancement of superconductivity by frustrating the charge order
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We study strong electron-phonon interacting systems where the geometry of the crystalline lattice frustrates
the formation of charge order. Our results show that under such condition, high-7, superconductivity can occur
in a wide range of electron-phonon coupling strengths. This result is obtained by studying the Holstein model on
triangular lattice using sign-problem-free quantum Monte Carlo method.
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I. INTRODUCTION

Strong electron-phonon (e-ph) interaction is often thought
as good for high-temperature superconductivity (SC). How-
ever, there are numerous examples where strong e-ph inter-
action triggers charge order (CO), which in turn suppresses
superconductivity. This problem has been appreciated in the
literature for a long time [1-13]. Based on such realization,
attempts to estimate the upper bound of 7, have been made.
This issue has received renewed interest recently where sign-
problem-free quantum Monte Carlo (QMC) simulation was
used to study the interplay between CO and SC on unfrus-
trated lattice [14].

In this work we ask “what if the CO is geometrically
frustrated,” and under that condition “will high-7, supercon-
ductivity result from strong e-ph interaction.” Examples of
materials showing geometrically frustrated CO [15] include
Fe304 [16], molecular conductor 6-ET,X [17], and triangular
lattice systems such as LuFe,O4 [18], Na,CoO, [19], AIV,04
[20], and LiV,04 [20,21], etc. Among them, 9-ET,X [22] and
Na,CoO, [19] are superconductors.

Our results show that once the CO is frustrated, Cooper
pairing is left to benefit from the strong e-ph interaction.
Therefore, when the bottleneck for the onset of supercon-
ductivity is the Cooper pair formation, high 7. will result
from frustrating the CO. However, 7. will not increase with
the e-ph interaction forever. Because as the e-ph interaction
gets too strong, the Cooper pair becomes so tightly bound
that its hopping amplitude becomes suppressed. Under that
condition the bottleneck for the onset of superconductivity is
the establishment of phase coherence. When that happens, T
will eventually decrease due to the poor Cooper pair mobility.

It is important to note, however, that our results apply
only to systems where Cooper pairing is mediated by phonon.
Hence, unconventional superconductors such as cuprates and
iron-based superconductors are beyond the scope of this
paper.

The theoretical model we study is the Holstein model
on the triangular lattice (where geometric frustration of CO
exists). When the same model is studied on the square lattice
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(where the CO is not frustrated), Ref. [14] shows that as the
e-ph interaction gets strong, the Q = (;r, w) charge density
wave (CDW) susceptibility surpasses that of SC. Moreover,
when this happens, the Migdal-Eliashberg (ME) theory fails.
Physically, this is due to the formation of bipolarons. The
CO involves bipolarons occupying one of the sublattices so
that each doubly occupied site is surrounded by the empty
ones because in such an arrangement electrons on the doubly
occupied sites can virtually hop to the neighboring sites to
gain the kinetic energy. This is similar to the superexchange
mechanism of repulsive systems.

In order to determine the effect of frustration, we compare
the results of Holstein’s model on both square and trian-
gular lattices. Following Ref. [14] we quantify the strength
of the e-ph interaction by the dimensionless parameter
L = a?p(Er)/K, where p(Er) is the density of states at the
Fermi energy and « is the e-ph interaction parameter [see
Eq. (1)] and K is the local phonon spring constant. The main
results are summarized in the following for the parameter
range 0.2 < A < 0.8 and /iw/Er = 0.1 and 0.3 at different
electron densities and temperatures. Here, w = /K/M is the
phonon frequency (M is the mass of the local oscillator.)

(1) For the half-filled square lattice at 7 = 0 we find Q =
(7, ) CDW order for the entire range of A we studied. (2) For
a half-filled triangular lattice at T = 0, on the other hand, we
find SC order in the entire range of XA. In contrast, the CDW
order [with Q@ = (£47 /3, 0)] only exists for 0.4 < A < 0.8
when fiw/Ep = 0.1, and for 0.6 < A < 0.8 when hw/Er =
0.3. (3) For the half-filled triangular lattice with A = 0.4
(where SC is strongest) we determine the Kosterlitz phase
transition temperature to be 7. ~ ¢/10. (4) In the SC-CDW
coexistence phase at, e.g., iw/Er = 0.1, charge fluctuations
are significantly stronger on one sublattice of the tripartite
triangular lattice (see discussion below). Moreover, the SC
order parameter is the strongest on this sublattice. Through
these sites SC can survive at strong e-ph coupling even after
the CDW order has set in. (5) At half-filling, a single-particle
gap exists in the non-SC phase for both square and triangular
lattices.

The results summarized above make the case that the
frustration of CDW allows SC to benefit from stronger e-ph
coupling without being preempted by the charge order.
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Before discussing the details, we present a physical picture
which enables one to understand the above results. When A
becomes sufficiently strong, bipolarons form. In the charge-
ordered phase, the bipolarons are localized. For the square
lattice, which is bipartite, the bipolarons localize on one of
the sublattices so that virtual hopping can lower the kinetic en-
ergy. For the triangular lattice, however, such an arrangement
is impossible. This is the same as the frustration encountered
in the antiferromagnetic (AF) Ising model on a triangular
lattice. This obstruction toward charge order benefits SC. To
understand the coexistence phase, we note that the ground
state of the AF Ising model is macroscopically degenerate
[exp(cN) ([c ~ O(1)]) spin patterns have the same energy]
[23-25]. Moreover, it has been shown that out of these degen-
erate spin patterns, a class of +/3 x +/3 spin configurations
[characterized by Q = (:l:%”, 0) wave vectors] are selected at
zero temperature due to an “order by disorder” mechanism
[26,27]. For spin-% quantum model, with nearest-neighbor

XY exchange, quantum fluctuations stabilize +/3 x +/3 spin
long-range order [28-34]. In the present problem we ex-
pect the analogous CDW pattern, with S° = +1 — double
occupancy and S$* = —1 — unoccupancy [see Fig. 1(a)], to
be stabilized by either thermal or the quantum fluctuations
(introduced by the hopping of electrons). This expectation
is supported by the simulation result: The strongest CDW
susceptibility is associated with wave vector (:I:%”,O) as
shown in Fig. 1(b). The same order by disorder mechanism
predicts charge fluctuation to be significantly stronger on one
of the three +/3 x /3 sublattices. Each site in this sublattice
is surrounded by a hexagon of sites where the charge density
alternates between (n;) > 1 and (n;) < 1. These sites are
analogous to the “flippable sites” in the entropy-stabilized
/3 x /3 pattern of the AF Ising model (spins on the flippable
sites are surrounded by alternating spin ups and spin downs,
hence, they feel no internal field). Through these large charge
fluctuation sites, SC can survive even after the CDW order has

set in.
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FIG. 1. (a) A schematic figure of the /3 x +/3 CDW ordered
state in the strong e-ph coupling limit on triangular lattice. The or-
dering wave vectors are (4 /3, 0). The black circles represent the
sites with (n;) > 1 and the white circles represent sites with (n;) < 1.
The gray circles stand for sites where large charge fluctuations and
(n;) =~ 1. (b) The CDW susceptibility at different momenta for the
triangular lattice, where /iw/E is set to 0.3 and the temperature is
set to kT =t/16. Here, K = (47 /3, 0), and M = (0, 27t /+/3) and
K + 3y is a momentum closest to K on a lattice with linear dimension
L=12.

II. MODEL

In the following discussions we consider the Holstein
model defined on both square and triangular lattices H =
H,+ H, + H,, where

H, = — Ztu(lﬂml//m +HC)_MZ”110,
(ij).o

P K, N
H, = Z (W + 5K ) H,, = ocXi:fz,-Xi. (1)
Here, v; , annihilates an electron with spin polarization ¢ on
lattice site i, u is the chemical potential, and 7; is the electron
number operator associated with site i. For the triangular
lattice we set the hopping integrals #;; to 1 between nearest
neighbors. For the square lattice we set the nearest-neighbor
hopping integral to 1 and second-neighbor hopping integral
to —0.2 to avoid a nested Fermi surface at half-filling. In
the rest of the paper we use ¢ to denote the nearest-neighbor
hopping matrix element for both triangular and square lattices.
H), describes a dispersionless Einstein phonon with frequency

= /K/M, where X; is the phonon displacement operator
and P is its conjugate momentum. H,, describes the e-ph
coupling with « being the coupling constant. As mentioned
earlier, the e-ph coupling strength is characterized using the
dimensionless parameter A = a?p(Er)/K.

Due to the presence of time-reversal symmetry and
particle-number conservation in the electronic part of the
action for arbitrary phonon configurations the partition func-
tion of Eq. (1) is free of the fermion minus sign problem
where it is subjected to determinant QMC simulation [35—41].
In the literature, many QMC simulations have been applied
to the Holstein model on nonfrustrated lattices [14,42-52].
Here, the introduction of lattice frustration is a new aspect.
We perform zero and nonzero temperature QMC simulations
by employing both the single and global update schemes
[53]. The details of the QMC simulations can be found in
Appendix A.

III. ZERO-TEMPERATURE AND HALF-FILLING

A. Phase diagram

We employ projector QMC [35,54-56] to study the ground
state of Eq. (1) for iw/Er = 0.1,0.3 and 0.2 < A < 0.8 at
zero temperature. Through a finite-size scaling analysis for
systems with linear dimension L = 6,9, 12, 15 (the details
can be found in Appendix D), we obtain the zero-temperature
phase diagrams in the specified range of A as shown in
Figs. 2(a) and 2(b). For the triangular lattice [Fig. 2(a)], SC
long-range order exists in the entire range of A we studied.
Moreover, this is true for both Ziw/Er = 0.1 and 0.3. How-
ever, for hiw/Er = 0.1, CDW sets in to coexist with SC for
0.4 <1 <0.8. For iw/Er = 0.3, CDW order is weakened
but it still sets in to coexist with SC for 0.6 < A < 0.8.
The CDW ordering wave vectors are Q = (£4m7/3,0) and a
schematic figure of it is given in Fig. 1(a). In contrast, for the
square lattice there is no SC order (at least within the lattice
sizes we studied). Instead, we find CDW order in the entire A
range we studied [see Fig. 2(b)]. The ordering wave vector is
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FIG. 2. (a) The zero-temperature phase diagram of the Holstein
model in the e-ph coupling range 0.2 < A < 0.8 and hw/Er =
0.1, 0.3 for the triangular lattice. (b) The same plot for the square
lattice. (c) The RG invariant ratio, Rgc(L), for the SC order at
hiw/Er = 0.1 on half-filled triangular lattice. The result indicates SC
long-range order. (d) The RG invariant ratio, Rcpw (L), for the CDW
order at iw/Er = 0.1 on half-filled triangular lattice. The result is
indicative of CDW disorder-order phase transition at A =~ 0.42.

Q = (m, ). Note that our phase diagram excludes A < 0.2.
This is because for small A, weak SC or CDW orders can
be suppressed by the nonzero energy gap caused by the finite
lattice size, and hence prevent us from drawing conclusions in
the thermodynamic limit. However, we do expect the presence
of SC order in the thermodynamic limit due to the standard
argument that SC is the generic instability for Fermi surface
possessing time-reversal symmetry. Because the band struc-
ture does not possess Fermi-surface nesting there is no CDW
instability. In Figs. 2(c) and 2(d) we present the “RG-invariant
ratio” R = S(Q)/S(Q + 4q) as a function of system size L for
the SC and CDW orders. Here, S(Q) is the Fourier transform
of the SC/CDW correlation functions, and Q = (0, 0) for SC,
and Q = (7, ) or (37 /4,0) for the CDW on the square
and triangular lattices. 8¢ is a small wave vector introduced
to enable a comparison between the correlation function at
the expected ordering wave vector and a wave vector nearby,
explicitly §q = (0, 21y on square lattice and éq = (O, }”L)
on triangular lattice. Long-range order implies the divergence
of R as L — oo, while short-range order means R — 1. The
results clearly support the phase diagram presented in
Fig. 2(a). Comparing the results for the square and triangular
lattices, we conclude that frustration of the charge order
enables the SC to prevail for a much wider range of strong
e-ph interaction.

B. Coexistence phase

In order to gain more insight into the SC/CDW coexistence
phase, we turn on a tiny pinning potential consistent with the
periodicity of the CDW. We then compute the expectation
value of local electron density n; = (cfc,-) and its mean-square
fluctuation Ani2 = (ﬁl-z) — (A;)%. The result for the electron
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FIG. 3. The local density (a) and its mean-square fluctuations
(b) in the CDW-SC coexistent phase on the triangular lattice at
hiw/Er = 0.1. The calculation is carried out at zero temperature for
L=12and 2 =0.5.

density distribution is shown in Fig. 3(a), which clearly
reveals the /3 x /3 periodicity. The results for An? are
presented in Fig. 3(b). It shows a significantly stronger charge
fluctuation on the lattice sites with (n;) ~ 1. In addition,
we have also computed the SC correlation function in the
coexistence phase. Remarkably, the correlation is significantly
stronger among the sites with larger charge fluctuation. These
results suggest the SC coherence within the CDW is enabled
by the “flippable” sites, which in turn is caused by the geo-
metric frustration.

IV. HALF-FILLING AND NONZERO TEMPERATURES
A. SC and CDW susceptibilities

Next, we fix the temperature and linear lattice size to
kgT =1t/16 and L = 12, where kg is Boltzmann weight, and
compute the SC and CDW susceptibilities as a function of A €
[0.0, 0.5]. For the triangular lattice, the CDW susceptibility
peaks at wave vector Q = (£4mx /3, 0) as shown in Fig. 1(b).
Moreover as shown in Fig. 4(a), the SC susceptibility is en-
hanced with increasing A until A ~ 0.4. For larger A the CDW
susceptibility rises which suppresses the SC susceptibility. For
comparison, we also plot the CDW and SC susceptibility for
the square lattice in Fig. 4(b). Similar to the triangular lattice
result, when CDW ordering tendency gets stronger, SC is
suppressed. Moreover, upon taking the absolute scale of the
susceptibility into account, it is seen that the CDW/SC sus-
ceptibility is strongly suppressed/enhanced on the triangular
lattice.

B. Kosterlitz-Thouless transition

We estimate the SC Kosterlitz-Thouless (KT) transition
temperature 7, through the well-known scaling behavior of
the SC susceptibility (xsc) at the KT transition: xsc ~ L>7",
where n = 0.25. Upon fixing A = 0.4 for the triangular lattice
and A = 0.2 for the square lattice (these are the A values at
which the SC susceptibility is the strongest at T =t/16),
we plot L™2*"yc as a function of temperature in Fig. 4.
The crossing of the curves for different L marks the phase
transition. The result suggests that the transition temperature
for triangular lattice is 7. ~¢/10 [Fig. 4(a)]. In contrast,
for the square lattice no crossing is observed for 7' > ¢/16
[Fig. 4(b)]. When combined with the zero-temperature result,
this suggests the absence of SC. This comparison again pro-
vides the evidence for frustration-enhanced SC on triangular
lattice.
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FIG. 4. (a) The SC and CDW susceptibilities on the triangular
lattice for /iw/Er = 0.3. The wave vectors of the SC and CDW
are (0, 0) and (47 /3, 0), respectively. (b) The SC and CDW sus-
ceptibilities for fiw/Er = 0.3 on a square lattice. The wave vectors
of the SC/CDW are (0, 0) and (77, ), respectively. The results in
(a) and (b) are obtained at T =¢/16 and L = 12. (c) The scaled SC
susceptibility, xscL 27" where 5. = 0.25, for the triangular lattice.
The e-ph coupling is set to A = 0.4. Here, § is inverse temperature
in unit of 1/¢. The crossing point indicates the Kosterlitz-Thouless
transition temperature: 7. =~ ¢t /10. (d) The same plot for the square
lattice, here A is set to 0.2. The absence of the crossing implies
that, if it exists, the SC transition temperature is below the lowest
temperature we calculated. The results in (c) and (d) are obtained for
L =12 and fiw/Er = 0.3. The error bars are smaller than the data
points in the figure.

C. Pseudogap

Stimulated by the phenomenology of the cuprates, single-
particle gaps above the SC transition are of considerable inter-
ests. In the Holstein model, we expect a single-particle gap to
accompany the bipolaron formation. Moreover, because the
hopping of bipolarons is suppressed at large e-ph coupling,
which results in a small SC phase stiffness, we expect a
pseudogap can persist above the SC transition temperature 7.

We have computed the single-particle gap for both tri-
angular and square lattices at half-filling through analytical
continuation [57,58]. As shown in Figs. 5(a) and 5(b), the
pseudogap at T = ¢/8 (which is above the highest 7, for both
systems) undergoes a sharp upturn around the A value where
the CDW susceptibility rises (which signifies the bipolaron
formation). In Appendix F we study the pseudogap onset
temperature for the half-filled triangular lattice. The result
T* = 0.45t is considerably above the Kosterlitz-Thouless
transition temperature.

V. AWAY FROM HALF-FILLING, AND THE EFFECT
OF DECREASING fiw/Er

Doping away from half-filling further suppresses the
CDW ordering. In Appendix B we report the result
for 15% electron-doped triangular and square lattices.
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FIG. 5. (a) The evolution of single-particle gap, extracted from
the spectral function A(kr, w), at the Fermi momentum as a function
of A on a triangular lattice. (b) The same plot for the square lattice.
The results are obtained for iw/Er = 0.3, L =12,and T =1/8.

Compared with the results at half-filling, SC/CDW are ob-
viously enhanced/suppressed.

Decreasing the phonon frequency makes the Holstein os-
cillator more classical. Due to the diminished quantum fluctu-
ations, bipolarons are easier to form and localize. As a result,
CDW correlation gets stronger and SC becomes weaker.

VI. CONCLUSION

We have studied the effects of frustrating charge order
on superconductivity using the Holstein model through sign-
problem-free QMC simulation. We conclude that frustrating
the charge order is a powerful way to enhance supercon-
ductivity. In particular, it enables a novel coexistence phase
where superconducting coherence develops in the charge-
ordered phase. When the electron-phonon coupling is suffi-
ciently strong, the real-space Cooper pairing occurs, namely,
bipolarons form. On the unfrustrated lattice, as suggested by
previous works [14,52], the bipolarons form a CDW ordered
state. In such state, the bipolarons become localized, hence de-
stroy superconducting coherence. Our work reveals that when
CDW order is frustrated by the lattice geometric frustration,
the bipolarons remain mobile due to the flappable sites. As a
result, superconducting coherence can be established, hence
allowing superconductivity to benefit from a larger range
of electron-phonon coupling strength. We believe that our
study will shed new light on the future search for the high-
temperature superconductivity in the materials with strong
electron-phonon coupling.
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APPENDIX A: DETAILS OF THE QUANTUM MONTE
CARLO SIMULATION

We apply both the finite-temperature and projector de-
terminant QMC algorithm to study Eq. (1) in main text.
In the finite-temperature simulation, the grand canonical en-
semble averages of observables are evaluated through (0) =
Tr[Oe P11/ Tr[e~PH]. Here, B is the inverse temperature. The
values studied in this paper are 4/t < g < 16/¢t, where ¢
is electron’s nearest-neighbor hopping matrix element. The
imaginary time is discretized with the time step At = 0.1/r.
We have checked that the results do not change upon further
decrease of Art.

In the projector QMC, we evaluate the ground-state
expectation values of observables according to (0) =
(YolOlo) /(o | Yo) = limgoo{ (W7 | e O™ | Yir)/
(Yr | e " | 7)), where |yr) is a trial state. In our
simulation, the trial state is chosen as the ground state of the
noninteracting Hamiltonian. In this work, 6 is set to 30/z,
and we have checked the convergence of the results against
further increase of 6. Like the finite-temperature calculations
we have checked that the imaginary-time step At = 0.1/ is
sufficient to guarantee the convergence of the result.

Finally, in both the zero- and finite-temperature calcula-
tions we carry out both single-site and block updates to ensure
the statistical independence in our Monte Carlo sampling [53].
Because the phonon field is strongly correlated in imaginary-
time direction, especially for small At, we implement block
update to reduce the autocorrelation time of the Monte Carlo
sampling in our simulation. In the scheme of block update,
we simultaneously update the phonon fields at a given site
for all the imaginary time. Unfortunately, the implement of
block update severely slows down the simulation in DQMC.
In our computation, we perform one to five block updates
between each space-time local update sweep, depending on
the temperature in the simulation. At the zero-temperature
computation or finite-temperature computation for 7 < ¢/12,
we perform five block updates between each space-time local
update sweep. In our simulation, we run 240 independent
Markov chains with 600-5000 space-time sweeps, depending
on the temperature and system sizes, after the procedure of
thermalization for each data point. In some computations for
low temperature and zero temperature, we run 480 indepen-
dent Markov chains.

APPENDIX B: NONZERO TEMPERATURE SC AND CDW
SUSCEPTIBILITIES FOR DOPED TRIANGULAR AND
SQUARE LATTICES

Intuitively, incommensurate filling factors resulting from
doping should suppress the CDW order and enhance the SC
pairing. To check this intuition, we calculate the SC and CDW
susceptibilities for different values of A at temperature T =
t/16 for lattices with linear dimension L = 12. The doping
is chosen to be 15%, i.e., (i) = 1.15. The results are shown
in Fig. 6. Compared with half-filling, the CDW susceptibil-

ity is suppressed by doping, while the SC susceptibility is
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FIG. 6. (a) The SC and CDW susceptibilities for a doped ((n) =
1.15) triangular lattice. (b) The SC and CDW susceptibilities for a
doped ((n) = 1.15) square lattice. The results are obtained under the
parameter choice fiw/Er = 0.3, L =12, and T =1¢/16. The error
bars are smaller than the data points.

enhanced. Moreover by comparing Figs. 6(a) and 6(b) we
conclude that for a doped system, lattice frustration remains
very effective in suppressing/enhancing CDW/SC orders.

APPENDIX C: NONZERO TEMPERATURE SC AND CDW
SUSCEPTIBILITIES FOR A TRIANGULAR LATTICE
AT hw/Ep = 0.1

Here, the temperature is set to 7 = ¢/16 and linear system
size is L = 12. In Fig. 7 we show the SC and CDW suscepti-
bilities as a function of A. Qualitatively, the behaviors of the
SC and CDW susceptibilities are similar to those for iw/Er =
0.3. However, it is notable that lower /iw/Er enhances the
CDW while suppressing the SC ordering tendencies.

APPENDIX D: FINITE-SIZE SCALING ANALYSIS
OF THE ZERO-TEMPERATURE SC AND CDW ORDERS
FOR TRIANGULAR AND SQUARE LATTICES

We perform projector QMC simulation to study the
ground-state properties of the Holstein model on the triangular
lattice. The Fourier transforms of the SC and CDW correlation
functions at momentum (0, 0) (SC) and (47 /3, 0)(CDW) are
shown in Fig. 8. When extrapolated to L = oo the finite values

T T ;_
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] |
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oo = = ° ]
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A

FIG. 7. The SC and CDW susceptibility on a triangular lattice for
hw/Er = 0.1. The temperature is 7 = ¢/16 and the linear system
size L = 12. The error bars are smaller than the data points in the
figure.
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FIG. 8. (a) Finite-size scaling analysis of the peak of the Fourier-transformed SC correlation function on a triangular lattice for
L=06,9,12,15 and hw/Er = 0.1. (b) Finite-size scaling analysis for the peak of the CDW structure factors on a triangular lattice for

L =6,9,12,15 and hw/Er = 0.1. (c) The same as (a) for iw/Er =0

.3. (d) The same as (b) for hiw/Er = 0.3. (e¢) The RG-invariant ratio

Rsc(L) on triangular lattice for hiw/Er = 0.3. (f) The Rsc(L) on triangular lattice for /iw/Er = 0.3. In this figure, the temperature is 7 /16 and

linear system size L = 12.

of these quantities indicates long-range order. In Figs. 8(a)
to 8(d) the data are fit by second-order polynomials in 1/L.
At hw/Ep = 0.1, the SC order [Fig. 8(a)] is persistent in the
entire range of A (0.2 < A < 0.8). However, the CDW struc-
ture factors [Fig. 8(b)] are extrapolated to zero or negative
within error bars when A < 0.4, while extrapolated to finite
values when A > 0.4. The result suggests that the ground state
is a coexistent phase of SC and v/3 x +/3 CDW when e-ph
coupling is stronger than 0.4. For /iw/Er = 0.3, the SC corre-
lations [Fig. 8(c)] also extrapolate to a finite value in the entire
range of A we studied. The CDW correlations [Fig. 8(d)], on
the other hand, are extrapolated to finite values only when
A > 0.6. To verify this result, we also calculated the RG-
invariant ratio R = S(Q)/S(Q + 8¢) as a function of lattice
size, where Q is peak momentum of Fourier-transformed
correlation function, and §q is the minimum allowed momen-
tum quantum on lattice. R(L) has smaller finite-size scaling
corrections than correlation functions, hence is a powerful
tool for investigating the thermal or quantum phase and phase
transition on finite lattices. In the long-range-ordered phase,
R(L) should diverge for L — oo, while R(L) — Ofor L — oo
in disordered phase. At the critical point, R(L) collapses to
a finite value for different L due to scaling invariance. We
present the results of RG-invariant ratio for Zw/Er = 0.1 in
Figs. 2(c) and 2(d) and hiw/Er = 0.3 in Fig. 8. The results are
qualitatively consistent with the conclusion drawn from the
extrapolation of the correlation functions. For fiw/Er = 0.1,
we observe a quantum phase transition from the SC phase
to a SC and CDW coexistent phase around A = 0.42. For
hw/Er = 0.3, the CDW order coexists with SC when 0.6 <
A <0.8.

For comparison, we have also studied the Holstein model
on square lattice. In this study we turn on a next-nearest-
neighbor hopping f, = —0.2f; to get rid of Fermi-surface

nesting. We perform finite-size scaling analysis of the SC
and CDW correlation functions for Ziw/Er = 0.1 and 0.3, for
0.2 < A £ 0.8. The results of RG-invariant ratio, as plotted
in Fig. 9, clearly show that the ground state possesses CDW
long-range order and no SC order for both /iw/Er = 0.1 and
0.3. This result, combined with those for the triangular lattice,
suggests that CDW order is strongly suppressed by geometric
frustration, which enables SC pairing to exist in a larger range
of e-ph coupling strength.

(@) 455
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(c) 100~
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y
FIG. 9. The RG-invariant ratios Rsc(L) and Rcpw(L) for the
square lattice. (a) The Rsc(L) at fiw/Er = 0.1, and (b) the Rsc(L)
at iw/Er = 0.3. (¢) The Rcpw(L) at hiw/Er = 0.1, and (d) the
RCDW(L) at ha)/Ep =0.3.
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APPENDIX E: LOCAL DENSITY AND DENSITY
FLUCTUATION DISTRIBUTION IN SC AND CDW
COEXISTENT PHASE

We compute the average of the charge density and its
mean-square fluctuation in the SC and CDW coexistent phase.
We employ projector QMC for A = 0.5 and Aw/Er = 0.1.
A tiny modulated chemical potential consistent with CDW
periodicity is added to pin the CDW to one of three degenerate
CDW patterns. In particular, we applied a modulated chemical
potential with amplitude 6 = 0.02 and have checked that such
pinning potential do not affect the intrinsic values of the SC
and CDW correlation functions. The result of averaged charge
density is shown in Fig. 4(a), which clearly reveals the /3 x
/3 CDW pattern in Fig. 1(a). The charge density on the three
sublattices is (1 +a, 1, 1 — a). More importantly, as shown
in Fig. 4(b), the charge fluctuations are significantly stronger
on the sublattice where the averaged density is approximately
unity. Since SC order requires charge fluctuation, we expect
that SC correlation to be bigger on such sublattice. This is
verified by our unbiased QMC simulation.

APPENDIX F: ELECTRON SPECTRAL FUNCTION
ON TRIANGULAR AND SQUARE LATTICE

In order to investigate the existence of pseudogap in the
Holstein model, we compute the electron spectral function
through analytical continuation of the imaginary-time Green’s
function. The approach of analytical continuation that we use
in our computation is stochastic maximum entropy method
[57,58]. We obtain the electron spectral functions at different
points on the Fermi surface. Here, we present the spectral
function A(kr, w) at momentum point where the pseudogap
is the minimum. The results of A(kp,w) for A = 0.4 on
triangular at temperatures 7' = ¢/18,¢/12,¢/8 are shown in
Fig. 10 where /8 is above the T, for triangular lattice (the
square lattice does not show a SC transition). We estimate
the value of single-particle gap from the peaks of spectral
function A(kr, w). In Fig. 5, we present the values of spectral
gap for several values of A on triangular and square lattices.
The pseudogap above 7. undergos a sharp upturn around A
value where CDW susceptibility rises. We also present the
single-particle gap as a function of temperature for A = 0.4
on triangular in Fig. 10(d). From this result, we estimate the
onset temperature of pseudogap T* = 0.45¢.

APPENDIX G: SCALING BEHAVIOR OF THE SC
SUSCEPTIBILITY FOR T 2, T, AND THE FINITE-SIZE
SCALING ANALYSIS FOR THE SC SUSCEPTIBILITY

BELOW T,

In this Appendix, we present the scaling behavior of the
SC susceptibility for T Z T.. In addition, we also present the
finite-size scaling analysis of the SC susceptibility for T < T..
Both results are obtained on triangular lattice.

In a 2D superconductor, the quasi-long-range SC order im-
plies that the SC susceptibility should diverge with the system
size in a power-law fashion below the Kosterlitz-Thouless
(KT) transition temperature 7. In addition, for T % T. the KT
phase transition predicts the following scaling behavior for the

(a)1s (b) 16
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[
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1 o6t \
8
- | -
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< o \
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-2 -1 0 1 2 0.0 0.5 1.0 1.5 20
E(eV) T(t)

FIG. 10. The electron spectral function A(kr, w) for A = 0.4 on
triangular lattice at various temperatures: (a) T =1¢/8;(b) T =1/12;
(¢) T =1t/16. The results clearly show that spectral gap survives
above the SC transition temperature ¢ /10. (d) The single-particle gap
on triangular lattice for A = 0.4 as a function of temperature. The
pseudogap onset temperature is estimated to be 7* = 0.45¢.

superconducting susceptibility:

xsc(L, T) = L* " f(L/§),
1

where n = ; and § is correlation length with the following
temperature dependence:

§ =explA/VT - T.].

Here, f(L/&) is a scaling function whose numerical value
depends on the microscopic details. In Fig. 11(a) we collapse
the data for different temperatures and system sizes according
to Egs. (G1) and (G2). The temperature range in this analysis
is kgT € [t/6,1/10] and the system sizes are L = 6, §, 10, 12.
The best data collapse is achieved by choosing A = 0.32 and
kgT. = t/10. The excellent quality of the data collapsing is
a confirmation that the SC transition is indeed in the KT
universality class.

(G

(G2)

(a) 008 T T T T T — (b) 3
. sl w pv12
00| Ay of ® BU14
LN B=t/16
L 9 15
o 00T N,
- ve 310
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001 v L=12
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Lexpl-A/(T-T,)""] L

FIG. 11. (a) Data collapse analysis of the SC susceptibility in the
regime close to transition temperature 7;.. By choosing 7. = ¢ /10 and
A = 0.32, it is clearly shown that the SC susceptibility for different
T and L can be fitted by a single scaling function consistent with KT
transition. (b) The log-log plot of the SC susceptibility as a function
of linear system size L below transition temperature 7.. The error
bars are smaller than the data points in the figure.
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FIG. 12. (a) The SC and CDW susceptibilities on the triangular
lattice for fiw/Er = 0.3 and Aw = 0.2w. The wave vectors of the
SC and CDW are (0, 0) and (47 /3, 0), respectively. (b) The SC
and CDW susceptibilities on the triangular lattice for hw/Er = 0.3
and Aw = 0.2w. The wave vectors of the SC and CDW are (0, 0) and
(m, ), respectively. The error bars are smaller than the data points
in the figure.

In Fig. 11(b) we present the SC susceptibility below T as
a function of system size L. The result is consistent with a
power-law divergence with the power decreases as a function
of increasing temperature. This is consistent with the known
behavior of the SC order-parameter correlation function be-
low T..

APPENDIX H: EFFECT OF PHONON BAND DISPERSION

In the Holstein model the phonon is dispersionless. In
this Appendix, we investigate the effect of a nonzero phonon

dispersion on the SC and CDW susceptibilities. We modify
the phonon Hamiltonian by adding a nearest-neighbor cou-
pling term between the displacement field:

52
=%+ 52+ By - g2 @
P —~\2m = 27" 2 m I

The resulting bare phonon dispersion is given by
EP(E) = x/% + %[2 — cos(dy - k) — cos(d, - k)] on square
lattice, where @; = (1,0) and @ = (0,1), and E,(k) =
x/% + ZMﬁB — cos(dy - k) — cos(dy - l;) — cos(ds -k ] on
triangular lattice, where d; = (1,0), d, = (%, 73), az =

—%, ‘/75). The associated bare phonon bandwidth is given

by Aw = Ep(kmax) - Ep(kmin)a where Ep(kmax)/Ep(kmin) is
the energy at the band top and bottom. In the following,
we choose a Aw = 0.2w, where iw = 0.3EF is the average
phonon frequency. We set the inverse temperature to § = 16/t
and compute the SC and CDW susceptibility as a function
of A for both the square and triangular lattice, the results
of which are shown in Fig. 12. When comparing them to
the corresponding results in the dispersion-free limit, we
see a qualitative agreement. Specifically, for large X the
CDW susceptibility rises which tends to suppress the SC
susceptibility. Moreover, looking at the absolute scale of
susceptibility, we find that the CDW/SC susceptibility is
strongly suppressed/enhanced on the triangular lattice. Upon
a quantitative comparison, we find the the CDW susceptibility
is slightly suppressed and the SC susceptibility is slightly
enhanced by the nonzero phonon dispersion.
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