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We present high-resolution thermal diffusivity measurements on several near optimally doped electron- and
hole-doped cuprate systems in a temperature range that passes through the Mott-Ioffe-Regel limit, above which
the quasiparticle picture fails. Our primary observations are that the inverse thermal diffusivity is linear in
temperature and can be fitted to D−1

Q = aT + b. The slope a is interpreted through the Planckian relaxation
time τ ≈ h̄/kBT and a thermal diffusion velocity vB, which is close, but larger than the sound velocity. The
intercept b represents a crossover diffusion constant that separates coherent from incoherent quasiparticles. These
observations suggest that both phonons and electrons participate in the thermal transport, while reaching the
Planckian limit for relaxation time.
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The standard paradigm for transport in Fermi-liquid metals
relies on the existence of well-defined quasiparticles. Trans-
port coefficients such as electrical and thermal conductivities
can then be calculated using Boltzmann theory, where the
electrons are treated semiclassically [1]. However, such an
approach fails when the quasiparticle mean free path be-
comes comparable to its de Broglie wavelengths. Beyond this
so-called Mott-Ioffe-Regel (MIR) limit [2], the material is
dubbed a “bad metal” [3], and transport becomes “incoher-
ent,” as the notion of momentum eigenstate quasiparticles
fails. A new theoretical framework is needed to describe
this regime, while new experiments, complementary to the
extensively studied electrical resistivity, are needed to provide
an additional perspective on the problem.

In the absence of a microscopic transport theory, one
may still use thermodynamics supplemented by continuity
equations for the charge and energy as conserved quantities.
In the absence of thermoelectric effects, this approach leads
to Einstein relations for the electrical conductivity σ = χDe

and the thermal conductivity κ = cDQ, which are expected to
hold regardless of the presence of quasiparticles. Here, χ =
e2(dn/dμ) is the charge susceptibility and is proportional to
the density of states, c is the specific heat, and De and DQ

are charge and thermal diffusivity, respectively. It is therefore
interesting to explore transport in a nonquasiparticle regime
by studying the diffusivities directly. Indeed, in recent studies
diffusivity was singled out as a key observable for incoherent
nonquasiparticle transport, possibly subject to fundamental
quantum mechanical bounds [4], particularly a minimum
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“Planckian” relaxation time τ ∼ h̄/kBT [5], which leads to
the iconic linear resistivity that persists beyond the MIR limit.
Such a behavior has been observed in numerous resistivity
measurements on strongly correlated materials including the
hole-doped [6] and electron-doped [7] cuprate superconduc-
tors. However, no sufficient studies have been performed for
thermal transport in these materials, despite evidence from
early studies by Allen et al. [8], and more recent data from
Zhang et al. [9], suggesting that thermal transport in the
high-temperature regime of the strongly correlated cuprate
superconductors must involve incoherent electrons and
phonons.

In this Rapid Communication we report high-resolution
thermal diffusivity measurements on single crystals of nearly
optimally doped electron-doped cuprates Sm2−xCexCuO4

(SCCO), Nd2−xCexCuO4 (NCCO), Pr2−xCexCuO4 (PCCO),
and near optimally doped Bi2Sr2CaCu2O8 (BSCCO) in the
temperature range of 100–600 K. These materials exceed the
MIR limit in resistivity [2] above ∼250–300 K [7]. Unlike
the hole-doped cuprates, the electron-doped cuprates do not
lose oxygen upon heating and thus can be studied to relatively
high temperatures. In addition, comparing “as grown” with
“annealed” samples allows for a comparison of disorder ef-
fects on the high-temperature thermal transport. Our primary
observation is that for all samples we measured the inverse
diffusivity is linear in temperature, and can be fitted to

D−1
Q (T ) = aT + b =

(
αv2

B

h̄

kBT

)−1

+ D−1
0 . (1)

The slope a is interpreted as a result of the product of a diffu-
sion velocity vB, a Planckian relaxation time τ ≈ h̄/kBT , and
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FIG. 1. Examples for thermal diffusivity in the ab plane
measured as a function of temperature using the optical
setup. (a) Nd1.85Ce0.15CuO4 annealed, and (b) optimally doped
Bi2Sr2CeCu2O8+x with Tc = 92 K. Statistical error is smaller than
the data points. A systematic error of ∼5% is estimated as a result
of calibration of the optical paths, and the finite size of the focused
laser spots.

an order-unity constant α. The constant b = D−1
0 represents

a quantum-diffusion constant separating incoherent transport
from a regime with well-defined quasiparticles, and will be
discussed further below. In the absence of exact theoretical
guidance we set α = 1, and estimate vB to be about twice to
three times the sound velocity in that material. In comparison
to literature data for diffusivity of undoped or lightly doped
insulators of similar materials, we observe that b = 0 and the
extracted velocity is close to the sound velocity of the respec-
tive material. These observations unambiguously establish the
substantial participation of electrons in the thermal transport
and suggest that also the phonons reach the Planckian limit
for relaxation time.

See Supplemental Material [10] (see also Refs. [11,12]) for
sample preparation methods. For the highresolution thermal
diffusivity measurements we use a photothermal microscope
previously used in Ref. [9], described in detail in the Sup-
plemental Material [10]. Using this apparatus, the thermal
diffusivity is obtained directly, without the need to measure
the thermal conductivity and specific heat separately. An
advantage of this apparatus, exploited in our previous study of
underdoped YBCO, is the ability to measure the full in-plane
anisotropy of the thermal diffusivity by orienting the pair of
laser spots at any orientation with respect to the crystal axes.
The mobility in the optics is further used for diagnostics of
spatial uniformity of the thermal diffusivity values. Electrical
resistivity was measured in the ab plane on some of the
samples for comparison.

The stability of oxygen in the electron-doped cuprates
allows for measurements up to 600 K. The ab-plane ther-
mal diffusivities of two single-crystal Sm1.84Ce0.16CuO4,
two Nd1.85Ce0.15CuO4, an as-grown and an annealed sample
for each material, and a Pr1.87Ce0.13CuO4 annealed sam-
ple were measured from 100–350 K (SCCO as-grown) and
100–600 K(all others). The thermal diffusivity of BSCCO
was only measured to ∼420 K, above which the crystal loses
oxygen in vacuum. Examples of our diffusivity results are
shown in Fig. 1, where the rest of the data is shown in the
Supplemental Material [10]. These ranges of temperature cap-
ture the behavior below and above the resistive MIR limit. To
appreciate the quality of the data, we refer to the Supplemental
Material [10], which shows a typical frequency response of
the phase shift from which we determine the value of DQ. The
single coefficient fit means that for timescales of (20 kHz)−1

to (200 Hz)−1 DQ is unique, indicating thermal transport of a
uniform “fluid.” We emphasize that all data presented in this
Rapid Communciation show similar behavior.

We first note that above ∼200 K, the thermal diffusiv-
ities of all these materials are very low, indicating that in
addition to being bad electrical conductors, they are also bad
thermal conductors, similar to complex insulators such as
perovskites [13]. An initial estimate of the electronic contribu-
tion to the thermal conductivity based on resistivity measure-
ments and the Wiedemann-Franz law suggests that electrons
contribute only about 10%–20% of the total thermal transport
in the relevant temperature range (see, e.g., [8,14]). Thus,
assuming thermal diffusivity that is dominated by phonons,
we can estimate a thermal phonon mean free path �

ph
Q from

the measured thermal diffusivity DQ using the speed of sound
vs as a typical phonon velocity: DQ ∼ vs�

ph
Q . Following similar

estimates for complex insulators [13], we use compressional
sound velocity [15], with the rationale that much of the heat
is transported by the longitudinal acoustic (LA) mode, since
it involves excursions of atoms along the direction of heat
propagation. We estimate at room temperature �

ph
Q (295 K) ∼

6 Å for the electrondoped cuprates, �
ph
Q (295 K) ∼ 5 Å for

near optimally doped Bi2Sr2CaCu2O8, and �
ph
Q (295 K) ∼ 3 Å

for underdoped YBa2Cu3O6+x [9]. All these estimates yield
mean free paths that are of the order of the lattice constant
(∼4 Å), which leads us to conclude that phonons are very
strongly damped, with many modes poorly defined in this
temperature range. Furthermore, the fact that the “as-grown”
and “annealed” samples show similar results suggests that
disorder does not play a major role in the thermal transport in
this high-temperature regime. In fact, a similar conclusion was
already reached by Allen et al. [8] in their study of thermal
conductivity in the hole-doped Bi2Sr2CaCu2O8 and insulating
Bi2Sr2YCu2O8 cuprates. Moreover, a recent comprehensive
study of the LA branch corresponding to the compressional
sound velocity in BSCCO crystals (vs ≈ 4.37 × 105 cm/s)
shows strong deviation from a simple harmonic mode, ac-
companied by interaction with optical modes already at 240 K
[16]. A more detailed comparison of the length scales is given
in the Supplemental Material [10].

Another notable feature of the data is that the inverse
thermal diffusivities D−1

Q (T ) at high temperatures are linear
in T . Figure 2 shows the same data of Fig. 1 plotted as
inverse diffusivity, together with a high-temperature fit to the
form in Eq. (1). For comparison, we also show resistance
measurements on the NCCO and BSCCO samples in the same
temperature range, where, as was previously established, they
cross the MIR limit. These observations further support our
previous assumption that underdoped YBCO crystals would
have reached a similar linear dependence if they could be
measured above room temperatures (the temperature range
was limited to below room temperature to assure the same
crystal structure and oxygen ordering and doping [17]). Thus,
for comparison we also show in Fig. 2 our previously pub-
lished data on underdoped YBCO crystals [9], together with a
high-temperature linear fit asymptote. Unique to this system
was the similar behavior of the inverse diffusivity and the
resistivity anisotropies, which was taken as proof that both
phonons and electrons participate in entropy transport above
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FIG. 2. Inverse thermal diffusivity D−1
Q (T ) as a function of tem-

perature of optimal electron-doped NCCO, SCCO, PCCO, optimal
hole-doped BSCCO crystal, and two underdoped YBCO crystals
from [9]. Solid lines show linear fit in the form D−1

Q = aT + b to
the data above 300 K for electron-doped cuprates, above 250 K for
BSCCO, and above 200 K for YBCOs. Dotted lines show the same
fit extended to lower temperatures. Insets in (a), (b), and (f) show
four-terminal resistance measured on the same crystals in arbitrary
units.

the MIR limit, possibly moving as a “soup” of overdamped
electron-phonon fluid.

A T −1 temperature dependence of the phonon relaxation
time is ubiquitous in highly crystalline insulators (silicon, sap-
phire, etc.) at very high temperatures, traditionally explained
as a consequence of umklapp scattering of phonons with a
scattering rate that decreases as θD/T [18], often commencing
well below the Debye temperature [19]. However, in the
presence of impurities or other forms of disorder that limit
the mean free path, notably in glasses, as the temperature
increases the thermal conductivity either saturates or weakly
increases, approaching the pure crystals’ high-temperature
limit (i.e., umklapp limit) from below [20,21]. In most of
these cases umklapp scattering alone is unlikely to be suf-
ficiently strong to account for the observed small mean-free
path [22,23]. Other relaxation channels, such as higher order
phonon scattering and, in particular, scattering of acoustic
phonons by interaction with optical phonons may dominate
the thermal transport, particularly in complex material sys-
tems. In the presence of electrons, phonon-electron scattering

rate may be the dominating high-temperature cause of the
observed short phonon mean free path (see, e.g., [22,24]).

Relevant to the present study are complex insulators sim-
ilar in structure to the cuprates, which typically exhibit low
thermal conductivity, attributed to their complex structure and
a variety of local disorder effects. For example, perovskites
exhibit tilting of octahedra, distortions of octahedra sites,
disorder of the cation inside the octahedra, and when doped,
antisite disorder [13,23]. A recent study of insulating oxide
perovskites at elevated temperatures [13] revealed inverse
thermal diffusivity where �

ph
Q � a, that is dominated by a

T -linear term. More recently, Martelli et al. [25] published
a detailed study of thermal transport in SrTiO3, where at
high temperatures a D−1

Q ∝ T behavior was observed, and
the prefactor was set by the sound velocity and Planckian
relaxation time τ ≈ h̄/kBT [26]. Behnia and Kapitulnik [27]
further examined results on many similar complex systems
ranging from high-symmetry cubic systems to glasses, and
found similarly that the thermal diffusion constant is bound
by the square of sound velocity times the Planckian relaxation
time.

The above discussion motivates us to interpret the observed
D−1

Q (T ) = aT + b behavior in a similar way to the complex
insulators. Apart from the constant, “b,” the thermal diffusion
is characterized by a velocity vB, a Planckian relaxation rate
τ ≈ h̄/kBT , and an order-unity constant α, which depends on
the dimensionality of the system and the precise coefficient
in the expression of τ . The intercept, D−1

0 , which is the ex-
trapolated T → 0 limit of D−1

Q (T ), will be interpreted below
as a quantum diffusion constant that separates the coherent
from incoherent regimes of the electronic part of the thermal
transport. This constant is zero for insulators (see, e.g., [25]),
which further demonstrates the fact that it is an incoherent
current of both electrons and phonons that transport entropy
in the high-temperature regime.

Since a prefactor for a Plankian relaxation time has not
been rigorously calculated for these systems, choosing an ap-
propriate α is somewhat arbitrary. A reasonable choice would
be to take α = 2.0, which is based on a direct comparison with
similar (nonmagnetic) insulators where the sound velocity is
the only relevant velocity [further discussion on the choice
of α is given in the Supplemental Material [10] (see also
Ref. [28])]. The results for the diffusion velocity vB for the
different materials are given in Table I. For comparison we
also show the respective speed of sound vs and Fermi velocity
vF for each of these material systems. Note that the fitted vB

are very similar in magnitude, indicating very similar slope of
D−1

Q in the T -linear regime. Also note that a more common
choice of α = 1 [4] will yield an even larger vB.

We now turn to the residual diffusion constant D0. Since
this T → 0 intercept of the inverse diffusivity is observed
only for the doped systems with appreciable carrier density,
we conclude that this term is a consequence of the electronic
contribution to the thermal diffusivity. However, since this
term is extracted from above the MIR limit, where quasi-
particles are not well defined, it will not make sense to
interpret this term as a true zero-temperature limit obeying
Matthiessen’s rule. This empirical rule relies on coherent
quasiparticles and its extrapolation to zero temperature yields
the impurity scattering. However, in the spirit of this rule,
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TABLE I. Effective thermal diffusion velocity vB and effective
diffusion mass mD (in terms of free electron mass me) extracted
from the fitting form Eq. (1) of measured thermal diffusivity using
α = 2.0 (see text and Supplemental Material [10]). Here “(n)” de-
notes “annealed” and “(g)” denotes “as-grown.” For YBCO, “(a)”
denotes a axis and “(b)” denotes the chain b axis. We also list the
experimentally determined speed of sound vs [15,29] and Fermi
velocities vF [30–32].

vs vB(α = 2.0) vF mD

Sample (105 cm/s) (106 cm/s) (107 cm/s) (me)

NCCO0.15(g) 7.0 1.2 2.5 4.0
NCCO0.15(n) 7.0 1.13 2.5 2.6
SCCO0.16(g) 5.9 1.2 2.0 5.2
SCCO0.16(n) 5.9 1.06 2.0 5.0
PCCO0.13(g) 6.25 1.3 2.1 4.6
BSCCO 4.37 1.2 2.4 12
YBCO6.75(a) 6.05 0.8 2.25 5.3
YBCO6.75(b) 6.5 1.06 2.2
YBCO6.60(a) 6.05 0.7 2.1 6.8
YBCO6.60(b) 6.5 1.0 3.3

where the full scattering rate of quasiparticles is the sum of
all scattering rates, we can interpret the constant b = D−1

0 as
a limiting rate for incoherent quasiparticles. This then must
be the quantum of diffusion at the MIR limit, where we
substitute kF � = 1 into DMIR = 1

3vF �, yielding D0 = 1
3

h̄
mD

,
where mD is an effective mass associated with the diffusion
process. This term also describes the limiting rate of spread
of a wave packet of momentum-state quasiparticles of mass
mD in time (see, e.g., [33]), which should cease to be applied
above the MIR limit. For example, effective mass extracted
from quantum oscillations measurements on NCCO with Ce
doping x = 0.15 yielded m∗ ≈ 3me [34], while the effective
mass extracted from specific heat and Raman measurements
on a similar PCCO, with Ce x = 0.15 is in the same range
[35,36]. On the other hand, single particle mass enhancement
extracted from optical conductivity data on PCCO and NCCO
with similar doping, and at room temperature, yielded m∗ ≈
6me [37]. For BSCCO2212 OP, m∗ is estimated from specific
heat to be 8.4 ± 1.6me [38], while for YBCO6.60 optical con-
ductivity [39] and quantum oscillation was [40] found to be
m∗ ∼ 2–3me. While these m∗ values have been extracted in
different temperature regimes, and using different techniques,
they all seem to be quite similar to mD, which further supports
our conjecture about D0.

Finally we briefly discuss the resistivity above the MIR
limit. As we observe from the insets in Fig. 2, as well
as previous studies on similar material systems [7,41], the

resistivity of the electron-doped cuprates behaves as ρ ∝ T y,
with y � 1. The case of T 2 resistivity has been discussed in
detail recently [42], pointing out that a T 2 behavior at high
temperatures is inconsistent with the standard Fermi-liquid
theory without hydrodynamic effects. Assuming in the limit
where all relaxation times are bounded by ∼h̄/kBT , thermal
and charge diffusivities are expected to be equal, which,
by using the Einstein relations, implies that the electronic
susceptibility obeys

χ = (ρDe)−1 ≈ (ρDQ)−1 ∝ T 1−y. (2)

While such estimation is in not an exact quantitative pre-
diction, the decrease in χ as T increases is qualitatively
consistent with the loss of carrier density at high temperature,
which could be one interpretation of optical conductivity mea-
surements in both hole-doped and electron-doped cuprates
[43,44]. Recent theoretical arguments for possible reduced
electron susceptibility at high temperatures were discussed by
Perepelitsky et al. [45] in their high-temperature expansion
studies of the Hubbard model, and by Werman and Berg [46],
for a specific model with strong electron-phonon interaction.

On the other hand, the near optimally doped
Bi2Sr2CeCu2O8 displays T -linear resistivity with the typical
slope found in many hole-doped cuprates (see, e.g., [47]),
thus allowing for a direct comparison of DQ and De. In
particular, we are interested in the velocity that controls
the two diffusion constants above the MIR limit where the
relaxation time reaches the Planckian limit. While for thermal
diffusion we obtained a velocity vB ≈ 1.7 × 106 cm/s, the
slope of the resistivity yields ve ≈ vF , that is, the charge
diffusivity seems to be controlled by the Fermi velocity as is
also evident from the data of Bruin et al. [47]. Note that here
we assume a constant charge susceptibility χ . We believe
that this result is particularly important for any attempt to
construct a complete description of transport above the MIR
limit as we show that the two processes, thermal and charge
transports, can be governed by the same Planckian relaxation
time but different velocities.
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