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We propose a computationally efficient approach to account for the nonadiabatic effects in time-dependent
density functional theory (TDDFT) based on a representation of the frequency-dependent exchange-correlation
kernel as a response of a set of damped oscillators. The requirements to computational resources needed to
implement our approach do not differ from those of the standard real-time TDDFT in the adiabatic local density
approximation. Thus, our result offers an exciting opportunity to take into account temporal nonlocality and
memory effects in calculations with TDDFT in quantum chemistry and solid state physics for unprecedentedly
low costs.
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Time-dependent density functional theory (TDDFT) [1]
has recently become a standard tool for studying electronic
excitations in molecules, atomic clusters, and solid state (see
reviews [2–5] and books [6,7]). Its real-time formulation
based on solving the time-dependent Kohn-Sham (TDKS)
equation allows one to not only obtain the linear excitation
spectra, but to also study nonlinear dynamics under arbitrary
time-dependent perturbations [8–22].

Implementations of real-time TDDFT available in the stan-
dard density functional theory packages [23–27] utilize the
adiabatic approximation, which neglects the frequency depen-
dence of the exchange-correlation (xc) kernels introduced to
capture exchange interactions and correlation effects of the
electron subsystem. Significant progress in the development
of TDDFT beyond the adiabatic approximation has been
made by appreciating that the current j(r, t ) rather than the
density n(r, t ) could be used as the main variable in the xc
functional [28,29]. The arising theory is known as the time-
dependent current-density functional theory (TDCDFT) [7].
Based on the homogeneous electron gas as a reference system,
Vignale and Kohn were able to construct a dynamical but
spatially local functional for TDCDFT [30]. The idea has
been cast in the form of hydrodynamic equations [30–33]
and a theory of deformations in the comoving Lagrangian
frame [34–36].

The interest in developing xc functionals beyond the adi-
abatic local density approximation (ALDA) using a number
of alternative approaches [37–45] is driven by the demand
from the optimal quantum control problems [46–48], stud-
ies of multiple and double excitations in molecules [49–54]
and exciton physics [55–60]. The Vignale-Kohn nonadia-

batic functional has so far been applied to metals [61],
molecules [62], and semiconductors [63], although, only in
the linear response. The nonlinear regime requires solving the
TDKS equation which was done for quantum wells [64,65]
and simple molecules [66,67]. The major obstacle limiting
applications of the real-time TDCDFT is that the TDKS
equation at each instant depends on values of the velocity field
u(r, t ) = j(r, t )/n(r, t ) in the entire past evolution. The need
to store and process all the previous history makes numerical
implementation of real-time TDCDFT impractical for realistic
systems.

In this work, we show how to bypass this computational
difficulty by presenting an efficient approach with the demand
for computational resources similar to that for the real-time
TDDFT-ALDA. Our method opens up an exciting opportunity
to take into account nonadiabatic effects in TDDFT calcula-
tions in quantum chemistry and solid state physics with only a
marginal rise of the computing cost. The proposed approach is
based on the following representation of frequency-dependent
xc kernels:

fxc(n, ω) = fxc(n,∞)

+ 1

2

M∑
m=1

[
Cm(n) pm(n)

ω − pm(n)
− C∗

m(n) p∗
m(n)

ω + p∗
m(n)

]
, (1)

where poles pm(n) and weights Cm(n) are complex functions
of electron density n. The imaginary part of the poles satisfies
the condition Im pm(n) < 0, which follows from causality of
the response, whereas the real part of the weights is subjected
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to the sum rule
M∑

m=1

Re Cm(n) = fxc(n,∞) − fxc(n, 0). (2)

Although the kernel in Eq. (1) may comprise infinitely many
terms, in practice, there is always a finite number of dominant
contributions which fully define the response. Furthermore,
because the nonadiabatic kernels are known only approxi-
mately, a sufficiently accurate model can be constructed with a
few dominant terms in Eq. (1). As we demonstrate below, even
a kernel comprising a single term in the sum (1) is capable of
reproducing dynamics of interacting electron systems on a par
with the significantly more complex models [68–75].

The form of Eq. (1) allows one to draw an analogy with
the classical models of optical susceptibility [76]. Indeed,
the representation Eq. (1) can be seen as a response of a
set of damped Lorentz oscillators with the density-dependent
natural frequencies ωm(n) = |pm(n)|, damping parameters
−2 Impm(n), and oscillator strengths ReCm(n). Thus, one can
interpret Eq. (1) as an effective interaction of the electron
subsystem with a set of independent oscillators responsible
for the temporal nonlocality of the TDKS equation. We refer
to this model as the oscillator model for xc kernels (OMXC).

The OMXC has the following key properties which make
it particularly useful for practical implementation of the real-
time TDDFT beyond the adiabatic approximation:

(i) Both real and imaginary parts of the OMXC kernels
are defined by explicit complex function of the complex fre-
quency. In contrast, the standard parametrizations [68–75] of
the imaginary part of xc kernels require a careful analytic con-
tinuation into the lower complex half-plane [77] and evalua-
tion of complicated integrals in order to find the real part [78].

(ii) Imaginary and real parts of the quantity fxc(n, ω) −
fxc(n,∞) given by Eq. (1) satisfy the Kramers-Kronig rela-
tions.

(iii) When transformed to the time domain, Eq. (1) yields
an explicit function of time which satisfies the causality.

(iv) A simple analytic structure of Eq. (1) admits an
intuitive interpretation providing insight into the underlying
physics. In some cases, positions of the poles pm(n) can be
guessed from the relevant physical processes and, vice versa,
location of the poles may explain the physics behind the
nonadiabatic xc kernels.

(v) Most importantly, the OMXC enables one to construct
highly efficient numerical schemes for the real-time TDCDFT.
In what follows, we will elaborate the foundations for the
efficient implementations of real-time TDCDFT. We will fo-
cus on three-dimensional (3D) electron systems, although our
approach can be applied to two-dimensional systems equally
well.

The bottleneck of the real-time TDCDFT in the Vignale-
Kohn approximation is evaluation of the xc viscoelastic stress
tensor [31]:

σ xc
i j (r, t ) =

∫ t

0
dt ′

{
ηxc(n̄, t − t ′)

[
∂iu j (r, t ′) + ∂ jui(r, t ′)

− 2

3
∇ · u(r, t ′)δi j

]
+ ζxc(n̄, t − t ′)∇ · u(r, t ′)δi j

}
,

(3)

where u(r, t ) is the velocity field and we assume that at
t < 0 the electron system is in the ground state. The av-
erage density n̄ which enters Eq. (3) can be evaluated
at either t or t ′ as the difference between n(r, t ) and
n(r, t ′) can be neglected within the Vignale-Kohn approxi-
mation [30,64,79]. The time-dependent kernels ηxc(n, t ) and
ζxc(n, t ) are the Fourier transforms of the complex viscosity
coefficients

ηxc(n, ω) = in2

ω + i0
f T
xc(n, ω),

ζxc(n, ω) = in2

ω + i0

[
f L
xc(n, ω) − 4

3
f T
xc(n, ω) − d2εxc(n)

dn2

]
,

(4)

where the label L (T ) stands for the longitudinal (trans-
verse) component of the kernel, and εxc(n) is the xc energy
density of the homogeneous electron gas. The standard ap-
proach [64,65,79] of solving the TDKS equation in the real-
time TDCDFT is to calculate the time integral for the stress
tensor in Eq. (3) directly using the time-dependent kernels
ηxc(n, t ) and ζxc(n, t ). However, this brute-force approach puts
an enormous load on the computational resources. Indeed, to
propagate the TDKS equation, one needs to store the previous
evolution of the velocity field, while using it in evaluations of
the integrals (3) at every time step. To keep the computation
feasible, one is forced to introduce a cutoff for the memory
depth to prevent an unbound rise of the computer memory
and computing time [65,80]. Often, one resorts to the instan-
taneous (Markovian) approximation [66,67] by neglecting the
very dependence on the evolution history.

With the help of the OMXC one can significantly re-
duce both the computing time and the extensive load on the
computer memory without any compromise for the treatment
of nonadiabatic effects. In contrast to the instantaneous ap-
proximation, our method enables one to take into account
arbitrary long memory of the evolution. The main idea is to
avoid evaluation of the costly time integrals in Eq. (3) and
of the inverse Fourier transforms of Eq. (4) by introducing
auxiliary dynamical equations associated with individual os-
cillators of the OMXC. Substituting Eq. (1) for both longitu-
dinal and transverse components of the xc kernel in Eq. (4),
yields

ηxc(n, ω) = in2

2

M∑
m=0

[
CT

m (n)

ω − pT
m(n)

+ CT ∗
m (n)

ω + pT ∗
m (n)

]
(5)

and

ζxc(n, ω) = − 4

3
ηxc(n, ω)

+ in2

2

M∑
m=0

[
CL

m(n)

ω − pL
m(n)

+ CL∗
m (n)

ω + pL∗
m (n)

]
, (6)

where we introduced the terms at m = 0, such that pL,T
0 (n) =

−i0 and

CL
0 (n) = f L

xc(n, 0) − d2εxc(n)

dn2
, CT

0 (n) = f T
xc(n, 0). (7)
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Transforming (5) and (6) to the time domain and substituting
to Eq. (3), we reduce the expression for xc stress tensor to

σ xc
i j (r, t ) = n2

∑
r=L,T

M∑
m=0

Re
∫ t

0
Cr

m(n̄)

× e−ipr
m (n̄)(t−t ′ )μr

i j (r, t ′)dt ′, (8)

where we introduced

μL
i j (r, t ) = ∇ · u(r, t )δi j,

μT
i j (r, t ) = ∂iu j (r, t ) + ∂ jui(r, t ) − 2∇ · u(r, t )δi j . (9)

Employing the ambiguity of the Vignale-Kohn approxima-
tion [30], according to which n̄ in Eq. (8) is either n(r, t ) or
n(r, t ′), we can rewrite the expression for the xc stress tensor
in the form

σ xc
i j (r, t ) = n2

∑
r=L,T

M∑
m=0

Re
{
Cr

m[n(r, t )]Mr
mi j (r, t )

}
, (10)

where Mr
mi j (r, t ) are memory variables which satisfy the

evolution equation

∂

∂t
Mr

mi j (r, t ) = μr
i j (r, t ) − ipr

m[n(r, t )]Mr
mi j (r, t ), (11)

with the initial condition Mr
mi j (r, 0) = 0.

The memory variables Mr
mi j (r, t ) are associated with indi-

vidual OMXC oscillators and carry information about previ-
ous evolution of the system, holding, in principle, an infinite
memory of μr

i j (r, t ). Equations (10) and (11), which have to
be solved in addition to the TDKS equation, eliminate the
need of both storing the past evolution and evaluating the
integrals in Eq. (3). Thus, this approach lays the foundation
for highly efficient numerical schemes, where all memory
effects are taken into account by propagating auxiliary time-
local differential equations (cf. numerical schemes used in the
Josephson physics [81,82]).

It is evident that given pr
m(n) and Cr

m(n), the computa-
tional overhead of finding σ xc

i j (r, t ) according to Eqs. (10)
and (11) is minor compared to solving the TDKS equation
itself. Therefore, the only factor which limits the compu-
tational efficiency of this approach is evaluations of pr

m(n)
and Cr

m(n) from the electron density n(r, t ). However, such
computational costs are comparable to evaluation of the
ALDA exchange-correlation potential. Moreover, the numer-
ical effort can be further reduced, if the expressions for
pr

m(n) and Cr
m(n) involve powers of the electron density, such

as n1/3 or similar. In this case, their values can be reused
from evaluation of the adiabatic component of the xc vector
potential. Thus, the performance of the real-time TDCDFT
based on the proposed approach (TDCDFT-OMXC) promises
to be comparable to that of the standard real-time TDDFT-
ALDA. As a proof of concept, we will construct a simple
OMXC kernel of the form (1) and apply it to the benchmark
problem of collective intersubband excitations in a quantum
well [77,79].

To derive the single-oscillator OMXC kernel, we proceed
as follows. We will focus on the longitudinal component
f L
xc(n, ω) which we will need in our calculation of dynamics of

intersubband excitations, although the same arguments apply

FIG. 1. The single-oscillator OMXC kernel (thick black lines)
given by Eq. (12). Parametrizations of Qian-Vignale [75] (QV,
red lines) and Conti-Nifosi-Tosi [72,74] (CNT, blue lines) for 3D
electron gas are also shown. All kernels are evaluated at the electron
density n which corresponds to the Wigner-Seitz radius rs = 3 bohrs.

to the transverse component f T
xc(n, ω) as well. Using the

prediction that Im f L
xc(n, ω) has a peak at twice the plasmon

frequency ωpl (n) [71,72], we set |pL
1 (n)| = 2 ωpl (n). Despite

the theoretical efforts [72,74,75], the peak width −2 ImpL
m(n)

at the double plasmon frequency is much less known. The
perturbation theory [72,74,83] predicts the low-frequency
side of the double plasmon peak to scale with the plasma
frequency ωpl (n). Thus, for the single-pole OMXC kernel
we take∣∣pL

1 (n)
∣∣ = 2 ωpl (n), ImpL

1 (n) = − γ L
1 ωpl (n), (12)

with the proportionality parameter γ L
1 . Given Eq. (12), CL

1 (n)
is uniquely determined by the sum rule in Eq. (2) and the
infrared asymptotics of the kernel,

− Im
CL

1 (n)

pL
1 (n)

= lim
ω→0

Im f L
xc(n, ω)

ω
. (13)

The right-hand side of (13) can be evaluated from the per-
turbation theory [75] which predicts a small but nonzero
tangent of Im f L

xc(n, ω) at ω = 0. The frequency dependence
of the OMXC kernel (12) is shown in Fig. 1 alongside
the standard parametrizations of Conti-Nifosi-Tosi [72,74]
(CNT) and Qian-Vignale [75] (QV). Note, that the single-
oscillator OMXC kernel in Fig. 1 at γ L

1 = 1 is interme-
diate between the CNT and QV parametrizations. Despite
its simplicity, our single-oscillator OMXC kernel correctly
describes the low-frequency asymptotics and the qualita-
tive features at the double plasmon frequency predicted
earlier [72,74].

We verify the performance of our TDCDFT-OMXC ap-
proach with the kernel (12) on a benchmark problem of
intersubband excitations in a GaAs/Al0.3Ga0.7As quantum
well [77,79]. Our calculations in the linear regime are con-
sistent with the linear response theory of Ref. [77]: the value
for the mode frequency 10.23 ± 0.02 meV obtained using
the TDCDFT-OMXC in the linear regime agrees well with
the results in Ref. [77]. In our calculations of the nonlinear
dynamics we assumed that the initial state of the system is
its ground state in the electric field 0.5 mV/nm. At t = 0
the electric field is switched off and the electron liquid in the
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FIG. 2. Performance of the TDCDFT-OMXC (blue line) applied
to calculate the nonlinear dynamics of the dipole moment in the
GaAs/Al0.3Ga0.7As quantum well, in comparison to the standard
TDDFT-ALDA (gray line). The spectrum (lower panel) is calculated
for the time evolution of the dipole moment during 2000 a.u. The
indicated mean computation time is measured in a serial run on a
single core of an Intel i7 processor.

quantum well evolves freely in time, as seen in the evolution
of the dipole moment d (t ) presented in Fig. 2. As seen from
the figure, the velocity and the memory dependence of the
effective potential of the Kohn-Sham equation result in a
dissipative dynamics associated with energy relaxation [84].
In contrast, the ALDA in which all memory effects are
neglected, yields a dramatically different result: the oscil-
lations persist indefinitely without decay. The arising spec-
trum of frequencies associated with the nonlinear evolution
is shown in the lower panel of Fig. 2. The most remark-
able is the computational costs at which our nonadiabatic
results were obtained: the computing time using the TDCDFT-
OMXC is only about 35% larger than the time required to
propagate the electron density using the standard TDDFT-
ALDA [85]. In contrast, the brute-force approach with the
direct evaluation of the memory integrals in Eq. (3) takes an
incomparably longer time, exceeding the timing of ALDA
calculation by few orders of magnitude. Further studies of
intersubband excitations are provided in the Supplemental
Material [86].

In our derivation of the single-oscillator kernel (12) we
ignored the high-frequency asymptotics, which is a valid
assumption for the low-frequency dynamics, ω < EF , where
EF is the Fermi energy. It is also possible to construct OMXC
kernels valid in the entire frequency range. Indeed, while for-
mally the OMXC can never satisfy the exact high-frequency
asymptotics Im fxc(n, ω) ∼ ω−3/2 [68,87,88], in practice, the
frequency range of interest is always limited from above
by a finite value. Therefore, it is possible to construct an

FIG. 3. The mean computation time required to propagate the
electron density in a GaAs/Al0.3Ga0.7As quantum well from t = 0 to
2000 a.u. with time step 0.02 a.u. The first two columns correspond
to the Hartree and ALDA calculations, whereas the last three are our
TDCDFT-OMXC implementation using kernels (1) with different
M. The overhead due to the account of nonadiabatic effects using
the single-oscillator kernel is about 35% of the time required for
the ALDA calculation. The benchmarks were obtained for serial
execution on a single core of an Intel i7 processor.

approximation to the exact high-frequency xc kernel using a
finite number of oscillators in the OMXC. In the Supplemental
Material [86] we provide an example of a three-oscillator
OMXC kernel which satisfies the high-frequency asymptotics
up to frequencies 100EF with the relative error below 1%.

Because constructing more precise xc kernels will likely
involve M > 1 contributing terms in Eq. (1), we analyze how
our TDCDFT-OMXC approach scales with the number of
oscillators. The computing time required to simulate the non-
linear dynamics of electron liquid in the GaAs/Al0.3Ga0.7As
quantum well using kernels with different values of M is
shown in Fig. 3 alongside performances of the bare Hartree
and TDDFT-ALDA. Note that the execution time grows rel-
atively slowly with M, so that even the sophisticated ten-
oscillator OMXC kernel can be used in the nonadiabatic
calculations at the computational cost of only twice the timing
of the standard TDDFT-ALDA.

To conclude, we propose a computationally efficient ap-
proach to the TDCDFT which enables one to replace the
costly memory integrals over the whole previous time evo-
lution with auxiliary differential equations, thereby diminish-
ing the computational costs to that of the standard TDDFT-
ALDA calculation. In addition, the OMXC kernels used
in our approach have a number of useful properties: they
are defined in the whole complex frequency plane, satisfy
the causality, give an explicit expression for the real and
imaginary parts, and have an intuitively transparent struc-
ture familiar from the standard theory of optical response.
We expect that our TDCDFT-OMXC approach will open
exciting opportunities for solving computationally prohibitive
tasks in quantum chemistry and solid state physics beyond
the ALDA.

The work is supported by the Russian Science Foundation
under Grant No. 18-12-00429. The authors would like to
thank Ilya Tokatly for helpful discussions.
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