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We generalize the K matrix formulation to nontrivial non-Abelian families of (2+1)-dimensional topological
orders. Given a topological order C, any topological order in the same non-Abelian family as C can be efficiently
described by a = (aI ), where aI are Abelian anyons in C, together with a symmetric invertible matrix K , KIJ =
kIJ − taI ,aJ , where kIJ are integers, kII are even, and taI ,aJ are the mutual statistics between aI , aJ . In particular,
when C is a root whose rank is the smallest in the family, K becomes an integer matrix. Our results make it
possible to generate the data of large numbers of topological orders instantly, thus providing a large reservoir of
potentially useful topological materials.
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Introduction. Topological phases of matter have drawn
more and more research interest during recent years. A most
remarkable feature of topological phases is that there can be
several quantum states which are “topologically” degenerate.
Such degeneracy is robust against any local perturbation, thus
these states can be employed as qubits that are automatically
immune to local noises. Given the possible application in
quantum memory and quantum computation, it is then natural
to ask how to produce the desired topological degeneracy.

One source of topological degeneracy is to put a topolog-
ically ordered system on a manifold with nontrivial topology
[1–4]. This approach is not ideal: For one reason, it is not easy
to shape a physical system into a nontrivial manifold such as a
torus; for another, to manipulate the degenerate ground states
one has to perform nonlocal operations.

Another source of topological degeneracy is to trap sev-
eral anyonic quasiparticles. By braiding and fusion of these
anyons, it is possible to realize universal topological quantum
computation [5]. For an anyon i, we use the quantity di, called
the quantum dimension, to measure the effective topological
degeneracy carried by i. When there is a large number N
of anyon i trapped, the topological degeneracy is of the
order dN

i .
Thus for anyons to produce a desired topological degen-

eracy, it is necessary that di > 1. An anyon with di = 1
is called Abelian while with di > 1 is called non-Abelian.
If all the anyons in a topological order are Abelian, it
is called an Abelian topological order. Abelian topologi-
cal orders are useless in the braiding-fusion-based topologi-
cal quantum computation, unless, e.g., one further employs
more exotic boundaries and defects to enhance the com-
putational capability [6–8], where the region bounded by
boundaries or defects can be effectively viewed as a composite
non-Abelian anyon.

In Ref. [9] we proposed the generalized hierarchy con-
struction that can add or remove Abelian anyons to or from
any topological order. Two topological orders which can be
connected by such a construction are of the same “non-
Abelian family,” which is the equivalence class up to Abelian

topological orders. The non-Abelian family captures the in-
variants of non-Abelian anyons, and we expect that topologi-
cal orders in the same non-Abelian family behave similarly in
topological quantum computation.

However, the construction in Ref. [9] is performed in a
step-by-step manner. Given a topological order C, it is not
easy to calculate the property of another topological order
in the same non-Abelian family that requires several steps of
hierarchy constructions from C. This Rapid Communication
aims at resolving such difficulty. We showed that given a
topological order C, any topological order in the same non-
Abelian family can be efficiently represented by a sequence
of Abelian anyons in C together with a K matrix. When C is
the trivial topological order, our result reduces to the original
K matrix formulation for Abelian topological orders [10].

One-Step Generalized Hierarchy Construction. We first
review and refine the construction proposed in Ref. [9]. The
main idea is to let Abelian anyons form an effective Laughlin-
like state [11]. This idea dates back to Haldane and Halperin,
known as “hierarchy” construction [12,13]. But below we
discuss it on a more general level.

We start with a topological phase C. The anyons in C are la-
beled by i, j, k, . . .. The most important data that characterize
a topological order are the fusion rules Ni j

k , topological spin
si, and topological T, S matrices. The fusion of anyons in C is
given by

i ⊗ j =
⊕

k

Ni j
k k. (1)

Quantum dimensions di are positive numbers satisfying

did j =
∑

k

Ni j
k dk . (2)

By the Perron-Frobenius theorem, the positive solutions to the
above is unique: di has to be the largest positive eigenvalue of
matrix Ni with (Ni ) jk = Ni j

k .
The topological spin (or simply spin) si of anyon i is

the fractional part of their angular momentum Lz: si =
mod(Lz

i , 1). si determines the self statistics of i: Exchanging
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two i anyons leads to the phase factor e2π isi . The last piece
of data to characterize topological orders is the chiral central
charge c, which is the number of right-moving edge modes
minus the number of left-moving edge modes.

T, S matrices can be calculated from (Ni j
k , si ). In fact,

(T, S) and (Ni j
k , si ) determine each other,

Ti j = e2π isiδi j, Si j =
∑

k

e2π i(si+s j−sk ) Ni j
k dk

D
,

e2π isi = Tii, Ni j
k =

∑
l

SliSl jSlk

Sl1
. (3)

where D =
√∑

d2
i is the total quantum dimension. T, S

matrices form a project representation of SL(2,Z) where the
projective phase factor is determined by the chiral central
charge c,

S4 = 1, (T S)3 = e2π i c
8 S2. (4)

Let ac be an Abelian anyon in C with topological spin sac .
We try to make ac form the Laughlin state on top of C,

〈{za}|�〉 =
∏
a<b

(za − zb)Mc e− 1
4

∑ |za|2 . (5)

The resulting topological phase is determined by C, ac, and
Mc, which will be denoted by Cac,Mc . Here, za, zb are the
positions of ac anyons. Mc must be consistent with anyon
statistics. Considering exchanging two ac anyons, we obtain a
phase factor e2π i Mc

2 from the wave function and a phase factor
e2π isac from anyonic statistics. To be consistent, the total phase
factor must be 1,

Mc

2
+ sac ∈ Z. (6)

So we need to take Mc = mc − 2sac , where mc is an even
integer.

Anyon i in the phase C may be dressed with a flux Mi in
the new phase Cac,Mc ,

�(i, Mi ) =
∏

b

(ξi − zb)Mi
∏
a<b

(za − zb)Mc e− 1
4

∑ |za|2 . (7)

Here, ξi is the position of anyon i. Thus an anyon in the new
phase is represented by a pair (i, Mi ). Again, Mi cannot be
arbitrary. If ac has trivial mutual statistics with i, Mi can be any
integer. Otherwise, consider moving ac around (i, Mi ) and we
obtain a phase factor e2π iMi from the flux Mi and a phase factor
e2π iti from the mutual statistics between ac and i. The mutual
statistics can be extracted from the S matrix, e2π iti = DSia∗

c
/di,

tac = 2sac . To be consistent, the total phase factor must be 1,

Mi + ti ∈ Z. (8)

Since the anyon ac dressed with a flux Mc is a “trivial
excitation” in the new phase,

�(ac, Mc) ∼
n∏
b

(ξac − zb)Mc

n∏
a<b

(za − zb)Mc

=
n+1∏
a<b

(za − zb)Mc ,

(ac, Mc) ∼ (1, 0), (9)

we have the equivalence relation

(i, Mi ) ∼ (i ⊗ ac, Mi + Mc). (10)

It is then straightforward to derive the data of the resulting
topological order Cac,Mc :

(1) The spin of (i, Mi ) is given by the spin of i plus the
“spin” of the flux Mi,

s(i,Mi ) = si + M2
i

2Mc
. (11)

(2) To fuse anyons (i, Mi ), ( j, Mj ) in the new phase, just
fuse i, j as in the old phase, and add up the flux,

(i, Mi ) ⊗ ( j, Mj ) =
⊕

k

Ni j
k (k, Mi + Mj ), (12)

and then apply the equivalence relation (10). In other words,
the new fusion rules are

N
(i,Mi ),( j,Mj )
(k,Mk ) = Ni j

k δMi+Mj ,Mk , (13)

up to the equivalence relation (10).
(3) The quantum dimensions remain the same,

d(i,Mi ) = di, (14)

since they are clearly the unique positive solution to

d(i,Mi )d( j,Mj ) =
∑

(k,Mk )

N
(i,Mi ),( j,Mj )
(k,Mk ) d(k,Mk )

=
∑

k

Ni j
k d(k,Mi+Mj ). (15)

(4) By a direct analysis [9] of the equivalence relation (10),
we see that the rank (number of anyon types) of Cac,Mc is

NCac ,Mc = |Mc|NC . (16)

(5) The S matrix, calculated via (3), is

SCac ,Mc
(i,Mi ),( j,Mj )

= 1√|Mc|
SC

i je
−2π i

MiM j
Mc . (17)

(6) The chiral central charge, calculated via (4), is

cCac ,Mc = cC + sgn Mc, (18)

where sgn Mc = |Mc|
Mc

is the sign of Mc.
The one-step hierarchy construction is reversible. In Cac,Mc ,

choosing a′
c = (1, 1), sa′

c
= 1

2Mc
, m′

c = 0, M ′
c = −1/Mc, and

repeating the construction, we will go back to C. Therefore, hi-
erarchy construction defines an equivalence relation between
topological phases. We call the corresponding equivalence
classes the “non-Abelian families.” Each non-Abelian family
has “root” phases with the smallest rank. Let CAb denote the
full subcategory of all Abelian anyons in C. C is a root if
[14] and only if [9,14] CAb is a symmetric fusion category,
namely, all the Abelian anyons are bosons or fermions with
trivial mutual statistics with each other.

Multiple Steps of Construction and the Matrix Formulation.
Now we consider multiple steps of hierarchy constructions
and try to write down the final result at once. Note that in
the flux label Mi we need to use the mutual statistics in the
previous step, and things get involved when there are multiple
steps. To separate out the mutual statistics and thus make
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things clearer, we use the “integer convention” (i, m), instead
of the “flux convention” (i, Mi ), where m − ti = Mi.

Now consider starting from a topological order C and
performing one-step construction κ times. For the first step we
take a1 ∈ CAb and even integer k11. For the second step we take
an Abelian anyon (a2 ∈ CAb, k12) and even integer k22, where
k12 is an integer. For the third step we take an Abelian anyon
((a3 ∈ CAb, k13), k23) and even integer k33, where k13, k23 are
integers. We keep moving on and we see that the steps can
be summarized by aI and kIJ . Define a corresponding integer
symmetric κ by κ matrix by setting kIJ = kJI . Denote by ti,a
the mutual statistics between anyon i and Abelian anyon a in
C (e2π iti,a is the phase factor of braiding a around i), by si the
spin of anyon i in C, and set ta,a = 2sa. Let the K matrix be
KIJ = kIJ − taI ,aJ .

Physically, we let the Abelian anyons aI , I = 1, 2, . . . , κ

form a multilayer Laughlin-like state∏(
z(I )

a − z(J )
b

)KIJ
, (19)

where I labels the layer and z(I )
a is the position of the aI anyon.

By a similar argument as in the one-step case, we know that
KIJ + taI ,aJ must be an integer and KII + taI ,aI must be an even
integer.

Though we are using the integer convention, note that
similar to the one-step case, it is the combination KIJ = kIJ −
taI ,aJ or Mc = mc − tac that determines the final topological
order, not the integer kIJ or mc alone. The meaning of kIJ or
mc depends on the choice of mutual statistics ti,a.

The fusion rule and T, S matrices of the resulting topolog-
ical order after κ steps can be calculated efficiently via the K
matrix as stated in Theorem 1. This result generalizes the K
matrix formulation for Abelian topological orders [10].

Theorem 1. The topological order constructed from C via
κ steps can be summarized by aI and KIJ , where I, J =
1, . . . , κ , aI ∈ CAb, det K 
= 0, KIJ = KJI , KIJ + taI ,aJ are inte-
gers, and KII + taI ,aI are even. Let a formally denote the vector
(aI ) and Ca,K denote the resulting topological order. Ca,K is as
follows:

(1) Fix a choice of mutual statistics ti,aI in C. Let t i be
the κ-dimensional vector (ti,aI ). Anyons are labeled by (i ∈
C, l ), where l is a κ-dimensional integer vector, subject to the
following equivalence relations,

(i, l ) ∼ (i ⊗ aI , l + KI − t i + t i⊗aI ), (20)

where KI is the Ith column vector of K . For a different
choice of mutual statistics, or representative i′ ∼ i, ti′,aI dif-
fers from ti,aI by an integer, and (i′, l + t i′ − t i ) ∼ (i, l ).
Ca,K does not depend on the choice of mutual statistics or
representative in C.

(2) Fusion is given by

(i, l ) ⊗ ( j, k) = ⊕sN
i j
s (s, l + k − t i − t j + t s). (21)

(3) The spin of (i, l ) is

s(i,l ) = si + 1
2 (l − t i )

T K−1(l − t i ). (22)

(4) The S matrix is

S(i,l )( j,k) = 1√| det K|Si je
−2π i(l−t i )T K−1(k−t j ). (23)

(5) The rank is NCa,K = | det K|NC . The chiral central
charge is cCa,K = cC + sgn K. Here, sgn K denotes the index
of the matrix K , namely, the number of positive eigenvalues
minus the number of negative eigenvalues.

Proof. We postpone the lengthy proof to the Appendix. �
When C is a root whose Abelian anyons CAb are a symmet-

ric fusion category, aI , aJ are mutually trivial, and taI ,aJ are
all integers. In particular, we can choose taI ,aI = 1 when aI

is fermionic, and other taI ,aJ = 0. In this case the K matrix is
an integer matrix and KII is even when aI is a boson and odd
when aI is a fermion.

Equivalence Relation of the Constructed Topological Or-
ders. Starting from the same topological order C, different
paths of construction may result in the same topological order.
It is natural to ask what is the equivalence relation of (a, K ).
For now, we know three ways to generate equivalent Ca,K :

(1) The equivalence between the starting point F : C � D
naturally gives rise to equivalence Ca,K � DF (a),K .

(2) “Integer linear recombination” of aI , W ∈ GL(κ,Z)
(namely, W is an integer matrix with det W = ±1), Ca,K �
CW a,W KW T . We call such a transformation the GL(Z) transfor-
mation.

(3) The reversibility of one-step construction means that
the topological order constructed from C with

(a1 = ac

a2 = 1

)
,

K = (Mc 1
1 0

)
is equivalent to C. Also (aI , KIJ ) is equiv-

alent to
(aI

a
1

)
,

(
KIJ lc − ta 0

lT
c − tT

a mc − 2sa 1
0 1 0

)
, where a can be

any Abelian anyon in CAb. Note that under GL(Z)

transformation,

(
KIJ lc − ta 0

lT
c − tT

a mc − 2sa 1
0 1 0

)
∼

(
KIJ 0 0
0 −2sa 1
0 1 0

)
=

K ⊕ (−ta,a 1
1 0

)
. Therefore, we have (a, K ) ∼ (

a ⊕ (a
1

)
, K ⊕(−ta,a 1

1 0

))
. We refer to

((a
1

)
,
(−ta,a 1

1 0

))
as the “trivial bilayer.”

Conjecture 1. Ca,K and Ca′,K ′ (with exactly the same chiral
central charge, not modulo 8) are equivalent if and only if,
up to automorphisms of C and GL(Z) transformations, (a ⊕
b, K ⊕ X ) ∼ (a′ ⊕ b′, K ′ ⊕ X ′), where (b, X ) and (b′, X ′) are
direct sums of trivial bilayers

((a
1

)
,
(−ta,a 1

1 0

))
.

The Formal Categorical Formulation. We give the formal
basis-independent formulation of the above constructions.
Let C be a braided fusion category, αA,B,C, cA,B denote the
associator and braiding in C, CAb denote the Abelian group
corresponding to the pointed subcategory CAb, and t : Irr(C) ×
CAb → Q denote the mutual statistics between simple objects
and pointed ones, namely, e2π it (i,a) = 1

di
Tr ca,ici,a; in partic-

ular, the diagonal entries are related to exchange statistics
eiπt (a,a) = Tr ca,a.

Let Zκ be a free Abelian group with κ generators. It can be
naturally extended to a κ-dimensional vector space over Q.
Let Z

κ
:= Hom(Zκ ,Q) denote the “dual space,” the space of

Q-linear functions. Conventionally, we use x, y, . . . to denote
elements in Zκ and f (−), g(−), . . . , or simply f , g when not
confusing, to denote functions in Z

κ
.

Let K : Zκ × Zκ → Q be a nondegenerate symmetric bi-
linear form. It defines an isomorphism from Zκ to Z

κ
, by

x �→ K (x,−) = K (−, x). Denote the inverse map by K̃ , thus

K̃ (K (x,−)) = x, K (K̃ ( f ), x) = f (x). (24)
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There is then a natural nondegenerate symmetric bilinear
form K on Z

κ
induced from K , via

K ( f , g) = K (K̃ ( f ), K̃ (g)) = f (K̃ (g)) = g(K̃ ( f )). (25)

If one chooses a basis of Zκ and the corresponding dual basis
of Z

κ
, the matrices of K and K are inverse to each other.

We also need to choose κ Abelian anyons for each step.
This is concluded in a group homomorphism a : Zκ → CAb.
The bilinear form K needs to satisfy the even integral
condition, namely, ∀x, y, K (x, y) + t (a(x), a(y)) ∈ Z, and
K (x, x) + t (a(x), a(x)) ∈ 2Z.

For a κ step construction, we first define a semisimple
category C↑

a,K . C↑
a,K is graded by Z

κ
/K (2 ker a,−) (not faith-

ful). Take a representative f ∈ Z
κ
, the component (C↑

a,K )
f

is a full subcategory of C with simple objects i satisfying
f (−) + t (i, a(−)) ∈ Z [note that K (x,−) is an integer for x ∈
ker a, so this is well defined for f + K (2 ker a,−)]. Denote
the simple objects in C↑

a,K by i f . We then define the tensor

product and braiding in C↑
a,K ,

i f ⊗ jg = (i ⊗ j) f +g = ⊕kNi j
k k f +g, (26)

αi f , jg,kh = αi, j,k, (27)

ci f , jg = ci, je
iπK ( f ,g). (28)

Equation (28) is independent of the choice of representative:
∀x ∈ ker a,

ci f +K (2x,−), jg = ci f , jge
iπK (K (2x,−),g)

= ci f , jge
2π ig(x). (29)

Since t ( j, a(x)) = t ( j, 0) ∈ Z and g(x) + t (i, a(x)) ∈ Z,
clearly g(x) ∈ Z as desired. Thus C↑

a,K is a braided fusion

category graded by Z
κ
/K (2 ker a,−). It is obvious that

di f = di.
Observe that for any x ∈ Zκ , a(x)K (x,−) is a self-boson

and mutually trivial to any object i f . a(x)K (x,−) is a
self-boson since

Tr ca(x)K (x,−),a(x)K (x,−) = Tr ca(x),a(x)e
iπK (K (x,−),K (x,−))

= eiπ[t (a(x),a(x))+K (x,x)] = 1. (30)

a(x)K (x,−) is in the Müger center [15] (mutually trivial to any
object i f ) since

1

di
Tr ci f ,a(x)K (x,−) ca(x)K (x,−),i f = e2π i[t (i,a(x))+K ( f ,K (x,−))]

= e2π i[t (i,a(x))+ f (x))] = 1. (31)

Therefore, {a(x)K (x,−), x ∈ Zκ} generates a symmetric fusion
subcategory in the Müger center of C↑

a,K which is equivalent
to Rep(〈a(x)K (x,−)〉 � Zκ/2 ker a). Condense it [16] [take
the category of local modules over Fun(Zκ/2 ker a)], and

we obtain the final result Ca,K = (C↑
a,K )

loc

Fun(Zκ /2 ker a)
. In gen-

eral, the associator (F matrix) will change and get compli-
cated after such an anyon condensation process. However,
since the condensed anyons are in the Müger center, the
braiding and fusion rules are preserved [16,17]. Thus if

we are only interested in the simple data such as fusion
rules and T, S matrices, it is fine to work in the larger
category C↑

a,K .
Conclusion and Outlook. In this Rapid Communication we

introduced the matrix formulation for non-Abelian families,
which makes it possible to generate any topological order
in the same non-Abelian family as a given one almost in-
stantly. We have provided a powerful tool, which, on one
hand, can help group known topological orders [18–22] (or
modular tensor categories [23]) into non-Abelian families,
and for simplicity, only the data of one root is necessary
to be listed explicitly; on the other hand, one can effi-
ciently generate the data of infinitely many possible unknown
topological orders.

The results in Ref. [9] already reduces the classification
problem of all (2+1)-dimensional topological orders to the
classification of all root topological orders, namely, in which
the Abelian anyons have trivial self- and mutual statistics.
The results in this Rapid Communication further make this
reduction an efficient and simple algorithm. In the end, we
only need to maintain a list of root topological orders. It
will be interesting to find the canonical (the simplest) form
of (a, K ), and then we will have a simple name for each
topological order: the root C plus the canonical form of (a, K ).
Moreover, after fixing a root C, we should be able to extract
all possible non-Abelian invariants [14] of this family by
studying C and the pair (a, K ). These non-Abelian invariants
will surely deepen our understanding of topological phases of
matter, as well as of the application of topological materials
in quantum computation.

Although the topological orders in the same non-Abelian
family have similar non-Abelian properties, rendering them
similar in braiding-fusion-based topological quantum com-
putation, they can be very different from other perspectives.
For example, we already know that the chiral central charge
changes by integers, thus the topological orders must have
different edge states. Moreover, starting from a root topo-
logical order with integer chiral central charge, it is possible
to construct a new topological order with nonchiral or even
gapped edge states. Thus, our construction provides a large
reservoir for topological defects and edge states which may
have future applications. The other properties that have not
been touched upon here, of the large numbers of topological
orders accessible from our construction, may also have poten-
tial applications.

Our construction can also be viewed as a generalization of
anyon condensation [16,24–30], where anyons are forced to
form an effective trivial state, and the condensed anyons are
necessarily bosons. We make anyons form effective Laughlin
states, and our results imply that the multilayer Laughlin states
are the most general types of states Abelian anyons can form.
From this point of view, it is natural to ask what kind of
nontrivial effective states non-Abelian anyons can form. Fu-
ture research along this line may reveal more exotic relations
between topological phases, by nontrivial condensations of
non-Abelian anyons, and further simplify our understanding
of topological orders.

Acknowledgment. T.L. thanks Zhihao Zhang and Wenjie Xi
for helpful discussions.
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APPENDIX: PROOF OF THEOREM 1

We prove the theorem by induction. It is obviously true for
κ = 1. Now assume that it is true for κ − 1 where κ > 1. Let
K0 be the corresponding κ − 1 by κ − 1 matrix. From κ − 1
to κ we choose ac = (aκ , lc) and even integer mc. The new K
matrix is

K1 =
(

K0 lc − taκ

(lc − taκ
)T mc − 2saκ

)
. (A1)

The spin of ac is

sac = saκ
+ 1

2 (lc − taκ
)T K−1

0 (lc − taκ
), (A2)

and the mutual statistics between (i, l0) and ac is

t(i,l0 ) = ti,aκ
+ (lc − taκ

)T K−1
0 (l0 − t i ). (A3)

First, as long as mc − 2sac 
= 0, K1 is invertible with

K−1
1 =

⎛
⎝K−1

0 + K−1
0 (lc−taκ )(lc−taκ )T K−1

0
mc−2sac

−K−1
0 (lc−taκ )
mc−2sac

− (lc−taκ )T K−1
0

mc−2sac

1
mc−2sac

⎞
⎠.

(A4)

Also,

det(K1) = det

(
K0 lc − taκ

(lc − taκ
)T mc − 2saκ

)

= det(K0)[mc − 2saκ
− (lc − taκ

)T K−1
0 (lc − taκ

)]

= (mc − 2sac ) det(K0). (A5)

Thus det K accounts for the increment of rank, total quantum
dimension, as well as the normalization of S matrix. Also
sgn K = sgn K0 + sgn(mc − 2sac ) accounts for the increment
of chiral central charge.

The new anyons are labeled by (i, l0, m), where m is an
integer. Combine l and m into a κ-dimensional vector lT =
(lT

0 , m). We only need to verify the spin, equivalence relations
and fusion rule of (i, l ); S matrix follows directly.

The spin of (i, l0, m) = (i, l ) is

s(i,l ) = s(i,l0 ) + (m − t(i,l0 ) )2

2(mc − 2sac )

= si + 1

2
(l0 − t i )

T K−1
0 (l0 − t i ) + (m − t(i,l0 ) )2

2(mc − 2sac )
, (A6)

while (using the same notation for κ − 1 and κ dimensional
t i)

1

2
(l − t i )

T K−1
1 (l − t i ) = 1

2
((l0 − t i )

T , m − ti,aκ
)K−1

1

(
l0 − t i

m − ti,aκ

)

= 1

2

[
(l0 − t i )

T K−1
0 (l0 − t i ) + (m − ti,aκ

)2 + (t(i,l0 ) − ti,aκ
)2 − 2(m − ti,aκ

)(t(i,l0 ) − ti,aκ
)

mc − 2sac

]
. (A7)

Indeed, we have

s(i,l ) = si + 1
2 (l − t i )

T K−1
1 (l − t i ). (A8)

For κ − 1 we have equivalence relations

(i, l0) ∼ (i ⊗ aI , l0 + (K0)I − t i + t i⊗aI ). (A9)

For (i, l0, m), one equivalence relation comes from condensing ac = (aκ , lc) with even integer mc,

(i, l0, m) ∼ (i ⊗ aκ , l0 + lc − t i − taκ
+ t i⊗aκ

, m + mc − t(i,l0 ) − t(aκ ,lc ) + t(i⊗aκ ,l0+lc−t i−taκ +t i⊗aκ ) ), (A10)

where

−t(i,l0 ) − t(aκ ,lc ) + t(i⊗aκ ,l0+lc−t i−taκ +t i⊗aκ )

= −ti,aκ
− taκ ,aκ

+ ti⊗aκ ,aκ
+ (lc − taκ

)T K−1
0 (t i − l0 + taκ

− lc − t i⊗aκ
+ l0 + lc − t i − taκ

+ t i⊗aκ
)

= −ti,aκ
− taκ ,aκ

+ ti⊗aκ ,aκ
. (A11)

Thus

(i, l ) ∼ (i ⊗ aκ , l + (K1)κ − t i + t i⊗aκ
), (A12)

where (K1)T
κ = (lT

c − tT
aκ

, mc − 2saκ
). The other equivalence relations come from choosing a different representative of (i, l0);

for I = 1, . . . , κ − 1,

(i, l0, m) ∼ (i ⊗ aI , l0 + (K0)I − t i + t i⊗aI , m − t(i,l0 ) + t(i⊗aI ,l0+KI −t i+t i⊗aI ) ), (A13)

where

− t(i,l0 ) + t(i⊗aI ,l0+(K0 )I −t i+t i⊗aI )

= −ti,aκ
+ ti⊗aI ,aκ

+ (lc − taκ
)T K−1

0 (t i − l0 − t i⊗aI + l0 + (K0)I − t i + t i⊗aI )

= −ti,aκ
+ ti⊗aκ ,aκ

+ (lc − taκ
)T
I . (A14)
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Thus

(i, l ) ∼ (i ⊗ aI , l + (K1)I − t i + t i⊗aI ), (A15)

where (K1)T
I = ((K0)T

I , (lc − taκ
)I ), I = 1, . . . , κ − 1.

The fusion of (i, l0, m) and ( j, k0, n) is

(i, l0, m) ⊗ ( j, k0, n) = ⊕Ni j
s (s, l0 + k0 − t i − t j + t s, m + n − t(i,l0 ) − t( j,k0 ) + t(s,l0+k0−t i−t j+ts ) ), (A16)

where

− t(i,l0 ) − t( j,k0 ) + t(s,l0+k0−t i−t j+ts )

= −ti,aκ
− t j,aκ

+ ts,aκ
+ (lc − taκ

)T K−1
0 (t i − l0 + t j − k0 − t s + l0 + k0 − t i − t j + t s)

= −ti,aκ
− t j,aκ

+ ts,aκ
. (A17)

Thus we do have

(i, l ) ⊗ ( j, k) = ⊕sN
i j
s (s, l + k − t i − t j + t s). (A18)

In the above proof, we need to assume that det K0 
= 0. As
we prove by induction, this in fact means that we need to
assume that det(KIJ , I, J = 1, 2, . . . , n) 
= 0 for any n < κ −
1. However, such an assumption is inessential and can be
dropped, given the following transformation on (a, K ): For
an integer matrix W with det W = ±1, (aI , KIJ ) is equiva-
lent to (a′

I = ⊗Ja⊗WIJ
J , K ′ = W KW T ). The fact that ta′

I ,a
′
J
=∑

PQ WIPtaP,aQWJQ implies the transformation for the K

matrix. As aI are in an Abelian group, it is convenient to
write in the additive convention a′

I = ∑
J WIJaI , or simply

a′ = W a. Thus Ca,K � CW a,W KW T for integer matrix W with
det W = ±1. More precisely, the equivalence is given by
(i, l ) �→ (i,W l ). Note that t ′

i = (ti,a′
I
) = W t i. It is straightfor-

ward to check that this map is compatible with the equivalence
relation (20), and preserves fusion (21), spin (22), and S
matrix (23).
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