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Momentum-space entanglement after a quench in one-dimensional disordered fermionic systems
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We numerically investigate the momentum-space entanglement entropy and entanglement spectrum of the
random-dimer model and its generalizations, which circumvent Anderson localization, after a quench in
the Hamiltonian parameters. The type of dynamics that occurs depends on whether or not the Fermi level of
the initial state is near the energy of the delocalized states present in these models. If the Fermi level of the
initial state is near the energy of the delocalized states, we observe an interesting slow logarithmiclike growth of
the momentum-space entanglement entropy followed by an eventual saturation. Otherwise, the momentum-space
entanglement entropy is found to rapidly saturate. We also find that the momentum-space entanglement spectrum
reveals the presence of delocalized states in these models for long times after the quench and the many-body
entanglement gap decays logarithmically in time when the Fermi level is near the energy of the delocalized
states.
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Introduction. The growth of entanglement after a sudden
quantum quench in many-body systems has been an active re-
search area over the past decade and has even been experimen-
tally observed [1]. Typically, the entanglement entropy (EE)
and entanglement spectrum (ES) [2] are used to quantify en-
tanglement. To calculate the ES, one forms the density matrix,
ρ(t ), from a pure quantum state, |ψ (t )〉. The Hilbert space is
then partitioned into two regions, A and B. Region B is traced
over, giving the reduced density matrix, ρA(t ) = TrB[ρ(t )].
The ES is related to the eigenvalues of ρA. From it, one obtains
the more commonly studied EE, S(t ) = − Tr{ρA(t ) ln ρA(t )]}.
Real-space EE in one dimension (1D) after a quench has well-
known behavior. For example, for a generic 1D system with
translational invariance, the EE typically grows linearly until
it saturates with a volume dependence [3–6]. Such behavior
can be understood from a quasiparticle picture [3] or operator
spreading [6]. For Anderson-localized 1D systems the EE
initially grows ballistically and then saturates to an area law
[7,8]. In many-body localized systems, S(t ) grows logarith-
mically (after some initial power-law-like growth) [7,9,10].
While there have been several works on the real-space ES after
a quench [11–22], no general results have emerged.

On the other hand, the (ground-state) EE and ES between
novel bipartitions of the many-body Hilbert space have proven
useful for investigating exotic phases of matter. Notable
examples include the EE and ES between left and right movers
in 1D [23–29] and the bulk ES [30–33]. The latter can reveal
topological order and probe topological phase transitions from
a single wave function [30] and the former has highlighted
an interesting connection between fractional quantum Hall
systems and critical quantum spin chains [23]. Entanglement
between left- and right-moving particles, i.e., momentum-
space entanglement, is useful in identifying delocalized states
and the delocalization-localization transition in 1D disordered

systems [34–38]. With just a single disorder configuration, the
momentum-space ES can reveal the presence of delocalized
states in several 1D disordered models with correlated dis-
order. These models include the random-dimer model (and
its generalizations) [34,35], the Aubry-André model [35],
and a model with long-range correlated disorder [36]. The
momentum-space ES can also reveal the critical point in
interacting disordered models [38]. We note momentum-space
entanglement has also been studied in high-energy physics
[39–44].

More recently, momentum-space entanglement in
Tomonaga-Luttinger liquids was studied after a quench
of Hamiltonian parameters (quantum quench) [45]. It was
found that the momentum-space EE saturates quickly,
drastically different from the rapid entanglement growth in
real space typically observed, and that the entanglement
gap (difference between the two lowest levels of the
ES) is a universal function of the Luttinger parameter.
Furthermore, it was shown that ES levels are given by the
overlap of certain states with the initial state, allowing for the
momentum-space EE and ES to be measured experimentally
for Tomonaga-Luttinger liquids.

In this work, we numerically investigate the momentum-
space EE and ES of the noninteracting random-dimer model
and its generalizations after a global quantum quench from a
clean to disordered system. If the Fermi level of the initial
state is near the energy of the delocalized states of these
models (and the disorder strength is far below its critical
value), the momentum-space EE grows logarithmically like
until it eventually saturates. When the Fermi level of the initial
state is far away from the energy of the delocalized states,
the momentum-space EE rapidly saturates. We argue that this
behavior is due to the absence of backscattering between
degenerate states near the energies of the delocalized states
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of these models. We also find the ES reveals the presence
of delocalized states for long times after the quench and the
many-body entanglement gap decays logarithmically in time
when the Fermi level is near resonance. To the best of our
knowledge, such slow growth of entanglement has only been
seen in real-space EE and our work provides an example
of slow entanglement growth for a nonlocal Hilbert space
bipartition. Furthermore, the fact that the momentum-space
EE saturates (either slowly or rapidly) and the entanglement
gap remains open might prove useful for momentum-space
based density renormalization group algorithms [46,47].

Random-dimer model. We now review the random-dimer
model, originally introduced by Phillips and co-workers [48],
and its generalizations [49]. The Hamiltonian of this model
(and its generalizations) is of the form

H = J
N∑

i=1

(c†
i+1ci + c†

i ci+1) +
N∑

i=1

εic
†
i ci , (1)

where c†
i is the creation operator for an electron on site i,

εi is the on-site energy, N is the system size, and J is the
hopping energy, which is set to one without loss of generality.
Throughout this work, we take N = 4n + 2, where n ∈ Z, to
avoid a degenerate Fermi sea. For the random-dimer model,
εi is restricted to two discrete values, εa and εb, and one
of the on-site energies always appears in pairs, i.e., on two
consecutive sites. Without loss of generality, εa is taken to
be zero and always appears in pairs and εa and εb have an
equal probability of appearing. In this case, a delocalized state
exists at E = 0 for |εb| < 2J . We will refer to single-particle
energies at which delocalized states exist as resonances. There
are generalizations of this model, where instead of εa always
appearing in pairs, it appears in groups of three or more [49].
In addition to the random-dimer model, we consider the case
when εb always appears in groups of three, which is called
the random-trimer model. For the random-trimer model, there
exist delocalized states at E = ±J . The delocalized state at
E = J (−J ) persists for −J < εb < 3J (−3J < εb < J ). We
note that real-space entanglement properties of these models
have been investigated in Refs. [34,35,37,50,51].

Fourier transforming the electronic creation operator, c†
x =

1√
N

∑N−1
k=0 ei2πkx/N c†

k , yields

H =
N−1∑

k,k′=0

[
2J cos

(
2π

N
k

)
δk,k′ + Vk,k′

]
c†

kck′ , (2)

where Vk,k′ = ∑N
x=1 εxei(2π/N )x(k−k′ ) is the scattering matrix in

momentum space. We see that disorder induces entanglement
between different momentum modes, making a momentum-
space partition particularly natural.

Formalism. To calculate entanglement, we use the for-
malism introduced in Ref. [52] which allows one to cal-
culate entanglement for large noninteracting systems. More
specifically, to compute entanglement properties, we only
need the two-point correlation function, 〈ψ (t )|c†

kck′ |ψ (t )〉.
To begin, we first diagonalize our Hamiltonian via a unitary
transformation, U . This gives H = ∑N−1

r=0 εrd†
r dr , where εr

are the single-particle energy levels of the disordered system
and ck = ∑N−1

r=0 Ukr dr . We take our initial state, |ψ0〉, to

be the ground state of the clean system (εi = 0 ∀ i) with a
variable Fermi level, i.e., |ψ0〉 = ∏k f

k=ki
c†

k |0〉. For example, at
half-filling, ki = N/4 + 1/2 and k f = 3N/4 − 1/2. We label
the Fermi level of the initial state, EF , by the single-particle
energy to which the postquench Hamiltonian is filled. We
always vary the number of total particles by two to avoid
a degenerate Fermi sea. The wave function of the system
evolves as |ψ (t )〉 = e−iHt |ψ0〉, where t is the time after the
quench. We restrict ourselves to weak quenches, i.e., disorder
strengths much less than the disorder strength at which all
states become delocalized. The correlation function, which
depends on EF , is given by

〈ψ (t )|c†
kck′ |ψ (t )〉 =

N−1∑
s,r=0

Ts,rU
∗
ksUk′r e−i(Er−Es )t , (3)

where Ts,r = ∑k f

k′′=ki
(U −1

sk′′ )∗U −1
rk′′ . 〈ψ (t )|c†

kck′ |ψ (t )〉 is cal-
culated numerically for all left-moving momenta (k, k′ ∈
{0, 1, . . . , N/2 − 1}) [45]. The ES and EE between left and
right movers can be obtained from the eigenvalues of this
N/2 by N/2 correlation matrix. More specifically, the reduced
density matrix is given by ρA(t ) = exp[

∑N/2−1
g=0 εg(t )χ†

g χg ],
where εg(t ) is the single-particle ES and χ†

g is a linear combi-

nation of c†
k . The single-particle ES is related to the eigenval-

ues of the correlation matrix, ξg(t ), as follows ξg(t ) = (eεg(t ) +
1)−1. The EE is then S(t ) = ∑N/2−1

g=0 Sg(t ), where Sg(t ) =
−[ξg ln(ξg) + (1 − ξg) ln(1 − ξg)]. As seen from Sg(t ), corre-
lation eigenvalues near 1/2 contribute the most.

Momentum-space entanglement entropy. We now are in
a position to calculate the momentum-space EE. We first
note that the momentum-space EE is numerically found to
scale linearly with N for all parameters and times, i.e., S(t )
obeys a volume law (up to some finite-size effects, which
are discussed later). This can be seen by disorder averaging
for two different N while keeping EF and εB fixed [53]. The
momentum-space EE of Tomonaga-Luttinger liquids after a
quench was also found to obey a volume law for all times
[45].

In Fig. 1(a), S(t ) is plotted as a function of time and EF for
the random-dimer model for a single disorder configuration.
Momentum-space EE growth is clearly suppressed for initial
states with EF ≈ 0, which is the energy of the delocalized
state of the random-dimer model. Note, this does not corre-
spond to a half-filled initial state. In Fig. 1(b), we plot the
momentum-space EE for the random-trimer model. Again,
there is a suppression of EE growth near a delocalized state
of the random-trimer model, EF = −1 (the other delocalized
state at EF = 1 is close to becoming localized for εb = −3/4,
so the suppression does not appear).

We now turn to gaining a qualitative understanding of this
observation. In general, this is a challenging problem as a
single-particle eigenstate of the clean system has overlap with
all single-particle disordered eigenstates [54]. However, weak
disorder (in our case, εB 
 4J) only mixes momentum states
that are close in energy. Therefore, which momentum modes
contribute to momentum-space entanglement? To quantify
this, we look at the entanglement contour [55], which is given
by Cs(k) = ∑N/2−1

g=0 |φk (g)|2Sg, where φk (g) describes the
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FIG. 1. EE between left and right movers (divided by N) for a single disorder configuration of the random-dimer model (a) and the
random-trimer model (b) as a function of t and doping level of initial state. There is a clear suppression of entanglement for initial states with
EF near the resonant energies of these models (dashed red lines). Parameters: N = 702 and εb = −3/4.

momentum structure of the gth eigenvector of the correlation
matrix. Summing Cs(k) over all k in region A yields S(t ).
This quantity has been used to investigate which real-space
modes contribute to the entanglement between spatial regions.
As expected, for real-space entanglement, modes near the
bipartition give rise to a larger contribution. In our case, we
numerically find (after some transient behavior in which a
wide range of momentum modes contribute) only momentum
modes near the Fermi surface contribute to entanglement for
weak quenches, regardless of EF [see Fig. 2(a)]. We are now
in a position to qualitatively understand the features seen in
Fig. 1. For the random-dimer model (and its generalizations),
backscattering between degenerate single-particle states with
the same energy as the delocalized state is suppressed [10].
Given these two facts, we expect S(t ) to be suppressed when
EF is near resonance. Indeed, we observe this numerically (see
Fig. 1).

We now investigate how fast momentum-space entan-
glement grows. In Fig. 2(b), we plot the distribution of
momentum-space EE (for the random-dimer model) versus
time for 500 disorder configurations, along with the disor-
der averaged EE, when EF ≈ 0. After initial power-law-like
growth, a slow logarithmiclike growth is observed at interme-
diate times. Finally, at late times, there is eventual saturation.

This slow growth occurs for all disordered configurations
considered. We note the kink around t ≈ 400 in Fig. 2(b) is
a finite-size effect and is found to appear at later times as one
increases N [see inset of Fig. 2(b)]. We believe the presence
of this finite-size effect is indicative of the delocalized state
present at EF = 0. Upon varying EF , the saturation time
decreases, the saturation value increases, and the rate at which
the EE grows increases (slope of logarithmic growth). This
is illustrated in Fig. 2(c). For large enough EF , our system
size is greater than the localization length. Thus, there are
no finite-size effects and no sharp kinks, in contrast to when
EF is at resonance. Finally, when EF is far enough away
from resonance, there is no longer any logarithmiclike growth
of EE and it rapidly saturates, as shown in Fig. 2(c). We
conjecture this slow growth is due to the absence of single-
particle backscattering between degenerate states near reso-
nance. As such, any entanglement between momentum modes
would be induced by scattering between nondegenerate states,
which is a suppressed process for weak disorder [54]. Hence,
momentum-space EE grows slowly. It would be desirable to
prove this conjecture analytically. We leave this as an open
problem.

We now ask if this logarithmiclike growth is related to
logarithmic growth observed in the real-space EE dynamics

FIG. 2. (a) Cs(k) as a function of t and momentum for EF ≈ 0 (for a single disorder configuration). Momentum modes near the Fermi
momentum of |ψ0〉 give rise to the largest contribution to S(t ). (b) Distribution of S(t )/N of the random-dimer model as a function of t for
various disorder configurations. Solid black line is disorder averaged S(t )/N . A clear slow logarithmiclike growth is observed for intermediate
times. Inset: S(t )/N for N = 502 (solid blue line) and N = 702 (dashed red line). For early enough times, the curves lie on top of each other
demonstrating that S(t ) obeys a volume law. (c) Disorder averaged S(t )/N of the random-dimer model versus t for various EF . For large
enough EF , there is no apparent logarithmiclike growth and S(t ) saturates. Parameters: N = 702 and εb = −3/4.
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FIG. 3. (a) Single-particle ES of the random-trimer model as a function of EF for t = 50. When EF is near resonance (dashed red lines),
there is a gap in the single-particle ES for long times. (b) Single-particle ES of the random-dimer model as a function of t for EF = 0.
The single-particle entanglement gap remains for long times. (c) Distribution of 
ξ versus t for the random-dimer model (at resonance) for
various disorder configurations. The solid black line is the disorder averaged entanglement gap. 
ξ decays logarithmically after some initial
power-law-like decay. The kink observed at t ≈ 400 is a finite-size effect and occurs at later times as N increases. Here, NA = 189. Parameters:
N = 702 and εb = −3/4.

of various models. These models include 1D many-body
localized systems [7,9,10] (including quasi-many-body lo-
calization [56]), 1D noninteracting fermions with integrable
disorder [57], the central-spin model [58], a two-dimensional
noninteracting disordered fermion system with potential dis-
order [59], and, perhaps counterintuitively, 1D translationally
invariant spin chains with long-range interactions [60,61] and
1D disordered fermions with long-range hopping [62,63]. For
the 1D systems mentioned above, the EE grows as S(t ) ∝
log(t ), while in our case, it grows as S(t ) ∝ N log(t ), i.e.,
a volume law for all times, strongly indicating a different
mechanism is responsible for the dynamics we observe [64].
For the two-dimensional disordered system, the real-space
EE grows as S(t ) ∝ N log(t ) [59]. However, the authors of
Ref. [59] relate this slow growth to logarithmic connections
that arise in two dimensions. Given that our model is one-
dimensional, their argument likely cannot explain our results.
We therefore conclude the logarithmic growth we observe is
not related to the logarithmic growth that has been previously
observed in real space for various models.

Entanglement spectra. We now turn to the ES, which may
reveal more information [2]. We first consider the single-
particle ES (eigenvalues of the correlation matrix) after a
quench and investigate the single-particle ES as a function
of EF of the initial state for a fixed time. We find that when
EF is near resonance, there is a gap in the single-particle ES
[see Fig. 3(a)], signaling the presence of delocalized states.
This behavior is reminiscent of the single-particle ES of the
ground-state wave function [34], where the single-particle ES
also reveals the presence of delocalized states. Furthermore,
the resonance at EF = 1 is more apparent compared to the
EE [see Fig. 1(b)], signaling a possible advantage of the
ES over the EE in revealing this phyiscs. The single-particle
entanglement gap (at resonance) remains open for long times
after a quench, as shown in Fig. 3(b) for the random-dimer
model.

One can also consider the many-body ES. We investigate
the difference between the two lowest eigenvalues of the
many-body ES, which is referred to as the many-body entan-
glement gap [65], 
ξ . Upon fixing the number of particles
in region A, NA, the gap 
ξ can be expressed in terms of the
single-particle ES as 
ξ = εg=N/4+x−1/2(t ) − εg=N/4+x+1/2(t ),
where x is the number of left-moving particles above or

below half-filling (for half-filling, x = 0). In general, one can
construct the exact many-body ES from εg(t ), but this is time-
consuming (as well as limited by computational resources)
because one must take products of single-particle ES. At
resonance, 
ξ is found to decrease logarithmically after some
initial power-law-like decay [see Fig. 3(c)]. In contrast, for
clean interacting systems, 
ξ was found to saturate rapidly
after a quench [45]. This slow logarithmic decay continues
until t ≈ 400, at which time finite-size effects become impor-
tant [this is the same time at which finite-size effects occur
for S(t ), as seen in Fig. 2(b)]. Due to this finite-size effect, we
cannot investigate whether or not 
ξ closes. Finally, we note
that doping away from resonance (or increasing εb) increases
the rate at which 
ξ decreases.

Discussion. We have investigated the entanglement be-
tween left and right movers after a quench for the random-
dimer model and its generalizations. We found that there
is a suppression of momentum-space entanglement and that
momentum-space entanglement entropy features logarithmi-
clike growth when the Fermi level of the initial state is at a
certain energy (the energy of the delocalized states present
in these models). We also found that the momentum-space
entanglement spectrum has clear signatures of the delocalized
states present in these models and the entanglement gap
decays logarithmically. In the future it would be interesting
to develop an analytical theory for the above results and
investigate the effect of interactions on entanglement dynam-
ics for the random-dimer model [66]. The latter problem is
particularly interesting as the interacting random-dimer model
circumvents the Imry-Ma argument [67]. It would also be
worthwhile to see if our results (the saturation of entangle-
ment entropy and presence of an entanglement gap) could
be used to develop efficient momentum-space density matrix
renormalization group algorithms.
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