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Resistivity anisotropy of quantum Hall stripe phases
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Quantum Hall stripe phases near half-integer filling factors ν � 9/2 were predicted by Hartree-Fock (HF)
theory and confirmed by discoveries of giant resistance anisotropies in high-mobility two-dimensional electron
gases. A theory of such anisotropy was proposed by MacDonald and Fisher, although they used parameters
whose dependencies on the filling factor, electron density, and mobility remained unspecified. Here, we fill
this void by calculating the hard-to-easy resistivity ratio as a function of these three variables. Quantitative
comparison with experiment yields very good agreement, which we view as evidence for the “plain vanilla”
smectic stripe HF phases.
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Quantum Hall stripe phases near half-integer filling factors
ν � 9/2 were predicted for spin-split Landau levels (LLs) by
the Hartree-Fock (HF) theory [1–3]. At exactly half-integer
filling factor ν, these phases consist of alternating stripes
with filling factors ν − 1/2 and ν + 1/2, both with the width
�/2 � 1.4Rc [1,2,4,5], where Rc is the cyclotron radius (see
Fig. 1). These stripes are formed due to the repulsive boxlike
screened interaction potential of electrons with ringlike wave
functions in high LLs. Such a potential leads to an energy gain
when electrons occupy the nearest states of the same stripe
and avoid interacting with electrons in neighboring stripes.
The self-consistent HF theory is valid at LL indices N � 1,
when Rc = lB(2N + 1)1/2 � lB. Here, lB = (ch̄/eB)1/2 is the
magnetic length, which is a measure of quantum fluctuations
of an electron’s cyclotron orbit center. It was shown [2,4,5]
that quantum fluctuations play little role even when N = 2, so
that stripes should determine ground states for all half-integer
ν � 9/2.

Quantum Hall stripes were confirmed by discoveries
of dramatic resistance anisotropies in high-mobility two-
dimensional electron gases (2DEGs) hosted in GaAs/AlGaAs
heterostructures at ν = 9/2, 11/2, 13/2, . . . [6,7]. The pre-
ferred direction of the stripes (symmetry breaking) was found
to be imposed by a potential related to GaAs crystal orienta-
tion, whose origin is not understood even now.

MacDonald and Fisher (MF) proposed a theory of the
stripe phase conductivity [8]. They assumed that stripes form
a smectic state, pinned by disorder, and used an analogy
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between stripe edges and edge states in a confined 2DEG (see
Fig. 1). At half-integer filling factors ν � 9/2 this theory leads
to the resistivity ratio

ρxx

ρyy
=

(
vτB

�

)2

� 1, (1)

where � � 2.8Rc is the stripe period, v is the drift velocity of
electrons on the stripe edges (see Fig. 1), and τB is the time
of an electron scattering to a neighboring stripe edge. Let us
interpret Eq. (1). An electron drifts for a time τB/2 until it is
scattered to one of the adjacent edges. Thus, we can define
two electron diffusion constants,

Dxx = 1

2
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τB/2
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4τB
, (2)

Dyy = 1
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= v2τB

4
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Here, we have used the fact that at each time step τB/2 an
electron on the edge of a stripe randomly moves a distance
vτB/2 in the y direction, while it hops a distance �/2 in the
x direction. Taking the ratio of Dyy and Dxx and using the
Einstein relationship we arrive at Eq. (1).

In its present form, Eq. (1) does not allow comparison
with the experimental data, which we talk about below, as
Ref. [8] did not specify how τB or v depend on the electron
density ne, the mobility μ, and the filling factor ν. In this
Rapid Communication we calculate τB and v, and arrive at
the ratio of resistivities which can be directly compared with
experimental data,

ρxx

ρyy
= 0.088

γ 2
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)2

. (4)
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FIG. 1. (a) Schematic drawing of the single-particle self-
consistent potential energy V (x) which is responsible for stripe for-
mation due to an approximate boxlike electron-electron interaction
[2]. The sloped regions of V (x) determine the internal electric field
E . (b) Schematic of transport in the stripe phase. Electrons on the
stripe edges (shown in blue) drift in electric fields E with velocity
v in the ±y direction. They are scattered to an adjacent stripe edge
by background charged impurities at a rate 2/τB, as illustrated by the
thick horizontal arrow.

Here, ν � 9/2 is either 2N + 1/2 or 2N + 3/2 and γ ≡
γ (N1/N2) is a dimensionless function of concentrations
N1 and N2 of unintentional background impurities in the
AlxGa1−xAs spacer and GaAs quantum well, correspondingly.
We focus on ultrahigh mobility 2DEG in which the long-
range potential of remote donors plays a minor role for the
momentum relaxation time τ and τB. It is easy to see from
Eq. (4) that ρxx/ρyy ∝ μ2B4/n2

e at N � 1. We show below that
this prediction for high LL agrees with experiment and arrive
at N1/N2 � 60 using N1/N2 as a single fitting parameter.

Let us now derive our expressions for v and τB which allow
the conversion of Eq. (1) into Eq. (4). The drift velocity is v =
cE/B, where B is the magnetic field, eE = |dV/dx| at x =
±�/4 is the internal electric field at the stripe edges, and V (x)
is the self-consistent HF potential. Following MF, we assume
that at low temperatures electrons form a smectic pinned by
impurities. If we use the model of a sawtooth stripe potential

FIG. 2. γ (x) for electron density ne = 3 × 1011 cm−2 and quan-
tum well width w = 30 nm.

V (x) [Fig. 1(a)], based on the simplified box model of electron
repulsive potential given by Eq. (15) of Ref. [2], we find eE =
h̄ωc/2π2Rc, where ωc is cyclotron frequency. Below we use a
more accurate expression

eE = β(rs)
h̄ωc

2π2Rc
, (5)

where β(rs) can be obtained from Eqs. (48) and (43) of
Ref. [2], rs ≡ (πnea2

B)−1/2, aB = h̄2κ/m�e2, m� is the effective
mass, and κ is the dielectric constant of GaAs. The 2DEGs we
consider have rs � 1 and β(1) = 0.77. Using Eq. (5) we find
the drift velocity in Eq. (1),

v = cE

B
= β

2π2

vF√
ν(2N + 1)

, (6)

where vF is the Fermi velocity. Next, we show that

2

τB
= γ

τ

gB

g0
, (7)

where g0 = m�/2π h̄2 is the density of states per spin at B = 0,
and

gB = 2

2π l2
BeE�

= 2

hv�
(8)

is the modified density of states at the Fermi level of the
spin-polarized half-filled LL [see Fig. 1(a)], defined as the
ratio of (2π l2

B)−1 and the energy width of a LL eE�/2 [2].
Apparently, in strong magnetic fields relatively narrow LLs,
with gB/g0 � 1, are formed. This increases the scattering rate
2/τB in comparison with 1/τ [9] in Eq. (7). The dimensionless
function γ (N1/N2) in Eq. (7), shown in Fig. 2, takes care of
relative contributions of the background charged impurities
in the spacer and in the quantum well to 2/τB and 1/τ [10].
Combining Eqs. (1), (6), (7), and (8) we arrive at Eq. (4).

In the rest of this Rapid Communication we compare
Eq. (4) with the experimental data from several high-mobility
samples. The 2DEG in each of our three samples (A, B, C)
resides in a GaAs quantum well surrounded by Al0.24Ga0.76As
barriers. Electrons are supplied by Si doping in narrow GaAs
wells, surrounded by thin AlAs layers, and placed at a setback
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TABLE I. Sample ID, electron density ne, mobility μ, quantum
well width w, setback distance d .

Sample ID ne (1011 cm−2) μ (106 cm2/V s) w (nm) d (nm)

A 2.9 28 30 75
B 2.8 16 30 75
C 3.0 16 30 80

distance d on each side of the GaAs well hosting the 2DEG.
Sample parameters, such as density ne, mobility μ, quantum
well width w, and setback distance d are listed in Table I.
The samples were ≈4–5 mm squares with eight contacts
positioned at the corners and at the midsides. Resistances Rxx

and Ryy were measured using a four-terminal, low-frequency
(a few Hz) lock-in technique at temperature T ≈ 50 mK for
sample A and at T ≈ 25 mK for samples B and C. The
representative data for sample A are presented in Fig. 3.

For square sample geometry, resistivities ρxx and ρyy can
be obtained from resistances Ryy and Rxx using [11]

Rii = 4

π

√
ρ j jρii

∑
n=odd+

[
n sinh

(
πn

2

√
ρ j j

ρii

)]−1

, (9)

where i, j = x, y (i �= j). This equation assumes that the
current is passed between midside contacts and the voltage is
measured between corner contacts. With known Rxx and Ryy,
Eq. (9) allows one to obtain the resistivity ratio ρxx/ρyy using

Rxx

Ryy
=

∑
n=odd+

[
n sinh

(
πn

2
√

ρxx/ρyy

)]−1

∑
n=odd+

[
n sinh

(πn
√

ρxx/ρyy

2

)]−1
. (10)

Unfortunately, when Ryy becomes comparable to the exper-
imental noise, direct application of Eq. (10) becomes unre-
liable. In such situations we resort to using the parameter-
free result for the resistivity product ρxxρyy which was first
obtained by MF [8] and, for half-integer ν, can be written as

ρxxρyy =
(

h

e2

)2 1

(2ν2 + 1/2)2
. (11)

FIG. 3. Rxx (solid line) and Ryy (dotted line) as a function of B
measured in sample A at T ≈ 50 mK.

FIG. 4. (ρxxρyy )1/2(2ν2 + 1/2)e2/h obtained using Eq. (9) from
Rxx and Ryy measured in sample B (diamonds) and prescribed by
Eq. (11) (dashed line) vs ν.

This result, together with Eq. (9), allows one to obtain the
resistivity anisotropy ratio from Rxx alone,

Rxx = 2h

πe2

∑
n=odd+

[
n sinh

(
πn

2
√

ρxx/ρyy

)]−1

ν2 + 1/4
. (12)

While the validity of Eq. (11) has been demonstrated long
ago [12], it is instructive to check it again. In Fig. 4 we
present (ρxxρyy)1/2(2ν2 + 1/2)e2/h, obtained from Eq. (9)
using Rxx and Ryy measured in sample B, as a function of ν and
observe that it stays close to unity as prescribed by Eq. (11)
(dashed line). Given the fact that Eq. (11) has no adjustable
parameters, the agreement is excellent and we will thus resort
to using Eq. (12) when Ryy cannot be reliably obtained.

We next compare our main theoretical result, Eq. (4), to
the experimental resistivity ratio ρxx/ρyy in sample A obtained
using both methods. In Fig. 5 we present ρxx/ρyy obtained
from experimental resistances using Eq. (10) (solid triangles)
and Eq. (12) (open triangles) as a function of [(2N + 1)ν]−2

over a wide range of half-integer ν, 9/2 � ν � 35/2. We ob-
serve that the values of ρxx/ρyy obtained by different methods
in general agree with each other. The solid line is computed
using Eq. (4) with γ = 0.15; it shows excellent agreement
with the data for 13/2 � ν � 35/2. At ν � 11/2, however,
we find that Eq. (4) predicts ρxx/ρyy which is considerably
higher than what is observed in our experiment. This trend is
shared among all of our samples studied and we will return to
this issue later.

Having looked at the dependence of ρxx/ρyy on ν and
N , we next add its dependence on ne and μ in the scaling
(see Fig. 6). Here, we show the resistivity ratio ρxx/ρyy

obtained from Eq. (10) (solid symbols) and Eq. (12) (open
symbols) for samples A, B, and C (see legend) as a function of
[h̄neμ/π3eν(2N + 1)]2 = [h̄σ0/π

3e2ν(2N + 1)]2, where σ0

is the conductivity at B = 0. At N � 3, the experimental
points of Fig. 6 are close to a line computed using Eq. (4)
with γ = 0.15. For N = 2, however, we see a substantial
downward deviation of the data from this line. This is not
surprising since we used Eq. (5) with β calculated for N � 1.
Because ρxx/ρyy ∝ β4, only a 40% reduction of β by quantum
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FIG. 5. Resistivity ratio ρxx/ρyy in sample A obtained from
Eq. (10) (solid symbols) and Eq. (12) (open symbols) as a function of
[(2N + 1)ν]−2. Half integers mark filling factors. The line represents
Eq. (4) with γ = 0.15.

fluctuations would explain the downward deviation of N = 2
points.

Using γ = 0.15 and Fig. 2 we find that N1/N2 � 60. This
is in reasonable agreement with N1/N2 ∼ 10 obtained previ-
ously in Ref. [13] from the analysis of mobility and quantum
mobility of an ultrahigh mobility sample of similar design.
As mentioned in Ref. [13], the large value of N1/N2 is likely
related to a relatively impure Al source [14]. With N1/N2 � 60
and scattering rates 1/τ and 2/τB calculated for both types of
impurities in the Supplemental Material [Eqs. (S1) and (S2)],
we can estimate concentrations N1 and N2 and their relative
contributions to both rates. We find that for sample A, the
spacer impurities have concentration N1 � 5 × 1014 cm−3 and
contribute 30%–40% to 2/τB and 70%–80% to 1/τ , while
GaAs well impurities have a concentration N2 � 1013 cm−3

and contribute 60%–70% to 2/τB and 20%–30% to 1/τ .
The agreement between our Eq. (4) and the experimental

hard-to-easy resistivity ratios ρxx/ρyy � 30 for a large range
of parameters supports the MF assumption that the low-
temperature stripe phase is a pinned smectic phase predicted
by HF calculations [1–3]. Apparently, at least for N � 3, there
is no evidence for the role of pinned or free dislocations

FIG. 6. Resistivity ratio ρxx/ρyy in sample A (triangles), B (di-
amonds), and C (circles) obtained from Eq. (10) (solid symbols)
and Eq. (12) (open symbols) as a function of a scaling variable
[h̄neμ/π 3eν(2N + 1)]2. The line represents Eq. (4) with γ = 0.15.

and other large defects conjectured in Refs. [15–17]. These
conclusions agree with the recent observation of a possible
nematic-smectic transition at T � 50 mK [18].
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