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In heavy fermion systems, the emergence of rich phenomena, such as hidden orders and superconductivities,
is made possible by multipole degrees of freedom. However, many of them remain unsolved since the origin of
the higher-rank multipole interaction is not well understood. Among these issues, we focus on the quadrupole
order in CeB6, which is a famous multipolar heavy fermion system that has been actively studied for decades. We
analyze the multiorbital periodic Anderson model for CeB6, and find that magnetic, quadrupole, and octupole
fluctuations all develop cooperatively due to the strong intermultipole coupling given by higher-order many-
body effects, called vertex corrections. It is found that the antiferroquadrupole order in CeB6 is driven by the
interference between magnetic-multipole fluctuations. The discovered intermultipole coupling mechanism is a
potential origin of numerous hidden orders in various heavy fermion systems.

DOI: 10.1103/PhysRevB.100.241103

Heavy fermion (HF) systems are a very interesting plat-
form of exotic electronic states induced by a strong Coulomb
interaction and spin-orbit interaction (SOI) on the f electrons.
Magnetic fluctuations cause interesting quantum critical phe-
nomena and superconductivity [1–8]. In addition, higher-rank
multipole operators are also active owing to the strong SOI
of f electrons. For this reason, various interesting multipole
order and fluctuations, which are absent in transition metal ox-
ides, emerge in HF systems. One of the most famous examples
is the multipole order in CeB6: The antiferroquadrupole order
with q = (π, π, π ) occurs at TQ = 3.2 K, and a magnetic or-
der appears at TN = 2.4 K [9–12]. In addition, the antiferrooc-
tupole order is stabilized under a weak magnetic field [13–16].
Thus, various ranks of multipole orders appear simultaneously
in the phase diagram of CeB6. This fact indicates that different
multipoles are strongly entangled, which would be universal
in HF systems.

Up to now, multipole orders in CeB6 have been studied
actively based on the localized f -multipole models [13–19].
Recent angle-resolved photoemission spectroscopy (ARPES)
and neutron inelastic scattering measurements of CeB6, in
addition to the x dependence of the de Haas–van Alphen
(dHvA) effect for CexLa1−xB6, revealed that the f electron
has an itinerant nature above T ∼ TQ [20–25]. These findings
indicate that the itinerant picture is a fruitful starting point to
understand the multipole physics of CeB6. Therefore, in this
Rapid Communication, we study this longstanding problem
based on the periodic Anderson model (PAM), in which the
f electrons hybridize with conduction electrons and form
itinerant heavy quasiparticles.

If we apply the random-phase approximation (RPA) for the
PAM, however, quadrupole order cannot be obtained. In fact,
only odd-rank (=magnetic) multipole fluctuations develop,
whereas even-rank (=electric) multipole ones remain small in
the RPA [24,26,27]. This fact reveals the importance of vertex
corrections (VCs), which represent the many-body effects ig-
nored in the RPA. The Fermi-liquid approach has succeeded in
explaining phase diagrams in HF materials, such as CeB6 [24],

URu2Si2 [26], and CeCu2Si2 [27]. Although HF systems
have a large Coulomb interaction, it is renormalized by the
renormalization factor z as zU . Since z � 1 in HF systems,
the Fermi-liquid theory is still applicable even in the presence
of strong Coulomb interactions. The lowest-order VC with re-
spect to fluctuations, called a Maki-Thompson (MT)-type VC,
gives a rank-5 multipole order in URu2Si2 [26]. However, the
MT-VC does not magnify even-rank multipole fluctuations.
Thus, the microscopic origin of the quadrupole order, which
frequently appears in various compounds, is still unsolved.
CeB6 is a suitable platform to construct a theory of multipole
order in HF systems.

Recently, it was revealed that an Aslamazov-Larkin (AL)
VC, which is of higher order than MT-VC, gives a nematic
orbital order in Fe-based superconductors [28–30]. Analyti-
cally, AL-VC is proportional to ξ 4−d in d-dimension systems
at a fixed T , where ξ is the magnetic correlation length.
Therefore, AL-VC plays an important role near the magnetic
quantum criticality. We stress that the significance of AL-
VC is confirmed by functional-renormalization-group (fRG)
studies, by which we can consider higher-order VC in an
unbiased way [31–37].

We recently studied the role of VCs for electron-phonon
(el-ph) interactions beyond the Migdal approximation, and
found that the weak phonon-mediated attractive interaction
is strongly magnified by AL-type VCs [38]. Based on this
mechanism, we explained recently the fully gapped s-wave
pairing state in CeCu2Si2 [27]. This fact strongly indicates
the significance of AL-VC for multipole susceptibilities in HF
systems.

In this Rapid Communication, we study the mechanism
of the quadrupole order in CeB6 based on the itinerant f -
electron picture, by considering the AL-VC for multipole
susceptibilities. For this purpose, we introduced an effective
PAM for CeB6 with a �8 quartet f -orbital basis. Both ferro-
and antiferromagnetic and octupole fluctuations are induced
by Fermi-surface nesting, consistent with recent neutron ex-
periments. Then, antiferroquadrupole (Oxy) order is induced
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FIG. 1. (a) Band dispersion and (b) Fermi surfaces of the present
model. Major nesting vectors are shown.

by the interference between different magnetic multipole
fluctuations. The present multipole fluctuation theory with
introducing AL-VC will be applicable for various HF systems.

Here, we introduce a two-dimensional PAM as an effective
model for CeB6. For f -electron states, we consider the �8

quartet in J = 5/2 space due to the strong SOI [13],
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where � = ± is the pseudospin of the fl orbital (l =
1, 2). The kinetic term is given by Ĥ0 = ∑

kσ εkc†
kσ

ckσ +∑
klσ E f f †

klσ fklσ + ∑
klσ (V ∗

klσ f †
klσ ckσ + H.c.), where c†

kσ
is a

creation operator for the s electron with momentum k and
spin σ on the Ce ion. εk is the conduction-band dispersion,
which we explain in Supplemental Material (SM) A [39].
f †
kl� is a creation operator for the f electron with k, orbital

l , and pseudospin �. Vklσ is the s- f hybridization term be-
tween the nearest Ce cites. In the two-dimensional model, the
pseudospin and s-electron spin are conserved (σ = �) in the
s- f mixing [27]. Using the tight-binding method [40], Vklσ is
given as

Vk fl ↑ = −Alts f [sin ky + (−1)l i sin kx], (2)

and Vk fl ↓ = −V ∗
k fl ↑. We set Al = √

18/14, and give a detailed
explanation of Vklσ in SM A [39]. Hereafter, we set 2|t1

ss| = 1
as the energy unit, and put ts f = 0.78, E f = −2.0, T = 0.01,
and μ = −2.45. Then, the f (s)-electron number is n f = 0.58
(ns = 0.69). We comment that n f increases if we put the level
of E f lower under the constraint n f + nc = const. By this
procedure, our main results will not change since the shape
of the Fermi surface is essentially unchanged.

Figure 1(a) shows the band structure of PAM. The lowest
band crosses the Fermi level (ε = 0). Since WD ∼ 5 eV in
CeB6 [20,21,41,42], 2|t1

ss|(=1) corresponds to ∼0.5 eV. The
bandwidth of the itinerant f electron is W qp

D ∼ |V | ∼ 1. The
Fermi surfaces shown in Fig. 1(b) are composed of large
ellipsoid electron pockets around the X,Y points, consistently
with recent ARPES studies [20,21].

We also introduce the Coulomb interaction term ĤU =
uĤ0

U . Here, Ĥ0
U = 1

4

∑
LL′MM ′ U 0

L,L′;M,M ′ f †
L fL′ fM f †

M ′ , where
L = (l, σ ) and M = (m, ρ). Û 0 is the normalized Coulomb
interaction for the Ce ion; the maximum element of Û 0 is set
to unity. A detailed explanation is given in Ref. [27] and in
SM A [39].

TABLE I. IRs and 16-type active multipole operators of the D4h

point group. The operator with rank k corresponds to 2k-pole.

IR (�) Rank (k) Operator (Q̂) IR in Hz

�+
1 0 1̂ �1

2 Ô20

�+
3 2 Ô22 �3

�+
4 2 Ôxy �4

�+
5 2 Ôyz, Ôzx �5

�−
2 1 Ĵz �1

3 T̂zα

�−
3 3 T̂xyz �4

�−
4 3 T̂zβ �3

�−
5 1 Ĵx, Ĵy �5

3 T̂xα, T̂yα

3 T̂xβ, T̂yβ

In the present �8 quartet model, there are 16-type active
multipole operators up to rank 3: monopole, dipole (rank 1),
quadrupole (rank 2), octupole (rank 3) momenta. The table of
irreducible representations (IRs) for the D4h two-dimensional
model is shown in Table I [26]. An even-rank (odd-rank)
operator corresponds to an electric (magnetic) multipole op-
erator. The 4 × 4 matrix form of each operator Q̂ is shown in
SM B [39].

Here, we calculate the f -electron susceptibility. The
bare irreducible susceptibility is given by χ0

α,β (q) =
−T

∑
k G f

LM (k + q)G f
M ′L′ (k), where q ≡ (q, ωn) =

(q, 2 jπT ), α ≡ (L, L′), and β ≡ (M, M ′). Here, α, β takes
1–16, and Ĝ f is the Green’s function without self-energy [27].
We also consider the VCs due to AL and MT terms, X̂ AL+MT,
which we will explain later. Then, f -electron susceptibility is
given as

χ̂ (q) = φ̂(q)[1̂ − uÛ 0φ̂(q)]−1, (3)

where φ̂(q) = χ̂0(q) + X̂ AL+MT(q) is the irreducible suscep-
tibility including the VCs in the 16 × 16 matrix form.

Here, we consider the following eigenequation,

uÛ 0φ̂(q, 0) �w� (q) = α� (q) �w� (q). (4)

When the eigenvector is expressed as �w� (q) =∑
Q∈� ZQ(q) �Q, the maximum of the eigenvalue α� (q)

gives the Stoner factor for IR �, α� = maxq{α� (q)}. Here,
�Q is a 16 × 1 vector defined as ( �Q)α = (Q̂)L,L′ and ZQ(q)
is a real coefficient. The �-channel multipole order appears

when α� � 1. The inner product ( �Q)
† �Q′ is unity for Q = Q′.

It is zero when Q and Q′ belong to different IRs, whereas
it is not always zero when Q �= Q′ belong to the same
IR [27,39]. We introduce the magnetic (electric) Stoner factor
as αmag(el) = maxn {α�−(+)

n }.
Using �Q, the multipole susceptibility is given by

χQ,Q′
(q) = ( �Q)†χ̂ (q) �Q′. (5)

First, we show the numerical results by the RPA, given as
X AL+MT = 0. Figure 2 shows the obtained susceptibilities
χQ(q, 0) ≡ χQ,Q(q, 0) at u = 1.08 (αmag = 0.9). In the RPA,
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FIG. 2. Obtained multipole susceptibilities by the RPA. The peak
positions correspond to the nesting vectors in Fig. 1(b). Note that
χOxy �= χOxz(yz) in the present 2D model; see SM [39].

χ Jz is the most largest. Second, χT β
ν , χT α

ν (ν = x, y) and χTxyz

are also enlarged. χ Jz (q, 0) has a peak value at q ≈ 0 and
q ≈ Q ≡ (π, π ), which is consistent with the inelastic neu-
tron scattering that reports strong ferromagnetic and anti-
ferromagnetic [q = (π, π, π ), (π, π, 0)] fluctuations above
TN [23,43]. Therefore, the present two-dimensional PAM is
reliable.

On the other hand, the RPA quadrupole susceptibility re-
mains small. To understand this result, we examine the (Q, Q′)
component of the normalized Coulomb interaction,

U Q,Q′
0 = ( �Q)†Û 0 �Q′. (6)

Table II shows the diagonal component U Q
0 ≡ U Q,Q

0 . Since U Q
0

for the quadrupole channels is much smaller than that for the
dipole and octupole channels, the quadrupole susceptibilities
are small within the RPA.

From now on, we introduce the VCs due to AL and MT
terms. Diagrams of these VCs are shown in Fig. 3(a). For
example, the AL1 term is given as

X AL1
αβ (q) = T

2

∑
α′α′′β ′β ′′

�α
α′β ′′ (q, p)Vα′β ′ (p − q)

×Vα′′β ′′ (p)�β∗
β ′α′′ (q̄, p̄), (7)

where p ≡ (p, ωm), p̄ ≡ (p,−ωm), and V̂ (q) ≡
u2Û 0χ̂ (q)Û 0 + uÛ 0 is the dressed interaction given by
the RPA. The three-point vertex is given as

�EF
ABCD(q, p) ≡ −T

∑
k

G f
AF (k − q)G f

EC (k)G f
DB(k − p). (8)

Other VCs are explained in SM C [39].
Figures 3(b) and 3(c) show the obtained quadrupole sus-

ceptibility by including MT- and AL-VCs. In contrast to the

TABLE II. Normalized Coulomb interaction U Q
0 . U Q,Q′

0 = 0 for

Q �= Q′ except for U
Jμ,T α

μ

0 = 0.58 (μ = x, y, z).

Q 1 O20(22) Oxy(yz,zx) Txyz Jz(x,y) T α
z(x,y) T β

z(x,y)

U Q
0 −2.4 0.50 0.63 0.81 1.03 0.94 0.94

FIG. 3. (a) Diagrams of the irreducible susceptibility φ̂ with MT-
and AL-VCs. (b) q dependence of χOxy (q, 0); α�+

4 = 0.94 with VCs.
(c) u dependence of χOxy (q, 0) at q = Q, 0.

RPA result, the obtained χOxy (q, 0) is strongly enhanced at
q = Q and q = 0, and becomes the largest of all χQ. This
enhancement originates from the AL terms, whereas the MT
term is very small as we show in SM C [39]. The obtained
χOxy (q, 0) has the highest peak at q = Q, consistent with the
antiferro-Oxy order in CeB6. Moreover, the second highest
peak of χOxy (q, 0) at q = 0 explains the softening of shear
modulus C44 in CeB6 [10]. We show other quadrupole sus-
ceptibilities in SM C [39]. To summarize, the obtained strong
enhancements of χOxy (q, 0) and χ Jz (q, 0) at both q = Q and
q = 0 reproduce the key experimental results of CeB6.

Next, we explain that the Oxy quadrupole order is derived
from the interference between magnetic multipole fluctua-
tions. For this purpose, we analyze the total AL term X̂ ≡
X̂ AL1 + X̂ AL2 for the Oxy channel defined as

XOxy (q) ≡ ( �Oxy)†X̂ (q) �Oxy, (9)

where X̂ ≡ X̂ AL1 + X̂ AL2. The Stoner factor for the Oxy(=�+
4 )

channel is proportional to uU
Oxy

0 φOxy (q), where φOxy (q) ≡
( �Oxy)

†
φ̂(q) �Oxy. Therefore, XOxy (q) (>0) works as the en-

hancement factor of Oxy susceptibility.
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FIG. 4. (a) AL term X AL1,QQ′
Oxy

given by (Q, Q′)-channel fluctua-

tions. (b) Obtained X QQ′
Oxy

(q, 0). (c) Quantum process of Oxy fluctua-
tions driven by the interference between (Tx, Ty ) fluctuations, which
corresponds to the shaded area in (a). Note that χOxy �= χOxz(yz) in the
present 2D model; see SM [39].

By following Ref. [27], we expand V̂ (q) on the basis of the
multipole operator as

V̂ (q) =
∑
QQ′

vQQ′
q

�Q( �Q′)†, (10)

where the real coefficient vQQ′
q is uniquely determined [27].

From Eqs. (7), (9), and (10), the AL1 term due to (Q, Q′)-
channel fluctuations is given as

X AL1,QQ′
Oxy

(q) ≡ T

2

∑
p

vQ
p v

Q′
p−q�

OxyQQ′
q,p

(
�

OxyQ′Q
q̄,p̄

)∗
, (11)

where vQ ≡ vQQ and �
OxyQQ′
q,p is defined as

�
OxyQQ′
q,p ≡

∑
α

( �Oxy)∗α ( �Q′)†�̂α (q, p) �Q. (12)

The diagrammatic expression of Eq. (11) is shown in Fig. 4(a).
Figure 4(b) shows the q dependence of X QQ′

Oxy
(q, 0) at u =

0.91. We find that the (Q, Q′) = (T α
x , T α

y ), (Jz, Txyz ), (T β
x , T β

y )
channels make the dominant contributions. Other terms not
shown in Fig. 4(b) make a negligible contribution.

Figure 4(c) presents the quantum process of the Oxy

quadrupole order driven by the interference between (Tx, Ty)
fluctuations, which corresponds to �OzxTxTy in Fig. 4(a).
This process is realized when �OzxQQ′ ∼ Tr{Ôxy · Q̂ · Q̂′} �= 0.
Since �QT T ′ = 0 for odd-rank Q, the AL-VC is unimportant
for χ J and χT [30].

Next, the q dependence of the AL-VC is given as
X

TxTy

Oxy
(q) ∝ ∑

p χTx (p)χTy (q − p), which becomes large at

q = Q and q = 0 since χTμ (p) has large peaks at p ∼ Q, 0
shown in Fig. 2. Thus, antiferroquadrupole order in CeB6

FIG. 5. (a) Form factor (ZOxy , ZTxyz ) of the eigenvector for �4 =
{Oxy, Txyz} at q = Q under hz. Inset: hz-linear term of the three-point
vertex �TxyzTxTy that gives large χOxyTxyz (q, 0). (b) Stoner factor α�4 as
a function of hz.

originates from the interference between ferro- and antifer-
romagnetic multipole fluctuations.

Finally, we discuss the field-induced octupole order, which
has been studied intensively as a main issue of CeB6 [13–16].
The Zeeman term under the magnetic field along the z
axis is given as ĤZ = hz

∑
L,M (Ĵz )L,M f †

kL fkM . When hz �=
0, both Oxy and Txyz belong to the same IR �4 shown in
Table I [13]. Therefore, a large quadrupole-octupole
susceptibility χOxy,Txyz (q, 0) is induced in proportion to hz.
To verify this, we solve the eigenequation (4) for the IR
�4 under hz, at the fixed magnetic Stoner factor in the RPA
αmag = 0.8 [44,45].

Figures 5(a) and 5(b) show the obtained eigenvec-
tor �w�4 (q) = ZOxy (q) �Oxy + ZTxyz (q) �Txyz (| �w�4 |2 = 1) and the
Stoner factor α�4 at q = Q, respectively, as functions of hz.
Here, α�4 is the largest Stoner factor. The increment of α�4

under hz is consistent with the field enhancement of TQ in
CeB6. (In contrast, TN will be suppressed by a large Oxz

moment.) Also, ZTxyz increases linearly in hz, due to the
interference process under hz shown in the inset of Fig. 5(b).
ZTxyz becomes comparable to ZOxy under a small magnetic field
hz � 0.03 � W qp

D /10. Since the ratio of the ordered momenta
at TQ is MTxyz/MOxy = ZTxyz/ZOxy , field-induced antiferro-Txyz

order is naturally explained.
In summary, we developed a multipole fluctuation theory

by focusing on the AL-type VCs in HF systems, and applied
the theory to the multipole order physics in CeB6. Both ferro-
and antiferromagnetic multipole fluctuations emerge in CeB6

due to the nesting of Fermi surfaces, consistent with neutron
experiments. Then, antiferro-Oxy order in CeB6 at TQ (>TN )
is derived from the interference between different magnetic
multipole fluctuations, which is depicted in Fig. 4(c). We
also explained the field-induced octupole order, which is a
central issue of CeB6. The discovered intermultipole coupling
mechanism will be significant in other HF systems [46,47]
and 4d, 5d transition metal compounds [48]. Although the
analysis of AL-VC in three-dimensional PAM is very difficult,
it is an important future problem.

We stress that the on-site quadrupole (Oxy) interaction on
the Ce ion is about 60% of the dipole (Jμ) one as shown in
Table II. Therefore, a quadrupole order cannot appear within
the mean-field theory. In contrast, in the localized Ruderman-
Kittel-Kasuya-Yosida (RKKY) model, the quadrupole
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interaction is as large as the dipole interaction [13,16,49].
Such a discrepancy between the itinerant picture and localized
one, which is an important problem in HF systems, is
partially resolved by considering the VCs as we discussed
here.

We are grateful to S. Onari and Y. Yamakawa for useful
discussions. This work has been supported by the Quantum
Liquid Crystals No. JP19H05825 KAKENHI on Innova-
tive Areas from JSPS of Japan, and JSPS KAKENHI (No.
JP18J12852, JP18H01175).
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