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Motivated by recent experimental progress in the realization of hybrid structures with a topologically
superconducting nanowire coupled to a quantum dot, viewed through the lens of the emerging field of correlated
Majorana fermions, we introduce a class of interacting Majorana-Anderson impurity models which admit an
exact solution for a wide range of parameters, including on-site repulsive interactions of arbitrary strength. The
model is solved by mapping it via the Z2 slave-spin method to a noninteracting resonant level model for auxiliary
Majorana degrees of freedom. The resulting gauge constraint is eliminated by exploiting the transformation
properties of the Hamiltonian under a special local particle-hole transformation. For a spin-polarized Kitaev
chain coupled to a quantum dot, we obtain exact expressions for the dot spectral functions at both zero and finite
temperature. We study how the interaction strength and localization length of the end Majorana zero mode affect
the physical properties of the dot, such as the quasiparticle weight, double occupancy, and odd-frequency pairing
correlations, as well as the local electronic density of states in the superconducting chain.
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Introduction. The discovery of topological phases of quan-
tum matter has led to a paradigm shift in condensed mat-
ter physics. The simplest such topological phase, the one-
dimensional (1D) topological superconductor (SC) [1], hosts
localized Majorana zero modes (MZMs) at its ends which
can form a topological qubit immune to decoherence, with
exciting prospects for quantum computation [2,3]. Strong ev-
idence suggests MZMs have been observed in experiments on
proximitized semiconductor nanowires [4] and ferromagnetic
chains [5], following specific theoretical proposals [5–7].

On the theoretical front, a new direction has emerged
which explores the interplay of pure MZM physics, well un-
derstood from single-particle quantum mechanics, and elec-
tronic correlations [8]. Recently studied lattice models of
interacting MZMs such as the Majorana-Hubbard [9–14] and
Majorana-Falicov-Kimball [15,16] models may be relevant to
describe Abrikosov vortex lattices in 2D topological SCs [17],
where each vortex hosts an unpaired MZM [18,19]. Motivated
by transport experiments on proximitized nanowires, another
avenue of research has explored interacting Anderson-type
quantum impurity models involving small numbers of MZMs
coupled to dissipative baths, some of which are predicted to
exhibit exotic Kondo effects [20–22]. A geometry of particu-
lar interest, that of an end MZM tunnel-coupled to a quantum
dot (QD), is now experimentally accessible [23] and argued
to directly probe the nonlocality of MZMs [24–30]. Existing
theoretical studies of this problem have largely relied on
mean-field approximations [27,28,30] or numerical methods
[26,27] to treat correlation effects in the corresponding Ander-
son model [31]. Such studies also typically model the MZM
as a unique on-site Majorana operator, whereas the MZM
localization length is generically finite, as known from both
theory [1] and experiment [32]. In this Rapid Communication,
we introduce a class of Majorana-Anderson impurity (MAI)

models which admit an exact solution regardless of interaction
strength and the degree of MZM localization.

Majorana-Anderson impurity models and exact solvability.
We consider a class of models described by a lattice Hamil-
tonian of the form H = HC + HA + Hhyb, where HC describes
either a host material or leads that couple to the QD, and is
quadratic in spinless fermion operators c j, c†

j where j is a site
index. The QD is modeled as an Anderson impurity,

HA = U
∏
σ

(2ndσ − 1) + ε

2
(nd↑ + nd↓ − 1) − h

2
(nd↑ − nd↓),

(1)

where ndσ = d†
σ dσ is the number operator for fermions of

spin σ ∈ {↑,↓} on the impurity. U describes on-site Coulomb
repulsion, h is a Zeeman field, and ε is a shift in the chemical
potential of the impurity fermions. The hybridization between
the host and QD is

Hhyb = −i
∑

j

Vj (c j + c†
j )(d↑ + d†

↑), (2)

which allows for the possibility of spatially extended hy-
bridization (strength Vj) between the QD and host. This form
of Majorana hybridization arises naturally if the host supports
a localized MZM that is in proximity to an impurity. As
MZMs arise in effectively spin-polarized SCs, it is reasonable
to expect that only one impurity spin species will hybridize
[26–28,33]. The number nd↓ of spin-↓ fermions being thus
conserved, the problem studied here can be thought of as
a Majorana version of the x-ray edge problem [34,35]. By
contrast with the classic Nozières–De Dominicis solution of
the original problem [35], which is restricted to asymptoti-
cally low frequencies, here we find an exact solution for the
impurity spectral functions at all frequencies.
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The key ingredient in constructing an exact solution for
the MAI model is the Z2 slave-spin method pioneered by
Rüegg et al. [36,37] and since employed in a variety of
contexts ranging from non-Fermi liquids [38] to fractionalized
topological phases [39–42] and the Mott transition in infinite
dimensions [43]. Following Ref. [36], we fractionalize the
physical impurity fermions into an Ising slave pseudospin and
slave fermions as d (†)

σ = μx f (†)
σ , where σ ∈ {↑,↓} is the spin

projection (along ẑ) of the physical (d ) and slave ( f ) fermions,
and {μx, μy, μz} are Pauli matrices that describe the auxiliary
slave pseudospin. Physical states in the enlarged Hilbert space
satisfy the gauge constraint

μz = 2(n f − 1)2 − 1, (3)

where n f = f †
↑ f↑ + f †

↓ f↓ is the total number of slave
fermions. The constraint can be used to construct a projector,

P = 1
2 [1 + (−1)n f μz], (4)

that projects onto the physical subspace. The slave-spin (SS)
representation of H in the physical subspace is then

HSS = HC − i
∑

j

Vj (c j + c†
j )( f↑ + f †

↑ )μx + Uμz

+ 1

2
[ε + h + (ε − h)μz](n f ↓ − 1/2), (5)

where the constraint equation has been used to rewrite the
interaction, chemical potential, and Zeeman terms [44]. Defin-
ing new Majorana operators �α

↑ = μα ( f↑ + f †
↑ ) where α ∈

{x, y, z}, and using μz = −iμxμy = −i�x
↑�

y
↑, the slave-spin

Hamiltonian can be written entirely in terms of fermion
operators as

HSS = HC − i
∑

j

Vj (c j + c†
j )�

x
↑ − iU�x

↑�
y
↑

+ 1

2
[ε + h − i(ε − h)�x

↑�
y
↑](n f ↓ − 1/2). (6)

For ε = h, this model is bilinear in fermions and thus exactly
solvable. Henceforth, we set ε = h, and consider deviations
from this exactly solvable limit later. In an experimental
situation we expect ε and h to be tunable via gate potentials
and applied magnetic fields, respectively.

The physical partition function for MAI models can
be computed in the SS representation without con-
straint, even away from the exactly solvable point. The
proof is similar to those for other such constraint-
free models studied using the Z2 slave-spin method
[15,43–45]. Defining a particle-hole transformation D↑ that
acts only on d↑ as D↑d↑D−1

↑ = d†
↑, Eqs. (1) and (2) yield

D↑H (V,U, ε, h)D−1
↑ = H (V,−U, h, ε). Since the partition

function is invariant under similarity transformations of the
Hamiltonian, Z (V,U, ε, h) = Z (V,−U, h, ε). This transfor-
mation is implemented in the SS representation (on HSS) by
μx. Using cyclicity of the trace and the relation μxPμx =
1 − P , it is easy to show that Z = ZSS/2. Similarly, it can
also be shown that correlation functions of operators that
commute with D↑ are calculable without constraint [46].
However, for MAI models, it is possible to exactly implement
the constraint and compute all correlation functions in the SS

representation. To see this, note that the projector P admits a
fermion representation,

P = i�z
↑γ ′

f ↑( f †
↓ f↓ − 1/2) + 1/2, (7)

where γ ′
f ↑ = −i( f↑ − f †

↑ ). A (time-ordered) correlation func-
tion G of a physical operator O that is not invariant under the
particle-hole transformation D↑ must be calculated in the SS
representation with the projector,

G = 2〈T̂τ OSS(τ1)OSS (τ2)P 〉SS, (8)

where OSS is the SS representation of the physical operator
O. The factor of 2 is because Z = ZSS/2. As the expectation
value on the right-hand side (RHS) is taken with respect to the
quadratic slave-spin Hamiltonian HSS, Wick’s theorem can be
used to explicitly implement P and calculate G exactly.

Impurity edge-coupled to the Kitaev chain. As an appli-
cation and concrete demonstration of our results, we now
specialize to the case of an impurity hybridizing with the
end of a semi-infinite Kitaev chain [1]. This special case is
hereafter referred to as the KMAI (Kitaev Majorana-Anderson
impurity) model. The SS representation of the KMAI model
is obtained by using HC = HK and Vi = V δi1 in Eq. (6), where

HK =
∞∑
j=1

[(−tc†
j c j+1 + 	c jc j+1 + H.c.) − μc†

j c j] (9)

describes a semi-infinite Kitaev chain with a hopping integral
t , p-wave pairing amplitude 	, and chemical potential μ. The
physical Green’s functions (GFs) for d↓ (d↑), calculable with-
out (with) constraint, are obtained in the SS representation
as a product of free-fermion imaginary-time slave GFs. For
example, the d↓-fermion GF is given by

Gd↓(τ ) = −〈T̂τ�
y
↑(τ )�y

↑(0)�z
↑(τ )�z

↑(0) f↓(τ ) f †
↓ (0)〉SS, (10)

where the RHS can be Wick contracted. In the Matsubara
frequency domain, this becomes a convolution product, which
after analytic continuation to real frequencies gives rise to
temperature (T ) dependence in the spectral functions of the
physical impurity fermions (dσ ). This emphasizes that the
latter are interacting, even though the slave fermions are not.
The one-particle slave-fermion GFs appearing on the RHS
of Eq. (10) after Wick contraction can be calculated exactly
using boundary GF methods [46]. When ε = 0, H enjoys full
particle-hole (ph) symmetry and Gd↓ is T independent and
given by

Gph
d↓(ikn) = ikn − 2V 2gγ1 (ikn)

(ikn)2 − 4U 2 − 2iknV 2gγ1 (ikn)
, (11)

where gγ1 (τ ) = −〈T̂τ γ1(τ )γ1(0)〉, with γ1 = c1 + c†
1, is the

boundary GF of the semi-infinite Kitaev chain in the absence
of an impurity. Away from particle-hole symmetry, Gd↓(ikn)
can only be given an integral expression, but the spectral
function has a simple form,

Ad↓(ω, T ) = 2[1 − 2nF (ε)]{nB(ε)nF (ω − ε)

+ [nB(ε) + 1][1 − nF (ω − ε)]}Aph
d↓(ω − ε),

(12)
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FIG. 1. (a) Real (blue) and imaginary (red) parts of the impurity
retarded Gor’kov function F R

d↑(ω) for a Kitaev chain in the topolog-
ical phase. Parameters are chosen as μ = 0.2t , 	 = 0.5t , V = 0.4t ,
U = 0.7t . (b) Interaction dependence of the boundary density of
states ρ(i = 1, ω) of the c fermions, for μ = 0.2t , 	 = 0.5t , V =
0.4t , and U = 0 (blue), U = 0.3t (red).

where Aph
d↓(ω) is the T -independent, particle-hole symmetric

spectral function obtained from Eq. (11), and nB (nF ) is the
Bose (Fermi) function. The first term in Eq. (12) corresponds
to the absorption of a spin-↑ bosonic density fluctuation of en-
ergy ε by a spin-↓ fermion of energy ω − ε, while the second
term describes the emission, stimulated or spontaneous, of
such a density fluctuation by a fermion of energy ω. Turning
now to the hybridizing d↑ impurity fermion, its Matsubara GF
can be calculated by explicitly implementing the projector P
using Eq. (7), which yields

Gd↑(ikn) = ikn − V 2gγ1 (ikn) + 2U [2nF (ε) − 1]

(ikn)2 − 4U 2 − 2iknV 2gγ1 (ikn)
. (13)

An expression for Ad↑(ω, T ) can be obtained from the analytic
continuation of Eq. (13) to real frequencies.

Odd-frequency pairing. The Majorana hybridization with
the Kitaev chain results in proximity-induced superconduc-
tivity for the d↑ fermions. The only possibility in this case
is pure odd-frequency pairing [47], characterized by the real
(imaginary) part of the retarded Gor’kov function being odd
(even) in frequency [48–50] [Fig. 1(a)]. The latter is obtained
by analytic continuation of the Matsubara Gor’kov function,

Fd↑(ikn) = V 2gγ1 (ikn)

(ikn)2 − 4U 2 − 2iknV 2gγ1 (ikn)
, (14)

where gγ1 (ikn) is odd in ikn by virtue of being a Majo-
rana GF [51,52]. Odd-frequency pairing on the impurity is
a consequence of the particle-hole symmetric form (2) of
the hybridization term, and in fact obtains regardless of the
specific host Hamiltonian HC .

Impurity spectral functions. We now turn to the spectral
functions Adσ (ω) of the impurity fermions, and restrict our
discussion to the topological phase of the KMAI model. The
deviation ε from the particle-hole symmetric point sets the
scale for the interaction-induced temperature dependence of
those spectral functions. Low temperatures and ε > 0 accen-
tuate the spectral asymmetry in Ad↓ about ω = ε, shifting
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FIG. 2. (a)–(d) Spectral functions of d↓ (top row) and d↑ (bottom
row) for various interaction strengths U (left column) and tempera-
tures T (right column), shown in the topological phase. In all plots,
μ = 0.2t , 	 = 0.5t , V = 0.4t , ε = 0.3t are fixed. Left column: T =
0.05t and U = 0.05t (green), U = 0.8t (blue), U = 1.2t (red). Right
column: U = 0.8t and T = 0.05t (cyan), T = 0.07t (orange), T = t
(magenta).

the spectral weight towards excitations with ω > ε. It can be
seen from Eq. (12) that, in the limit T 	 ε, the temperature-
dependent prefactors tend towards unity, and particle-hole
symmetry is restored [Fig. 2(b)]. This behavior with respect to
temperature can be intuitively understood in the atomic limit
(V = 0). In this limit, there are two infinitely sharp peaks in
Ad↓ at ω± = ε ± 2U corresponding to localized charge exci-
tations on the impurity. The spectral weight for ω+ is greater
as it is proportional to the d↑-fermion occupancy 〈nd↑〉, which
is favored over d↓-fermion occupancy for ε > 0. Flipping the
sign of ε reverses this asymmetry, for d↓-fermion occupancy is
then favored. This behavior with respect to temperature carries
over to the case when V 
= 0. The temperature dependence of
Ad↑ can also be similarly explained.

When the hybridization V and interaction U are both
nonzero, both impurity GFs have three poles (in the topo-
logical phase) which manifest as quasiparticle peaks in their
spectral functions [Figs. 2(a) and 2(c)]. The two side peaks
correspond to impurity charge excitations, with a gap that
increases monotonically with U . For small U and V , these
excitations feature as sharp peaks inside the energy gap of
the Kitaev SC. As U or V is increased, they fall into the SC
energy bands and broaden, and then eventually again become
sharp peaks when they move out of the bandwidth of the SC.
That the gap grows monotonically with U is expected, as these
states differ in charge/occupancy.

The third quasiparticle peak (at ω = ε for Ad↓ and ω = 0
for Ad↑) is never broadened and persists for any nonzero U, V .
We consider the ω = ε peak in Ad↓. This is where a sharp
peak would occur were the d↓ free (U = 0), but it is not and
the peak persists for large U . This is an indirect signature
of the presence of an MZM, as can be understood from the
small U/V limit. A semi-infinite Kitaev chain implies there
must be an exact MZM at zero energy. But the original MZM
(c1 + c†

1) of the Kitaev chain is now paired with d↑ + d†
↑ to

form a local complex fermion due to Hhyb. Neither of the two
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Majorana modes that make up d↓ can be the new MZM as
nd↓ is conserved. Therefore, −i(d↑ − d†

↑) must be the new
MZM in the small-U/V limit. As it has to be an exact zero
mode, interactions cannot change its energy. In this limit, the
d↓ becomes free, and this features as a sharp peak in Ad↓ at
ω = ε. That −i(d↑ − d†

↑) is the preferred MZM in this limit
features as a sharp peak at ω = 0 in Ad↑. In the opposite
large-U/V limit, energetics suggest that the original mode
(c1 + c†

1) is the preferred MZM.
An obvious check of this intuitive reasoning is provided

by the c-fermion local density of states (LDOS) at the
boundary—there must be an MZM peak at any finite U , with
spectral weight that increases with U . The local GFs for the
c-fermions can be calculated on an arbitrary lattice site [46],
from which the corresponding LDOS can be obtained. The
boundary LDOS [Fig. 1(b)] supports our intuition: An MZM
peak appears for any nonzero interaction and its spectral
weight obtained by numerical integration does increase with
U . The two other subgap states are nontopological Andreev
bound states induced by the impurity, reminiscent of Yu-
Shiba-Rusinov states [53–55].

Local Fermi liquid. Since the free-fermion peak in Ad↓
remains sharp even in the presence of interactions, a natural
quantity to study is the associated quasiparticle weight Z . This
can be calculated from Eqs. (11) and (12) and is given by

Z = 1

1 + (2/λ)(U/V )2
, (15)

where λ(μ,	) is the spectral weight (characterizing the lo-
calization) of the MZM peak in the boundary LDOS of a
noninteracting Kitaev chain with no impurity [46]. In the
noninteracting limit, the d↓ fermion is free and so Z = 1. The
interaction renormalizes Z to a value less than one [Fig. 3(a)],
and transfers some spectral weight to other excitations, thus
giving credence to a local Fermi-liquid picture for the d↓
fermion. This holds only in the topological phase, as the free-
fermion peak for finite U and V has its origins in −i(d↑ − d†

↑)
being an MZM candidate, which is not true in the trivial
phase. It is also not valid for the hybridizing d↑ fermion, as
the spectral weight of the ω = 0 peak is trivially less than
one due to proximity coupling with the Kitaev chain, even
in the absence of interactions. Also, conforming with the
intuitive discussion in the previous section, Z is suppressed
at large U , when c1 + c†

1 is the preferred MZM.
Another measure of interparticle correlations on the QD

is provided by the mean-squared density fluctuation D =
(1/2)〈(nd − 〈nd〉)2〉, where nd = nd↑ + nd↓. In the particle-
hole symmetric limit (ε = 0), because 〈nd〉 = 1 this reduces to
the double occupancy D = 〈nd↑nd↓〉, which can be calculated
from a derivative of the logarithm of the partition function
with respect to U , to get

D = 1

4
+ U

2

∫
dω

2π
A(d+d† )↑(ω)

nF (ω)

ω
, (16)

where A(d+d† )↑(ω) is the spectral function of the hybridizing
Majorana mode d↑ + d†

↑. The Matsubara GF of this operator
is simply the sum of electron, hole, and Gor’kov GFs of the d↑
fermion. Plots of D [Fig. 3(b)] reveal that density fluctuations
are suppressed at large U and low T , but encouraged by
hybridization V .
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FIG. 3. (a) Interaction dependence of the d↓-fermion quasipar-
ticle weight Z , for several values of μ and 	, which control the
localization length of the original end MZM in the Kitaev chain.
Continuous curves correspond to Eq. (15), while dots are the result
of numerically integrating Ad↓(ω, T ) over a small neighborhood of
ω = ε. (b) Interaction dependence of impurity double occupancy D
for various T in the particle-hole symmetric limit (ε = 0). Black:
Atomic limit (V = 0); all other curves: μ = 0.2t , 	 = 0.5t , V =
0.4t , ε = 0.

Departures from exact solvability. We now consider devi-
ations from the exactly solvable point ε = h. Defining δ =
(ε − h)/2, the SS Hamiltonian (6) becomes

HSS = HSS(ε = h) − δ(n f ↓ − 1/2) − iδ�x
↑�

y
↑(n f ↓ − 1/2),

(17)
where HSS(ε = h) is the bilinear exactly solvable part. For
sufficiently small δ, corrections to physical observables away
from the exactly solvable limit can be computed by treating
the last term in Eq. (17) in perturbation theory, in analogy
to the perturbative analysis of small departures from the
Toulouse point in the Kondo problem [56]. We emphasize
that this is distinct from ordinary perturbation theory in the
physical interaction strength U ; here, U can be arbitrarily
large, and the perturbation corresponds to either a shift in the
chemical potential of the impurity fermions or a change in the
Zeeman field. For example, to linear order in δ, the free energy
is F = F (0) + F (1)δ + O(δ2), where

F (1) = 2[1 − 2nF (ε)][1/4 − D] − nF (ε), (18)

with D the T -dependent double occupancy in the particle-hole
symmetric limit, given in Eq. (16).

Outlook. Several extensions of our work are possible.
Besides different choices of the bath Hamiltonian, such as
2D or 3D topological SCs or Majorana hopping models,
our exact solution trivially generalizes to periodic Majorana-
Anderson models, where the impurity fermions acquire a
lattice-site index. However, the Z2 slave-spin solution of such
models involves a local projection on every site, as in the
Majorana-Falicov-Kimball model [15], which likely limits
exact solvability to the computation of correlation functions of
operators that commute with the local particle-hole transfor-
mation D↑ [see Eq. (8)]. While applications to spin-polarized
topological SCs naturally justify a spin-selective choice (2)
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of the hybridization term [26–28,33], it is also possible to
generalize the latter such that multiple Majorana modes on the
QD hybridize equally with the bath fermions while retaining
exact solvability.
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