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Majorana billiards are finitely sized, arbitrarily shaped superconducting islands that host Majorana bound
states. We study the fermion-parity switches of the ground state of Majorana billiards. In particular, we study
the density and statistics of these fermion-parity switches as a function of applied magnetic field and chemical
potential. We derive formulas that specify how the average density of fermion-parity switches depends on the
geometrical shape of the billiard. Moreover, we show how oscillations around this average value are determined
by the classical periodic orbits of the billiard. Finally, we find that the statistics of the spacings of these fermion-
parity switches are universal and are described by a random matrix ensemble, the choice of which depends on
the antiunitary symmetries of the system in its normal state. We thus demonstrate that “one can hear (information
about) the shape of a Majorana billiard” by investigating its “fermion-parity switch spectrum.”

DOI: 10.1103/PhysRevB.100.235455

I. INTRODUCTION

Eigenvalue spectra of finite quantum systems are related to
their shape in the short wavelength limit [1,2]. The celebrated
Weyl expansion relates the smooth part of the density of states
to the volume, boundary area, curvature as well as the Euler
characteristics of the shape of the system [2–4]. The remain-
ing part, namely the density of states fluctuations, sensitively
depends on the set of periodic orbits of the corresponding
classical dynamics as well as the type of scattering featured
in the system [5–9]. Moreover, if all unitary symmetries are
completely broken, the level-spacing distribution becomes
universal and reflects the presence (or absence) of antiunitary
symmetries [8,10–14].

The ground state of conventional superconductors has an
even number of fermions, reflecting their completely paired
nature (even fermion parity). However, under certain con-
ditions, the energy level of a state with an odd number of
fermions (odd fermion parity) can cross the energy level of
the state with even fermion parity to become the new ground
state. This crossing, dubbed fermion-parity crossing (FPX), is
protected since perturbations that mix different fermion-parity
states are prohibited. While well known within the context
of impurity states in superconductors [15,16], these cross-
ings can be viewed as topological phase transitions [17–28].
The modes that form at the degeneracy point are the well
known Majorana zero modes featuring non-Abelian statistics
[29–34], which have attracted recent attention as the candidate
system for realization of topological quantum computers.

Currently there are experimental signatures of zero-bias
conductance peaks, suggestive of edge-bound zero-bias states
[35–38]. However, conclusive experimental demonstration of
the Majorana bound states has been elusive so far as these
observed peaks could have nontopological origins such as
Andreev bound states [26,27,39–55], Kondo effect, weak
antilocalization, and disorder [56–66]. Hence new methods
of distinguishing Majorana zero modes from other sources
as well as new ways of understanding these nanowires have

become desirable. The presence of FPX sequences has been
regarded as the smoking gun signature of Majorana states in
ballistic 1D wires [67,68]. The universal statistics of these
FPXs were first studied by Beenakker et al. [21]. Recent
measurements on proximity coupled nanowires, expected to
feature topological superconductivity, found sequences of
FPXs as a function of magnetic field as well as gate voltage
[53,54].

In this work, we study the FPXs in finite sized topologi-
cal superconducting systems through the lens of (i) spectral
geometry, (ii) semiclassical physics, and (iii) random matrix
theory. We call these finite superconducting systems that
feature FPXs Majorana billiards (MBs) [69]. These FPXs in
MBs occur as an external parameter of the system, such as the
chemical potential μ or the Zeeman energy B, is varied. We
call the set of values at which FPXs occur (FPX) spectrum,
and the elements of this set FPX points. We first extract
geometrical information from the FPX spectrum. In particular,
we investigate the relation between the average density of
FPXs and the geometry of the system. In other words, we ask
and answer the question whether one can “hear” the shape
of a Majorana billiard from its FPX spectrum, alluding to
Kac’s famous question (as phrased by L. Bers), “Can one
hear the shape of a drum?” [70,71]. In the same spirit, we
next explore the connection between the dynamics of MBs
and the oscillations around the average density of FPXs.
These oscillations are analogous to supershell effects in nu-
clei, atomic clusters, or nanoparticles [4]. To the best of our
knowledge, there has been no theoretical investigation of these
supershell effects in MBs so far. We stress that as the FPX
spectrum is experimentally accessible [53,72], it would be
possible to analyze available experimental data on FPXs and
observe the shell and supershell effects predicted in this paper.
Finally, we show that the FPX spectrum of MBs exhibits
universal statistics that depends on whether the underlying
normal system is regular, diffusive, chaotic, or localized.

Our paper is organized as follows: In Sec. II, we describe
the physical systems that we focus on in this work. In Sec. III,
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FIG. 1. The 2D geometries used in the tight-binding numerical
simulations: (a) rectangle, (b) Lorentz gas cavity, (c) quarter-stadium
cavity, (d) disk.

we focus on the average density of FPXs of a MB and study
the relation between this density and the geometry of a MB
billiard. In addition, we derive a scaling property of FPX
points for a spinful Majorana billiard. We also show how
nonzero density of FPX points in disordered systems are
induced below the clean-system topological phase transition,
analogous to Lifshitz tails in disordered systems. In Sec. IV,
we discuss the oscillatory part of the density of FPXs due to
supershell effects and how it relates to classical periodic orbits
of the billiard. In Sec. V, we focus on the universality of the
statistics of FPXs in integrable and chaotic MBs and explore
the universality crossover as the system goes from diffusive to
localized.

II. DESCRIPTION OF THE SYSTEM

A. Majorana Billiards from s- and p-wave
topological superconductors

We study finite 2D Majorana billiard systems whose dy-
namics are described by the Bogoliubov–de Gennes Hamilto-
nian [73]

Hs = h(p, r) τz + α(pxσy − pyσx )τz + Bσx + �τx, (1)

where σi [τi] are the Pauli matrices in spin [particle-hole]
space (i = x, y, z), h(p, r) = p2/2m + V (r) − μ is the spin-
less part of the single-particle Hamiltonian with μ being
the chemical potential, α is the Rashba spin-orbit coupling
strength, B is the Zeeman energy and � is the s-wave pair
potential and V (r) is the single-particle potential which con-
sists of disorder and confinement potentials. The systems can
be clean or disordered, and their dynamics can therefore be
ballistic chaotic/integrable or diffusive in the classical limit.
Hence our numerical tight-binding simulations focus on these
cases as shown in Fig. 1.

For a one-dimensional system, if the Zeeman energy is
large enough to deplete one of the spin-polarized bands of the
Hamiltonian in Eq. (1), the system is described by a spinless
Bogoliubov–de Gennes Hamiltonian with an effective p-wave
pair potential [74,75]. In this work, we consider this system as
well as its 2D generalization, whose Hamiltonian is given by

Hp = h(p, r) τz + �′τ · p, (2)

where �′ = α �/ε is the (p-wave) pair potential strength,
with ε = √

B2 − �2 for B > �. Throughout this paper, we
call systems featuring the Hamiltonian Hs [Hp] “s wave” [“p
wave”].

B. Density of fermion-parity crossings

We now define the density of fermion-parity crossings.
We envision finding the zero energy solutions of Hs and Hp

in Eqs. (1) and (2) as an external parameter is varied. This
parameter for Hp is the chemical potential μ. For Hs, the
external parameter could either be the chemical potential μ

or the Zeeman energy B. We then record the values of these
parameters at which Hs or Hp have zero energy solutions as the
FPX points. (We show below in Sec. III C that the FPX points
of a given s-wave MB with respect to μ and with respect to B
are related.) Finally we define the density of FPX points of a
MB with respect to the dimensionless parameter β (β = μ/t
or β = B/t) as

ρ(β ) ≡
∑

i

δ(β − βi ), (3)

where βi = μi/t or βi = Bi/t , μi and Bi are the FPX points
and t determines the bandwidth of the system in that in d
dimensions the bandwidth is 2dt . (In tight-binding simula-
tions, t = h̄2/2ma2 is the hopping term and a is the lattice
parameter.) We also define the integrated density N (β ) of
FPX points, given by

N (β ) =
∫ β

−∞
ρ(β ′) dβ ′. (4)

We separate the density ρ(β ) into its average value ρ̄(β )
and the oscillations around this average ρosc(β ) as is custom-
ary in the semiclassical study of the DOS of a billiard [3–7]
and write

ρ(β ) = ρ̄(β ) + ρosc(β ). (5)

We study ρ̄(β ) in Sec. III and ρosc(β ) in Sec. IV.

III. AVERAGE DENSITY
OF FERMION-PARITY CROSSINGS

In this section, we investigate the density of FPXs for p-
and s-wave topological superconductors. We show that the
FPX points of Hp and Hs are real eigenvalues of a corre-
sponding non-Hermitian operator [Eqs. (7) and (12)]. Further
simplification is possible if S � ξ∂S, where S is the system
area, ∂S is the size of the boundary, and ξ is the superconduct-
ing coherence length. (For example, for a rectangular cavity
of width W , this limit corresponds to W � ξ .) In this limit,
the non-Hermitian eigenvalue problem for Hp and Hs can be
transformed by a local rescaling transformation to a Hermitian
eigenvalue problem [Eqs. (9) and (15)]. We thus show that,
surprisingly, the FPX points of MBs are related to the energy
eigenvalues of a Hermitian operator which we identify as the
normal state Hamiltonian. We next derive the Weyl expan-
sion for the average density of FPXs, which is expressed in
Eqs. (10) and (17) for the p- and s-wave cases, respectively.
We also perform numerical tight-binding simulations, which
we detail in Appendix A, and compare our results with our
formulas. We present our results for a 2D Majorana billiard
in Figs. 2(a) and 2(b), where we plot the integrated density
of FPXs N (μ/t ) for p- and s-wave systems. We see that the
analytical and numerical results fit remarkably well without
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FIG. 2. N (μ/t ) for a ballistic quarter stadium MB [see
Fig. 1(c)]. The solid lines are obtained using Eq. (10) for the top
panel and Eq. (17) for the bottom panel, as a function of μ/t . The
green line refers to the first term in the Weyl expansion whereas the
red line includes the surface corrections. The staircase plot (blue
line) is the result of tight-binding simulations. Lower-right insets
are zoom-ins to show the fit between tight-binding simulation and
theory. (a) p-wave Majorana billiard with with L = 80a, W = 40a,
and �′ = 0.001ta. (b) s-wave MB with L = 100a, W = 50a, B =
0.23t , � = 0.2t , and α = 0.001ta. The kink in the plot is at μ = ε

and signals the entrance of the second spin band, previously spin
polarized, into the picture.

any fitting parameters, once the boundary corrections in the
Weyl expansion are taken into account.

A. Average density of FPXs of a p-wave Majorana billiard

We first focus on the FPXs of a p-wave Majorana billiard
described by the Hamiltonian Hp [Eq. (2)]. In this case,
there’s only a single external parameter, namely the chemical
potential, to be varied, hence β = μ/t . The FPX points are
the μi values for which the p-wave h Hamiltonian has a
zero-energy eigenstate:

Hp|μ=μi χ = 0. (6)

We map the problem of finding the FPX points to that of
finding eigenvalues of a non-Hermitian operator by premul-
tiplying Eq. (6) by τz:(

(p + im�′η)2

2m
+ V (r) + m�′2

)
χ = μχ, (7)

where η = τyx̂ − τxŷ. We identify this operator as the Hamil-
tonian of a Rashba 2DEG with an imaginary Rashba parame-
ter α = i�′. Equation (7) shows that the real right eigenvalues
of this non-Hermitian operator correspond to the FPX points,
whereas the complex eigenvalues are associated with avoided
crossings.

There is no general reason to assume that a given right
eigenvalue of Eq. (7) is real. However, further simplification
is possible in the limit of S/∂S � ξ = h̄/m�′. Rescaling the
eigenfunction χ = eη·r/ξ−r2/ξ 2

χ̃ and expanding in powers of

S/(ξ ∂S), we obtain [76]((
p + 2m2�′2

h̄ (ẑ × r) τz
)2

2m
+ V (r) + m�′2

)
χ̃ = μ χ̃. (8)

We see that the crossing points are eigenvalues of the
normal state Hamiltonian with a fictitious magnetic field
±2m2(�′)2/eh̄ and a constant potential shift m(�′)2. We fur-
ther note that the energy levels are even functions of applied
magnetic fields. Therefore, to the order we are working in, the
effect of the fictitious magnetic field on the crossing points
can be ignored, as they only serve to modify the nonzero split
in energy levels. Hence we see that all eigenvalues of Eq. (8)
are real. We thus arrive at the remarkable result that all FPX
points are simply eigenvalues of a normal state Hamiltonian:(

p2

2m
+ V (r) + m�′2

)
χ̃ = μχ̃. (9)

This identification allows us to map the average density of
FPXs to the conventional density of states of a normal state
Hamiltonian. Well known results, such as the Weyl expansion
for average DOS [1–3] (or, for the case of soft confinement,
the Thomas-Fermi approximation [4]); Gutzwiller’s trace for-
mula in billiards for oscillations (supershell effects) in DOS
[7,77–80]; the theory of Lifshitz tails [81–83] for disordered
systems; as well as the random matrix theory results for DOS
fluctuations [21,84], carry over to the spectra of fermion-
parity crossings. For the average density of FPXs for the
p-wave system ρ̄w,p(μ) in d dimensions, we thus obtain [85]:

ρ̄w,p(μ) =

⎧⎪⎪⎨⎪⎪⎩
L

2π
√

μ
+ O(1) if d = 1

S
4π

− ∂S
8π

√
μ

if d = 2

V
√

μ

4π2 − ∂V
16π

if d = 3,

(10)

where L is the length of the 1D wire, S and ∂S are the area
and perimeter of the 2D billiard, and V and ∂V the volume
and surface area of the 3D dot cavity, respectively.

B. Average density of FPXs of a s-wave Majorana billiard

We now focus on the FPXs of an s-wave Majorana billiard
described by Hs [Eq. (1)]. In this case, there are two external
parameters, namely the chemical potential and the Zeeman
energy. Hence β can be either μ/t or B/t . We again start with
the zero energy eigenvalue problem

Hs|μi,Bj ψ = 0 (11)

where μi and Bj are the FPX points. Here, we have two
equivalent choices of obtaining a non-Hermitian eigenvalue
problem: eigenvalues corresponding to B or to μ. This equiv-
alence leads to a scaling relation between μi and Bj which we
discuss in Sec. III C. Without loss of generality we focus on
the eigenvalue problem for μi below. We premultiply Eq. (11)
with τz and obtain(

p2

2m
+ V (r) + αη · p + Bσxτz + i�τy

)
ψ = μψ, (12)

where η = (σyx̂ − σxŷ). This equation can then be solved
using tight-binding methods, see Appendix A.
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In order to proceed analytically, we follow Refs. [76,86]
to again transform the usual eigenvalue problem (Hs ψ =
E ψ with E = 0) to a non-Hermitian eigenvalue problem and
obtain:

(h(p, r)σz − iαpxσx ∓ B ∓ �σx ) φ± = 0. (13)

Here, we have ignored the chiral symmetry breaking term
iαpyσy, which is justified in the limit S � ξ∂S, as in the
previous section. For a finite system, the solution that satisfies
all boundary conditions can be expressed as

φn,± = ζ±(En)e±x/ξψn, (14)

where ζ±(ε) are the eigenvectors of the 2 × 2 matrix ε σz ∓
�σx with eigenvalue ±√

ε2 + �2 and ψn satisfies the eigen-
value equation:

h ψn = En ψn. (15)

Substituting Eq. (14) into Eq. (13), we find that the zero
mode solutions (hence the fermion-parity crossings) happen
on families of curves in the B − μ plane. The curves satisfy

B2 = (μ − En)2 + �2 (16)

for a given eigenvalue En of the spinless single particle Hamil-
tonian h(p, r). Hence, the density of FPX spectrum (with
respect to either μ or B) can be obtained by analyzing the set
of eigenvalues {En} of h(p, r). Noting that h(p, r) is the same
for s- and p-wave cases, we write the s-wave Weyl expansion
for ρw,s(μ) and ρw,s(B) for fermion-parity crossing densities
in terms of their p-wave counterpart ρw,p(μ) in Eq. (10):

ρw,s(μ, B) =
∑
ς=±1

ρw,p(μ + ςε) θ (μ + ςε), (17)

where θ (x) is the Heaviside step function, ε = √
B2 − �2 as

before, and the ς = ±1 terms in the sum correspond to the
densities of different spin species separated in energy by the
Zeeman field.

C. Universal scaling properties of fermion-parity crossing
points in s-wave systems

As a consequence of Eq. (16), the FPX spectra exhibit a
scaling relation for a given disorder realization: All the FPXs
corresponding to different values of μ, B, or �, collapse on the
same set of points if expressed in terms of the combination
μ ± √

B2 − �2 (Fig. 3). Moreover, if the FPX spectrum of
one of the Zeeman-split spin bands is known, the other
can immediately be determined by shifting the spectrum by
2
√

B2 − �2.
This universality is evident in Fig. 3, where we plot the

first four eigenvalues of a 1D s-wave system with a specific
disorder realization for different values of μ and � as a
function of B in Fig. 3(a) and as a function of μ + √

B2 − �2

in Fig. 3(b). These plots are obtained by discretizing the
s-wave Hamiltonian in Eq. (1) in 1D over 100 sites and
numerically solving the resulting eigenvalue problem. We see
that in Fig. 3(b), all energy level crossings happen at the same
set of values of μ + √

B2 − �2 for systems with the same
disorder realization but different system parameters.

FIG. 3. A plot of the lowest four eigenvalues of the disordered
s-wave Hamiltonian in Eq. (1), discretized on a 1D lattice of 100
sites, plotted as a function of (a) B/t and (b) μ/t + √

B2 − �2/t , for
different values of Hamiltonian parameters. In both plots, the green
set of curves represents the lowest four eigenvalues obtained for � =
1.5t , α = 0.05ta, μ = 1.8t ; the blue set is for � = 1.8t , α = 0.05ta,
μ = 2.0t ; and the red set is for � = 1.8t , α = 0.08ta, μ = 1.6t . In
all cases, the same disorder realization with a disorder strength Vd =
0.5t is utilized.

D. Lifshitz tail in disordered MBs

Disordered systems feature states below zero energy due to
the presence of islands with an average of below zero poten-
tial, even though the average potential for the whole system is
zero. Called the Lifshitz tail [81–83], this phenomenon is also
present in density of FPXs in MBs (see Fig. 4). The overall
disorder-averaged integrated density of FPXs N (μ/t ) for a
1D p-wave MB with Gaussian disorder [i.e., 〈V (r)V (r′)〉 =
D δ(r − r′)] is given by the formula [83]:

N (μ) = κ0

π2 ε0

1

[Ai(−2μ/ε0)]2 + [Bi(−2μ/ε0)]2
, (18)

FIG. 4. N (μ/t ) vs μ/t for a p-wave 1D MB for a wire of length
500a and �′ = 0.001ta. For the disordered case, the tight-binding
simulation plot is the average of 200 disorder realizations. The theory
lines are the plots of Eq. (18) for Vd = 0 and Vd = 0.3t .
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where Ai and Bi are the Airy functions, ε0 = (D2 mh̄−2)1/3

and κ0 = (D m2h̄−4)1/3.
In Fig. 4, we plot Eq. (18) and tight-binding simulations

for a 1D disordered wire (and a tight-binding simulation for
the same wire with zero disorder for comparison). We observe
FPXs in the fully spin-polarized wire even in negative values
of μ, caused by rare disorder configurations. We note that
the theory and the numerical simulations show remarkable
agreement without any fitting parameters.

IV. OSCILLATORY PART OF DENSITY OF
FERMION-PARITY CROSSINGS

We next investigate the oscillatory part ρosc of the density
of FPXs [see Eq. (5)]. The DOS analog of such oscillations are
the so-called shell and supershell effects known from the stud-
ies of finite quantum systems such as nuclei, atomic clusters,
and nanoparticles. The celebrated Guztwiller or Balian-Bloch
trace formula show that each periodic orbit contributes a term
oscillating with its classical action [3,7,77–80].

In this section, we extend the analysis of the oscillatory
part of DOS in Refs. [3,4] to the case of the FPX spectrum of
a clean p-wave MB. We again take advantage of the mapping
described in Sec. III A of the p-wave Hamiltonian to a normal
state Hamiltonian with eigenvalues yielding the FPX points.
We thus extend the Gutzwiller and/or Balian Bloch trace
formula [3,7] from its original setting of the DOS of finite
systems into the FPXs of finite Majorana platforms. The new
trace formula expresses the oscillating part ρosc as a sum over
classical periodic orbits ζ . Its general form is

ρosc(μ) =
∑

ζ

Aζ cos �ζ (μ), (19)

where Aζ is related to the stability of the orbit and h̄�ζ is
related to its classical action as well as the Maslov indices.
Their detailed form depends on whether the orbits are isolated
or part of a family of orbits (sometimes called degenerate
orbits). For isolated periodic orbits,

Aζ = Tζ /π h̄√| det(Mζ − I )| , �ζ (μ) = Sζ (μ)

h̄
− σγ π

2
, (20)

where Tζ is the period of the corresponding primitive periodic
orbit (i.e., the parent orbit with no retracings), Mζ is the
stability matrix of the orbit [87] and σγ is the Maslov index.
The final ingredient is the classical action, given by Sζ (μ) =∮
ζ

p · dr. The weight of individual contributions increases for
degenerate orbits. For two-dimensional systems—which is
our main focus—and singly degenerate orbits

Aζ = 2m

(2π h̄)3/2 pF

∫ ∣∣∣∣ ∂r⊥
∂ p′

⊥

∣∣∣∣−1/2

ζ

dr‖ dr⊥ ,

�ζ (μ) = Sζ (μ)

h̄
− σγ π

2
− π

4
, (21)

where pF is the Fermi momentum. Here an initial transverse
perturbation of momentum p′

⊥ leads to a final transverse
deviation r⊥ after a full round. We note that in a billiard
system |p| = pF , hence the classical action corresponding to
a periodic orbit is Sζ (μ) = pF Lζ where Lζ is the length of the
orbit ζ .

FIG. 5. (a) Density oscillations of fermion-parity crossings ρosc

for a clean p-wave disk Majorana billiard with R = 100a, �′ =
0.001ta. (b) The Fourier transform of ρosc. The (v, w) pairs and cor-
responding classical orbits for the peaks are labeled. The smoothing
parameter for both figures is γ = 0.4/R.

In order to demonstrate our results, we specialize to a clean
p-wave disk MB of radius R (see Fig. 1). For this system,
it is possible to obtain closed-form analytical formulas using
Eq. (19) and compare the numerical simulations with these
formulas. We first note that a periodic orbit of a disk billiard
is uniquely determined by the number w times the orbit winds
around the billiard and the number v times it reflects from the
boundary. Then a simple geometrical consideration allows one
to express the length of the orbit as Lvw = 2vR sin(πw/v). We
thus obtain

ρosc(μ) = 2mR2

h̄2

(
h̄

πR p(μ)

)1/2

×
∞∑

w=1

∞∑
v=2w

fvw

sin3/2(πw/v)√
v

× Im

[
exp

{
i
pF Lvw

h̄
+ iφpo

}]
, (22)

where φpo = −3vπ/2 + 3π/4, fvw = 2 θ (v − 2w) with θ (x)
being the Heaviside step function. In Fig. 5(a), we plot
ρosc(μ/t ) as determined from numerical solutions of the
Majorana billiard [88,89] (blue, solid line) and as given by
Eq. (22) (red, dashed line) for a p-wave disk MB. Both lines
are smoothed using a Gaussian smoothing function. The plots
show remarkable agreement. In Fig. 5(b), we plot the Fourier
transform ρ̃osc(L/R) of Fig. 5(a) in order to observe the
location of the periodic orbits and their relative amplitudes.
(We choose to show the Fourier transform as a function of
the dimensionless parameter L/R, i.e., orbit length divided by
disk radius, rather than as a function of the period of the orbit
for convenience, since the length and the period of a given
orbit are proportional.) As discussed above, the peaks are
centered around the L/R values of the high-degeneracy orbits
(shown in the insets) and their relative amplitude reflects their
order of degeneracy. It is a straightforward task to extend
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FIG. 6. (a)–(c) Level spacing distributions for a disordered rectangular p-wave MBs of varying lengths, averaged over 500 disorder
realizations, with �′ = 0.025ta, disorder strength Vd = 0.5t , width W = 20a. (a) L = 40a < ξ , (b) L = 100a � ξ , and (c) L = 1600a � ξ ,
with ξ = 80a being the superconducting coherence length. (d) Level spacing distributions, averaged over 225 cavity realizations, for a clean
p-wave Lorentz cavity MB. Here, �′ = 0.001ta, L = 50a, W = 50a, and r1 = r2 = 10a. The values of L/ξ in panels (a)–(d) are 0.5, 1.25, 20,
and 0.4, respectively.

Eq. (22) for the case of a generic (tight-binding) energy
dispersion and obtain the corresponding ρosc, for details we
refer the reader to Appendix B.

V. UNIVERSAL FLUCTUATIONS
OF FERMION-PARITY CROSSINGS

We now focus on how consecutive fermion-parity cross-
ings are correlated. We first work in the limit S/∂S � ξ [i.e.,
one of the system size parameters (the “width”) becomes
smaller than the superconducting coherence length] and we
obtain the FPX spacing distributions. We find that the FPX
points are uncorrelated for systems that are localized in their
normal state and the spacing distribution is Poissonian:

P(δμ) = exp(−δμ/〈δμ〉), (23)

where δμ is the FPX spacing and 〈δμ〉 is its ensemble-
averaged value. When the normal state system is near a de-
localization transition, the FPX points become correlated and
feature antibunching for small spacings, while large spacings
remain uncorrelated. This behavior is reflected in the semi-
Poissonian distribution, signaling the fractal nature of the
wave function near the metal insulator transition [90]:

P(δμ) = δμ

〈δμ〉 exp(−2δμ/〈δμ〉). (24)

Finally if the normal system is delocalized enough that the
escape time is shorter than h̄/〈δμ〉, the FPX points feature
correlations that are reminiscent of the eigenvalues of an
ensemble of real Hermitian random matrices and the cor-
responding distribution is the Wigner-Dyson distribution for

FIG. 7. (a)–(c) Level spacing distributions for disordered rectangular s-wave MBs with increasing Zeeman energy B, averaged over 500
disorder realizations, with L = 200a, W = 10a, Vd = 0.2t , α = 0.025ta, � = 0.12t , and (a) B = 1.12t , (b) B = 0.22t , and (c) B = 0.13t .
(d) Level spacing distributions for clean s-wave Lorentz cavity MB, averaged over 225 cavity realizations. Here, α = 0.001ta, � = 0.2t ,
B = 0.23t , L = 50a, W = 50a, and r1 = r2 = 10a. The values of L/ξ in panels (a)–(d) are 0.27, 1.63, 6.1 and 0.04, respectively.
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FIG. 8. The L/ξ values for Figs. 6(a)–6(d) and 7(a)–7(d). The
shaded region on the L/ξ axis around L/ξ = 1 schematically repre-
sents the universality crossover region where the statistics are semi-
Poissonian. Three panes from Fig. 6 are reproduced as an example
of Gaussian, semi-Poissonian, and Poissonian statistics. Here, L for
each shape is defined in Fig. 1.

orthogonal matrices [8,10–13,84]:

P(δμ) = πδμ

2〈δμ〉 exp

(
− πδμ2

4〈δμ〉2

)
. (25)

We again utilize a tight-binding model in order to numer-
ically obtain the FPX spacings and plot the results against
the distribution functions given in Eqs. (23), (24), and (25).
Figure 6 [Fig. 7] shows our p-wave [s-wave] results for
disordered rectangle cavities (a)–(c) and chaotic billiards (d).
In agreement with our predictions, the distributions evolve
from Wigner-Dyson to semi-Poissonian to Poissonian as the
escape time is increased (the system becomes more localized)
and fit the respective distributions well (see Fig. 6). We note,
however, that in the s-wave case, P(δμ → 0) approaches 0.5
if both spin species are populated. This is due to FPX points
constituting two interlaced sequences belonging to different
spin species [86] for larger B [see Eq. (17)]. While the ele-
ments of each sequence feature level repulsion, one sequence
is the shifted version of the other. For large enough shifts, the
two sequences become uncorrelated, hence the consecutive
spacings between FPX of differing sequences will also be
uncorrelated, suppressing the level repulsion.

Finally, we demonstrate a crossover between the universal-
ity classes in thin (W � ξ ) 2D MBs as the system length L
is varied from being small to large with respect to ξ , hence
modulating escape time relative to h̄/〈δμ〉 and summarize
the values of L/ξ for the systems depicted in Figs. 6(a)–6(d)
and 7(a)–7(d). In Fig. 8, we note the locations of all of the
Figs. 6(a)–6(d) and 7(a)–7(d) on the L/ξ axis. All of these
systems have one dimension (say, W ) much smaller than ξ .
However we stress that the numerical simulations depicted
here do not use this approximation. The simulations use
the full tight-binding version of the Bogoliubov–de Gennes
Hamiltonian (see Appendix A). Figure 8 clearly shows the
universality crossover in these systems.

The short coherence length limit, where the system size
exceeds ξ in all directions, was considered by Beenakker et al.
[21]. In this case the FPX points have the same statistics as
real eigenvalues of a real non-Hermitian matrix. For com-
pleteness, we also present the FPX spacing statistics in this
limit in Fig. 9, where we show the statistics of a system with
both dimensions L1 and L2 much larger than ξ , corresponding
to a real Hamiltonian with semi-Poissonian statistics.

FIG. 9. Fermion-parity crossing spacing statistics for a p-wave
system with both dimensions much larger than ξ (L = W = 5ξ ),
showing the statistics obtained from a tight-binding simulation of a
disordered system in a square geometry (500 disorder realizations)
whose parameters are L = W = 80a, V0 = 0.32t , �′ = 0.125ta and
ξ = 16a.

VI. CONCLUSIONS

In summary we studied the spectra of fermion-parity
switches of a Majorana billiard using methods from semiclas-
sical physics and quantum chaos. In particular, we show that
the average density of fermion-parity crossings is described by
a Weyl expansion and the disordered billiards feature Lifshitz
tails in the fully depleted limit. Moreover, we demonstrate that
the parity crossings have a tendency to sequentially bunch
and antibunch, which is reminiscent of supershell effects in
finite systems. We show that the oscillations in the density
of fermion-parity crossings resulting from this bunching can
be obtained by semiclassical means, extending Gutzwiller’s
trace formula for conventional quantum billiards to Majorana
billiards. Finally, we show that the fermion-parity crossing
spacings obey a universal distribution as described by random
matrix theory. We thus demonstrate that “one can hear (infor-
mation about) the shape of a Majorana billiard” from fermion
parity switches.
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APPENDIX A: NUMERICAL
TIGHT-BINDING SIMULATIONS

In order to demonstrate our analytical results in Secs. III A
and III B for average density of fermion-parity crossings, we
perform tight-binding simulations of fermion-parity crossings
in a p-wave and s-wave MBs using the Kwant toolbox for
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quantum transport [91]. For the p-wave numerical results,
we start with the LHS of Eq. (7), which is a non-Hermitian
operator, as opposed to the p-wave Hamiltonian in Eq. (2).
This non-Hermitian operator and the p-wave Hamiltonian in
Eq. (2) are equivalent in the sense that no approximation was
made in going from Eq. (2) to Eq. (7). We convert this non-
Hermitian operator to its tight-binding form, which satisfies
ÔPW

TB χ = μχ , using conventional methods (see, for example,
Ref. [92]):

ÔPW
TB = (2dt + V (x, y)) τ0 |x, y〉 〈x, y|

− tτ0[|x + a, y〉 〈x, y| + |x, y + a〉 〈x, y| + H.c.]

+ i�′
[

i

2
τy |x + a, y〉 〈x, y|

− i

2
τx |x, y + a〉 〈x, y| + H.c.

]
, (A1)

where t = h̄2/2ma2 is the hopping parameter, a is the lattice
constant for the tight-binding lattice, and V (x, y) is the onsite
potential. For disordered systems, we take the disorder to be
Gaussian, i.e., 〈V (r)V (r′)〉 = Dδ(r − r′) for r, r′ within the
system, where 〈. . .〉 represents averaging over disorder real-
izations, D ≡ V 2

d ad with Vd being the disorder strength, and d
is the dimension of the system. (In most of our paper, d = 2;
if d = 1, then the hoppings in the y direction are absent).
In tight-binding simulations, this corresponds to choosing
randomly the on-site potential from a Gaussian distribution.
For ballistic cavity results, we set V (x, y) = 0 within the
cavity. The boundaries of the system are defined by the lack of
hopping to outside. We form the tight-binding sparse matrix
of this operator using the Kwant library [91] over the system
shape described in Fig. 1 and the relevant plots. We then
numerically obtain the eigenvalues of this (non-Hermitian)
sparse matrix using LAPACK libraries present in the SciPy
package [93]. We finally discard nonreal eigenvalues to obtain
our results.

For the s-wave results, we go through the same proce-
dure, except for utilizing the appropriate tight-binding rep-
resentation of the non-Hermitian operator derived from the
Hamiltonian in Eq. (1). For E = 0, the tight-binding model
for the s-wave equivalent of Eq. (7) reads ÔSW

TB χ = μχ , with
the non-Hermitian operator ÔSW

TB defined as:

ÔSW
TB = [(2dt + V (x, y)) σ0τ0 + B σxτz] |x, y〉 〈x, y|

− tσ0τ0[|x + a, y〉 〈x, y| + |x, y + a〉 〈x, y| + H.c.]

− σyτ0

[
iα

2
|x + a, y〉 〈x, y| + H.c.

]
+ σxτ0

[
iα

2
|x, y + a〉 〈x, y| + H.c.

]
+ i�σ0τy |x, y〉 〈x, y| . (A2)

Again, in the plots where d = 1, the hoppings in the y direc-
tion are absent.

For disorder averaging, we create many realizations of the
same disordered system and do statistics over the combined
results of each realization. For shape averaging over chaotic
cavities, we create many realizations of the same chaotic

cavity, the difference between realizations being the position-
ing of a relevant geometrical feature of the cavity, without
changing the size of the system volume or boundary. For the
Lorentz cavity, for example, we slightly change the position
of the central stopper for each realization (making sure the
stopper never comes too close to a wall). We check that the
change is large enough numerically to yield a completely
different set of eigenvalues.

APPENDIX B: OSCILLATORY BEHAVIOR OF THE
DENSITY OF FERMION-PARITY CROSSINGS IN A DISK

MAJORANA BILLIARD

In this section, we demonstrate the trace formula for ρosc

[see Eq. (5)] for a p-wave disk MB of radius R. As opposed
to the calculation in the main text, here we compare the trace
formula to tight-binding simulations.

We remind the reader that the oscillatory part ρosc(E ) of
the density of states ρ(E ) for a two-dimensional disk billiard
of radius R with quadratic dispersion is given by [4]:

ρosc(E ) = 1

E0

√
h̄

π pR

∞∑
w=1

∞∑
v=2w

fvw

sin3/2(ϕvw )√
v

× Im[exp{i(Svw/h̄ − 3vπ/2 + 3π/4)}], (B1)

with

fvw =
{

1 if v = 2w

2 if v > 2w
(B2)

and E0 ≡ h̄2/(2mR2). For a quadratic Hamiltonian, Svw =
p Lvw is the classical action of the orbit with Lvw =
2vR sin(ϕvw ) being the classical orbit length of 2D disk,
ϕvw ≡ πw/v is half of the polar angle and p is the momentum
of the particle. As before, v,w are two integers that corre-
spond to the number of vertices and windings of the classical
periodic orbit, respectively.

However the tight-binding dispersion breaks the rotational
symmetry of the problem weakly. The orbits that belong to the
families that have the same action for a quadratic dispersion
have slightly different actions for the tight-binding dispersion.
This type of symmetry breaking can then be treated by the
semiclassical perturbation theory as discussed in Ref. [4] (see
p. 272). This would involve averaging the variation of the
phases over all the orientations of the orbits, resulting in an
effective dispersion Eeff(p) of a fictitious rotationally invariant
problem. We find that the (one dimensional tight-binding-like)
dispersion Eeff = 2t (1 − cos (pa/h̄)) produces a very good fit
to the numerical simulations. We thus obtain the expression
for momentum p(μ):

p(μ) = h̄

a
arccos

(
1 − μ

2t

)
. (B3)

The deviations from the quadratic dispersion lead to a correc-
tion Svw → Svw + �Svw in the action:

�Svw = h̄

a
tan

(
p(μ)a

2h̄

)
Lvw. (B4)

We now obtain the oscillatory part of the density of fermion-
parity crossings corrected for tight-binding dispersion:
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ρosc(μ) = 1

E0

(
h̄

πR p(μ)

)1/2 ∞∑
w=1

∞∑
v=2w

fvw

sin3/2(ϕvw )√
v

× Im

[
exp

{
iLvw

(
p(μ + iγ )

h̄
− 1

a
tan

p(μ + iγ ) a

2h̄

)
+ i(−3vπ/2 + 3π/4)

}]
. (B5)

Here, we combined Eq. (B1), (B3), and (B4) at μ → μ + iγ ,
with γ being the smoothing parameter.

The numerical results for ρosc and ρ̃osc plotted in Fig. 10 is
obtained by solving a tight-binding p-wave system shaped as
a disk using the Kwant toolbox as described in Appendix A.
We then obtain ρosc as

ρosc(μ/t ) = ργ (μ/t ) − ρw(μ/t ), (B6)

where ρw corresponds to the volume and surface terms of the
Weyl expansion in Eq. (10) and ργ is the smoothed density of
fermion-parity crossings

ργ (μ/t ) =
∫

dμ′ ∑
μc

δ(μ′ − μc) F

(
μ − μ′

γ

)
, (B7)

F ( μ−μ′
γ

) is the Gaussian smoothing function with smooth-
ing width γ . We then take the Fourier transform of

ρosc(k(μ/t ) a)
FT−→ ρ̃osc(L/R) to identify the peaks corre-

sponding to the lowest length L and the highest symmetry

semiclassical periodic orbits [4] and plot the results in
Fig. 10(b). We find good agreement with our analytical results.

FIG. 10. (a) Density oscillations of fermion-parity crossings ρosc

for a clean p-wave disk Majorana billiard on a lattice with R = 100a,
�′ = 0.001ta. (b) The Fourier transform of ρosc. The (v, w) pairs
and corresponding classical orbits for the peaks are labeled. The
smoothing parameter for both figures is γ = 0.4/R.
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