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Polaritons in metals, semimetals, semiconductors, and polar insulators can allow for extreme confinement
of electromagnetic energy, providing many promising opportunities for enhancing typically weak light-matter
interactions such as multipolar radiation, multiphoton spontaneous emission, Raman scattering, and material
nonlinearities. These extremely confined polaritons are quasielectrostatic in nature, with most of their energy
residing in the electric field. As a result, these “electric” polaritons are far from optimized for enhancing
emission of a magnetic nature, such as spin relaxation, which is typically many orders of magnitude slower
than corresponding electric decays. Here, we take concepts of “electric” polaritons into magnetic materials, and
propose using surface magnon polaritons in negative magnetic permeability materials to strongly enhance spin
relaxation in nearby emitters. Specifically, we provide quantitative examples with MnF2 and FeF2, enhancing
spin transitions in the THz spectral range. We find that these magnetic polaritons in 100-nm thin films can be
confined to lengths over 10 000 times smaller than the wavelength of a photon at the same frequency, allowing
for a surprising 12 orders of magnitude enhancement in magnetic dipole transitions. This takes THz spin-flip
transitions, which normally occur at timescales on the order of a year, and forces them to occur at sub-ms
timescales. Our results suggest an interesting platform for polaritonics at THz frequencies, and more broadly, a
way to use polaritons to control light-matter interactions.
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Polaritons, collective excitations of light and matter, offer
the ability to concentrate electromagnetic energy down to
volumes far below that of a photon in free space [1–6], holding
promise to achieve the long-standing goal of low-loss con-
finement of electromagnetic energy at the near-atomic scale.
The most famous examples are surface plasmon polaritons on
conductors, which arise from the coherent sloshing of surface
charges accompanied by an evanescent electromagnetic field.
These collective excitations are so widespread in optics that
their manipulation is referred to as plasmonics. Plasmons
enjoy a myriad of applications, particularly in spectroscopy
due to their enhanced interactions with matter. This enhance-
ment applies to spontaneous emission, Raman scattering,
optical nonlinearities, and even dipole-“forbidden” transitions
in emitters [7–16]. Beyond plasmons in metals, polaritons in
polar dielectrics, such as phonon polaritons [17–20] are now
being exploited for similar applications due to their ability to
concentrate electromagnetic energy on the nanoscale in the
mid-IR/THz spectral range.

The ability of nanoconfined polaritons to strongly enhance
electromagnetic interactions with matter can ultimately be
understood in terms of electromagnetic energy density. An
electromagnetic quantum of energy h̄ω, confined to a volume
V , leads to a characteristic root-mean-square electric field of
order

√
h̄ω
ε0V . In the case of field interaction with an electron in

an emitter, this characteristic field drives spontaneous emis-
sion, and thus concentration of energy to smaller volumes
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leads to enhanced emission. This well-studied phenomenon
is best known as the Purcell effect [21]. Interestingly, if one
looks at the electromagnetic energy distribution of a highly
confined plasmon or phonon polariton, one finds that an over-
whelming majority of this energy resides in the electric field
[22–24]. For a polariton with a wavelength 100 times smaller
than that of a photon at the same frequency, the magnitude
of E is then 100 times larger than that of μ0cH . In sharp
contrast to free space wave propagation, the energy residing
in the magnetic field is of the order of a mere 0.01% of the
total energy h̄ω. This largely suggests that such excitations
are relatively inefficient for enhancing spontaneous emission
processes which couple to the magnetic field, such as spin-flip
transitions or magnetic multipole decays. As such, enabling
magnetic decays at very fast rates represents a rewarding chal-
lenge, as increasing rates of spontaneous emission can provide
opportunities for detectors, devices, and sources of light.

The Purcell enhancement of magnetic dipole transitions
has been approached by a few basic means: The use of
highly confined resonances at optical frequencies [25,26],
metamaterials [27,28], and for microwave frequencies, mate-
rials with simultaneously very high quality factors and highly
confined fields. These advances are reviewed in Ref. [29].
Many of these methods have the benefit of compatibility with
well-known materials and use at optical frequencies, but the
Purcell enhancements in these cases are typically very far
from maximal Purcell enhancements that can be achieved
with “electric” polaritons at similar frequencies [14,16,30–
33]. This prompts the question: What kind of electromagnetic
response allows one to achieve a similar degree of very strong
enhancement for magnetic transitions?
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The duality between electric and magnetic phenomena,
combined with ideas from plasmonics and nano-optics, sug-
gests a pathway for achieving strong magnetic transition
enhancement: Highly confined magnetic modes in materials
with negative magnetic permeability. In particular, plasmon
and phonon polaritons are associated with a negative dielec-
tric permittivity ε(ω). By the well-established principle of
electromagnetic duality [34,35], if one replaces ε(ω) with the
magnetic permeability μ(ω), then the electric field E in the
dielectric structure becomes the magnetic field H in the dual
magnetic structure. Thus, to very efficiently enhance magnetic
decays, one desires a material with negative μ(ω) which sup-
ports modes dual to “electric” surface polaritons. While likely
not the only example, AFMR is a well-studied example of a
phenomenon which can provide precisely this permeability,
and the corresponding modes are surface magnon polaritons
(SMPs) [36–38].

Here, we use macroscopic quantum electrodynamics
(MQED) of magnetic materials to propose extreme enhance-
ment of magnetic transitions in nearby quantum emitters by
using highly confined SMPs. We find enhancement of spin
relaxation rates by over 12 orders of magnitude, showing
magnetic Purcell enhancements as large as the highest limits
predicted for electric Purcell enhancements. We discuss how
the losses present in magnetic materials impact the magnetic
decay rate and argue that even with these considerations,
extremely large enhancements can be achieved. Such en-
hancements could provide access to extremely fast magnetic
dipole decays, shortening radiative lifetimes on the order of a
year to submillisecond timescales.

The organization of this paper is as follows: In Sec. I, we
review the classical electrodynamics of SMPs and derive the
dispersion relation and mode profile of SMPs for the exam-
ple of an antiferromagnetic thin film. We briefly review the
propagation properties of these modes and, in particular, note
their extremely large confinement. In Sec. II, we use MQED
to quantize the SMP modes and calculate the spontaneous
emission rate of nearby magnetic dipole emitters into these
modes. Finally, in Sec. III, we provide quantitative results
for the spontaneous emission by spin systems near existing
magnon-polaritonic materials, such as MnF2 and FeF2.

I. SURFACE MAGNON POLARITON MODES

The spin interactions in solids which give rise to different
varieties of magnetic order have been studied extensively.
Of particular note for our purposes is the study of the long-
range order established by spin waves in (anti)ferromagnets
[39–47]. These spin waves can be excited at the level of a
single quantum, and the quasiparticles associated with these
excitations are magnons [37]. More recently, magnons have
attracted considerable attention for their ability to interact
with electric currents and electron spins, leading to the rapidly
growing field of magnon spintronics [48–57].

We begin by reviewing the confined modes which exist on
thin films of materials with negative magnetic permeability,
denoted μ(ω). The modes we describe are well-studied SMPs
[36,58–60] with Re μ(ω) � 0. At a microscopic level, the
modes correspond to ordered precession of the spins in an
antiferromagnetic lattice and are also referred to as surface

TABLE I. Anisotropy fields, exchange fields, sublattice mag-
netization, resonance frequencies, and damping constants (where
known) for antiferromagnetic materials that can support SMPs.
Parameters are taken from Refs. [66,69].

Material μ0HA(T ) μ0HE (T) μ0HM (T) ω0 (rad THz) τ (nsec)

MnF2 0.787 53.0 0.06 1.69 7.58
FeF2 19.745 53.3 0.056 9.89 0.11
GdAlO3 0.365 1.88 0.062 0.23 –

spin waves [61]. The classical dynamics of spin-wave propa-
gation are governed by the Landau-Lifshitz-Gilbert equation,
which accounts for damping [62,63]. These microscopic inter-
actions give rise to a magnetic susceptibility (or equivalently
a magnetic permeability) which dictates how macroscopic
electromagnetic fields propagate in the material. Given the
classical solutions to the Maxwell equations in a material
configuration, one can then quantize the magnon modes,
allowing the use of quantum optics techniques to describe
the interaction of magnon modes in the vicinity of emitters.
We construct these classical solutions, quantize these modes,
and then solve for magnetic dipole transition rates into these
modes.

For the specific case of an antiferromagnetic material near
resonance, the frequency-dependent permeability which in-
cludes material losses takes the form of a Lorentz oscillator
which depends on the microscopic magnetic properties of
the antiferromagnetic crystal. Studies of the crystal structures
of important antiferromagnetic materials can be found in
Ref. [64]. The magnetic permeability function for antiferro-
magnetic resonance (AFMR) in the absence of an external
magnetizing field from [65–67] is

μxx = μyy = 1 + 2γ 2HAHM

ω2
0 − (ω + i�)2

, (1)

with coordinates shown in Fig. 1. In Eq. (1), ω0 is the
resonance frequency, HA is the anisotropy field, HM is the sub-
lattice magnetization field, γ is the gyromagnetic ratio, and
� = 1/τ is a phenomenological damping parameter inversely
proportional to the loss relaxation time τ . Furthermore, in
the approximation of low damping, the resonant frequency is
given as ω0 = γ

√
2HA(HA + HE ), where HE is the exchange

field which is representative of the magnetic field required to
invert neighboring spin pairs. For antiferromagnetic materials
such as MnF2 and FeF2, the resonance frequencies ω takes
values 1.69 × 1012 and 9.89 × 1012 rad/s, respectively, and
have negative permeability over a relatively narrow bandwidth
on the scale of a few GHz. Most importantly for our purposes,
Reμ(ω) < 0 for ω < ω0 < ωmax, which will permit surface-
confined modes. Finally, we note that we have implicitly as-
sumed that the magnetic permeability carries no dependence
on the wave vector through nonlocal effects. For wavelengths
which substantially exceed the atomic lattice spacing, this
should be an excellent approximation. A more detailed dis-
cussion of nonlocality in terms of mean-field parameters from
Landau-Ginzburg phase transition theory can be found in
Ref. [68]. Table I shows values of material parameters for a
variety of antiferromagnetic materials. Figure 2(a) shows the
real and imaginary parts of the magnetic permeability μ(ω)
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FIG. 1. Electromagnetically dual relationship between surface plasmon polaritons on negative permittivity materials and surface magnon
polaritons on negative permeability materials. (a) Surface plasmon polariton represented as charge density oscillations in a negative ε material.
These quantum fluctuations can couple strongly to an electric dipole emitter near the surface to drive enhanced spontaneous emission.
(b) Surface magnon polariton represented as a spin density oscillation in a negative μ material. These quantum fluctuations can couple strongly
to a magnetic dipole emitter near the surface to drive enhanced spontaneous emission. Both electric and magnetic surface polaritons can exhibit
strong mode confinement, helping to overcome the mismatch between mode wavelength and emitter size.

associated with the AFMR in MnF2. We see that at the peak
of the resonance, Re(μ) ≈ −40 and Im(μ) ≈ 90.

We now discuss the geometry of the thin-film configura-
tions we study. Antiferromagnetic fluorides exhibit a uniaxial
permeability structure with two orthogonal components of
the permeability tensor given by μ(ω) above, and the other
orthogonal component as unity. We start by focusing on
crystal orientations in which μ = (μ(ω), μ(ω), 1). It is also
worthwhile to note that experiments, specifically on nonre-
ciprocal optical phenomena [70], have been performed on
these materials in a less conventional geometry where μ =
(μ(ω), 1, μ(ω)). The in-plane anisotropy of this configuration
substantially complicates the dispersion relation and propaga-
tion structure of the modes. As such, we focus primarily on the
isotropic case but present results for the in-plane anisotropic
case near the end of the text.

For concreteness, we focus on MnF2, a material which
has been studied in depth both in theory and experiment
[71,72], and also exhibits a relatively low propagation loss.
We note that FeF2 is also a promising candidate with higher
resonance frequency, but also higher loss [73,74]. We solve
for SMPs supported by optically very thin (here, submicron
thickness denoted by d) MnF2 films surrounded by air. For
the confined modes we consider, the effect of retardation is
negligible [75], and thus we can find the magnon modes using
a quasimagnetostatic treatment as described in Ref. [66]. In
the magnetostatic limit, the resulting “polaritons” are much
more magnonlike than photonlike. Nevertheless, many of
the applications which are considered in polaritonics are
feasible with these modes [2,4]. In the absence of retardation,
the electric field is negligible, and the magnetic field, since
there are no free currents, satisfies ∇ × H = 0. Thus the
magnetic field can then be written as the gradient of a scalar
potential H = ∇ψH . This scalar potential then satisfies a
scalar Laplace equation,

∂iμi j (ω)∂ jψH = 0, (2)

where we have used repeated indices to denote summation. In
this paper, the absence of applied magnetic fields guarantees
that μi j is diagonal, and so Eq. (2) contains only three terms.
Applying boundary conditions for the continuity of B in the
z direction and of H in the xy plane at the two interfaces of a

film of thickness d gives the dispersion relation

qn = 1

2d
√−μ(ω)

[
tan−1

(
1√−μ(ω)

)
+ nπ

2

]
, (3)

where n is an integer, qn is the in-plane wave vector of mode n,
and μ(ω) is the permeability given in Eq. (1). We see that qn

is inversely proportional to the thickness of the slab d , which
is anticipated, as the thickness of the material sets the scale
of the wave solution in the z direction. Identical to confined
modes on thin films of plasmonic materials (silver and gold
for instance), a thinner film results in a smaller wavelength.
An extreme limiting case in plasmonics is graphene, in which
an atomically thin layer is capable of confining surface plas-
mons with confinement factors of 200 [5]. Figure 2(c) shows
plots of the scalar potential ψH associated with SMP modes on
MnF2, which is proportional to the magnetic field in direction
of propagation. The scalar potential solutions to the Laplace
equation take the form

ψn
H (r, ω) =

{
eiqn·ρe−qn|z| |z| > d/2(

e−qnd

f (qnd )

)
eiqn·ρ f (qnz) |z| < d/2,

(4)

where ρ = (x, y) is the in-plane position, f (x) = cos(x) for
even modes, and f (x) = sin(x) for odd modes. Taking the gra-
dient of the scalar potential gives the fully vectorial magnetic
field, which reveals that the SMP mode propagates in the in-
plane direction q̂ with circular polarization ε̂q = (q̂ + iẑ)/

√
2.

This polarization is well known to be typical of quasistatic
surface polariton modes, whether they are the transverse mag-
netic modes associated with quasielectrostatic excitations or
transverse electric modes associated with quasimagnetostatic
excitations.

We now discuss the key properties of these surface
modes, including their dispersion, confinement, velocities,
and quality factor resulting from material losses. In Fig. 2(b),
we plot the material-thickness-invariant dispersion relation
ω(qd ). The dimensionless wave vector qd indicates how the
size of the in-plane wave vector compares to the thickness of
the film. We note that we have incorporated the effect of loss
into the dispersion by finding solutions with real frequency
and complex wave vector. Our dispersion plots show the real
part of the wave vector. In the lossless limit, the dispersion
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FIG. 2. Surface magnon polariton (SMP) modes on MnF2. (a) Frequency-dependent permeability function for MnF2 calculated using
Eq. (1) and using the parameters given in Table I. For MnF2, the resonance frequency is ω0 = 1.68 × 1012 rad/s. For ω0 < ω < ωmax,
Re(μ) < 0, allowing for surface modes. (b) Dispersion relation for MnF2 of thickness d , calculated in the quasimagnetostatic limit which
is valid in the range of thicknesses d we consider. The first four modes are shown. (c) Visualization of fundamental and first harmonic mode
SMP through the field component Hx shown for a d = 200-nm film of MnF2 at ω/ω0 = 1.005. The locations of these two modes are indicated
on the dispersion curve.

is asymptotic to a fixed frequency in the limit that q → ∞.
The introduction of loss causes the band to fold back on itself,
placing a limit on the wave vectors which can be excited.
Consequently, modes near the peak of this folded band exhibit
the highest attenuation.

The dispersion plot shows the first four bands—the
fundamental mode (n = 0) as well as three higher harmonics
(n = 1, 2, 3). Due to the the reflection symmetry of the geom-
etry in the z direction, two of these modes are even parity, and
two are odd parity. We can interpret the mode index as the
number of half oscillations which the magnetic field makes in
the z direction of the film. Higher order modes will have larger
wave vectors. Once again, we can further understand the
dispersion relation of these modes through analogy to existing
polaritonic systems. Specifically, MnF2 is a hyperbolic
material since μ⊥ > 0 while μ‖ < 0 (where the directions ⊥
and ‖ are taken with respect to the z axis). This is much like
the naturally occurring hyperbolic material hexagonal boron
nitride, which has one component of its permittivity negative,
while another component is positive [18,19]. As a result of
this, these systems have a multiply branched dispersion, and
the electromagnetic fields are guided inside the crystal. The
first two modes (n = 0, 1) are shown in Fig. 2(c), where
we note the mode confinement to the slab, as well as the

evanescent tails which enable interaction with surrounding
emitters.

The most impressive figure of merit of these modes is
the size of their wavelength in comparison to the free space
wavelength at a given frequency, also known as a confinement
factor or effective index of the mode. Figure 3(b) highlights
this, showing the confinement factor η = qc/ω = λ0/λSMP for
the first four modes (n = 0, 1, 2, 3) on d = 200 nm MnF2 as
a function of frequency. We see that the fundamental mode
reaches a peak confinement of η = 2 × 104, while the first
harmonic is confined to twice that with η = 4 × 104.

These values exceed by two orders of magnitude the
maximum confinement values that have been observed in
common plasmonic media such as thin films of silver, gold,
or titanium nitride, or doped graphene. Furthermore, since
the confinement scales linearly with q ∼ 1/d , decreasing the
material thickness increases the achievable range of confine-
ment factors. As a simple example of this, consider that a
material thickness of d = 50 nm would correspond to a wave
vector four times larger than for d = 200 nm, in other words
a maximum fundamental mode confinement of 8 × 104, and a
confinement above 104 for much of the surface magnon band.

An explanation for this high confinement in terms of most
basic principles is that the frequencies at which SMPs exist

FIG. 3. Propagation properties of SMP modes on MnF2. The following dimensionless quantities are plotted for MnF2 with propagation loss
τ = 7.58 nsec for the first four modes indexed by n = (0, 1, 2, 3): (a) mode quality factor Q = Re(q)/Im(q) as a function of mode frequency,
(b) mode confinement factor η = qc/ω as a function of mode frequency, and (c) normalized group velocity vg/c = |dω/dk|/c as a function of
mode frequency.
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(GHz-THz) are orders of magnitude lower than for plasmons
which typically exist in IR to optical regimes. Simultaneously,
the scale of the wave vector q in both plasmonic and magnonic
media is set by the film thickness d for electrostatic and mag-
netostatic modes, respectively (this means that plasmons and
magnons will have wave vectors of similar scale, regardless
of frequency). In other words, at a fixed material thickness,
lower frequency surface magnons have substantially higher
potential for geometrical squeezing than surface plasmons.
We note that this is not of purely formal interest, as when
considering the enhancement of spontaneous emission, one
finds that the enhancement is proportional to a power of
precisely this confinement factor.

In addition to understanding the confinement of magnon
polaritons, it is also important to understand their propagation
characteristics, such as propagation quality factor, and group
velocity. Figures 3(a) and 3(c) shows the quality factor Q =
Re(q)/Im(q), as well as the normalized group velocity vg/c
as a function of frequency for the first four modes. We see
that propagation losses are lowest toward the middle of the
allowed frequency band, showing quality factors greater than
20 for the fundamental mode (n = 0). Additionally, we see
that the group velocity vg reaches its maximum near the lower
portion of the allowed frequency range, and goes toward zero
at the other end.

II. THEORY OF SPIN RELAXATION
INTO MAGNON POLARITONS

We now discuss how an an emitter with a magnetic dipole
transition placed above the surface of a thin negative per-
meability material can undergo spontaneous emission into
SMPs which is much faster than the emission into free space
photons. First, we consider the Hamiltonian which couples
the magnetic moment of the emitter to the quantized mag-
netic field. Fluctuations in the evanescent magnetic field from
SMPs can then cause the emitter to relax via the emission of a
SMP. The rate at which this process occurs is calculated using
Fermi’s golden rule. Finally, we discuss the effect of material
losses on the total decay rate, and argue that for parameters of
interest, the effect should be small.

We first discuss the mechanisms that can allow an emitter
to couple to highly confined SMPs. A magnetic field can cou-
ple to both the electron spin angular momentum and orbital
angular momentum, as both angular momenta contribute to
the electron’s magnetic moment. We describe this interaction
quantum mechanically with an interaction Hamiltonian Hint

between an emitter and a magnetic field [76,77]

Hint = −μ · B = −μB(L + gS)

h̄
· B, (5)

where μ is the total magnetic moment of the emitter, S =
h̄
2 σ is the spin angular momentum operator, L is the orbital
angular momentum operator, g ≈ 2.002 is the Landé g-factor.
In this Hamiltonian, we note that B is the quantized magnetic
field operator associated with SMP modes.

To provide a fully quantum mechanical description of
the interactions, we use the formalism of macroscopic QED
(MQED) to rigorously quantize the electromagnetic field
modes in a medium (in this case, a thin slab of negative

permeability material) This approach is similar to that in
Ref. [78], which was applied to quantize electromagnetic
fields in dielectric structures. We consider a geometry of
a negative μ material which is translation invariant (i.e., a
slab geometry). In this case, the modes are labeled by an
in-plane wave vector q. We can then construct an operator
which creates and annihilates excitations of the magnetic field
which are normalized so each SMP carries energy h̄ωq. The
magnetic field operator in the evanescent region above the slab
(z > d/2) takes the form

B(r) =
∑

q

√
μ0 h̄ω

2ACq
(ε̂qeiq·ρe−qzaq + ε̂∗

qe−iq·ρe−qza†
q), (6)

where a†
q and aq are creation and annihilation operators for

the SMP modes satisfying the canonical commutation relation
[aq, a†

q′ ] = δqq′ , ε̂q is the mode polarization, A is the area

normalization factor, and Cq = ∫
dz H∗(z) · d (μω)

dω
· H(z) is a

normalization factor ensuring that the mode H = ∇ψH has
an energy of h̄ωq. The energy has been calculated according
to the Brillouin formula for the electromagnetic field energy
in a dispersive medium in a transparency window [79,80].
As a point of comparison, we note that similar quantiza-
tion schemes have been implemented for surface plasmon-
polariton modes on graphene [22] and many other systems in
optics [78,81]. In this expression for the energy, we have also
used the fact that the modes are magnetostatic in nature, so the
contribution of the electric field to the energy associated with
them is negligible.

To establish the strength of the coupling between a mag-
netic dipole emitter and SMPs, we calculate spontaneous
emission of a spin into a thin negative μ material such as
an antiferromagnet, using Fermi’s golden rule. The rate of
transition via the emission of a magnon of wave vector q is
given as

�(eg)
q = 2π

h̄2 |〈g, q|Hint|e, 0〉|2δ(ωq − ωeg). (7)

We specify the initial and final states of the system as
|e, 0〉 and |g, q〉, respectively, where e and g index the excited
and ground states of the emitter, q is the wave vector of
the magnon resulting from spontaneous emission, ωq is its
corresponding frequency, and ωeg is the frequency of the spin
transition. Note that Eq. (7) applies generally and can capture
any multipolar magnetic transition.

With the magnetic field quantized appropriately and the in-
teraction Hamiltonian established, obtaining the spontaneous
emission rate proceeds in the usual way. Substituting Eq. (6)
into the Hamiltonian of Eq. (5), and then applying Fermi’s
golden rule as written in Eq. (7), we find that the spontaneous
emission rate �(eg) per unit magnon in-plane propagation
angle θ is given by

d�
(eg)
dipole

dθ
= μ2

Bμ0ωeg

2π h̄

q3(ωeg)

Cq(ωeg)|vg(ωeg)|e−2q(ωeg )z0 |Meg|2, (8)

where |vg| = |∇qω| is the magnitude of the SMP group veloc-
ity, μB is the Bohr magneton, and Meg = 〈g|ε̂q · (L + gS)|e〉 is
the matrix element which describes the transition. Also note
that here we have made the dipole approximation for magnetic
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transitions, which comes from assuming that the evanescent
field of the emitted SMP varies negligibly over the size of
the emitter, and can thus be assumed constant. However, if
one wishes to remove this simplifying assumption to consider
magnetic multipole transitions, the matrix element can be
numerically evaluated. To simplify the proceeding discussion,
we focus on cases where the transition corresponds only to
a change of spin of the electron in the emitter from |↑〉
to |↓〉, this matrix element is simply proportional to σeg =
〈↓ |σ · ε̂q| ↑〉. Here, the angular dependence can come solely
from the magnon polarization. For a spin transition oriented
along the z (i.e., out-of-plane) axis, the transition strength
into modes at different θ will be the same, and thus the
distribution of emitted magnons isotropic. Spin transitions
along a different axis will break this symmetry, resulting
in angle-dependent emission. In any case, the total rate of
emission is obtained by integrating over all angles as �

(eg)
dipole =∫ 2π

0 ( d�(eg)

dθ
) dθ .

We now consider the effect of material losses, and argue
that the lossless approximation for decay rates presented here
should provide a strong approximation for decay rates in
the presence of losses. The formalism of macroscopic QED
detailed in Ref. [34] can be used to incorporate material
losses into spontaneous emission calculations. It was found
explicitly in Ref. [14] that, in general, the presence of losses
does not drastically change the total decay rate of the emitter,
unless the emitter is at distances from the material much
smaller than the inverse wave vector of the modes that are
emitted. For the case of relatively low losses, Fermi’s golden
rule shown in Eq. (7) can be modified by replacing the delta
function density of states with a Lorentzian of width �ω ≡
1/τ . The lossy decay rate is then obtained as a convolution of
this Lorentzian frequency spread with the lossless rate as

�
(eg)
dipole −→

∫
�

(eg)
dipole

(
1

π

1/(2τ )

(ωeg − ω)2 + (1/2τ )2

)
dω. (9)

In general, this correction from losses will be small provided
that the range of frequencies �ω coupled by Eq. (9) is
small compared to the width of the magnon band, denoted
��. More succinctly, losses are negligible if �ω/�� � 1.
For the MnF2 considered here, �ω ≈ 10−8 s−1, and �� ≈
1010 s−1, so �ω/�� ≈ 10−2, confirming that the Lorentzian
distribution behaves similarly to a delta function δ(ωeg − ω)
which does not mix frequencies. Having presented the general
framework for analyzing SMP emission, we now present
specific results for SMP emission into a thin film of MnF2.

III. TRANSITION RATE RESULTS

A. Dipole transition rates

We first discuss the transition rates and associated Purcell
factors of magnetic dipole emitters. For a z-oriented spin flip
of frequency ωeg placed a distance z0 from the surface of a
negative μ film, the spontaneous emission rate is given as

�
(eg)
dipole = μ2

Bμ0ωeg

h̄

q2(ωeg)

C′(ωeg)|vg(ωeg)|e−2q(ωeg )z0 , (10)

where C′(ω) = C(ω)/q(ω) is introduced to remove the wave-
vector dependence from the normalization. We also note that

FIG. 4. Dipole transition rate enhancement by SMPs. (a) Dipole
transition rate for a z-oriented spin flip as a function of normalized
frequency and distance z0 from the emitter to the surface of a
d = 200 nm MnF2 film. The transition rates decay exponentially
with increasing distance from the surface. (b) Line cuts of the
information shown in (a) for different fixed distances z0. The axis
on the left shows the total transition rate, while the axis on the
right shows the Purcell factor; in other words, the transition rate
normalized by the free space transition rate.

the group velocity |vg(ω)| ∝ 1/q(ω), and thus the whole
expression, carries a wave-vector dependence of �

(eg)
dipole ∝

q3(ωeg).
We now discuss the numerical values for spin-flip tran-

sition rates in nearby emitters which come directly from
Eq. (10). We find these transition rates into SMPs to be orders
of magnitude faster than the rates of transition into free-space
photons at the same frequency. Figure 4 shows the emission
rate as a function of frequency ω and emitter distance z0 for
a d = 200 nm MnF2 film. Figure 4(b) shows line cuts of
the dipole transition rate at various emitter distances z0. In
this geometry, we find that for the highest supported magnon
frequencies, the total rate of emission may exceed 105 s−1,
which corresponds to a decay time of 10 μs. This is 11 or-
ders of magnitude of improvement over the free-space decay
lifetime of more than a week. We see that for sufficiently
close distances z0, the decay rate increases with ω, spanning
many orders of magnitude over a small frequency bandwidth.
Furthermore, we see that with increasing distance z0, the
total decay rate is suppressed exponentially by the evanescent
tail of the surface magnon. More specifically, we see in the
exponential dependence e−2q(ωeg )z0 that, for rate enhancement
to be effective, z0 should be comparable to or ideally smaller
than 1/q ∼ d . For a 200-nm film, enhancement begins to
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saturate for z0 < 20 nm. In terms of a potential experiment,
these are promising parameters which could result in a total
transition rate of 104 s−1. Finally, we note that at distances z0

extremely near to the surface, effects such as material losses
or nonlocality may cause the behavior of the transition rate
to deviate slightly from the predicted behavior. The exact
magnitude of such effects could be taken into account directly
by solving for the dispersion with the full, nonlocal, magnetic
susceptibility which is presented in Ref. [68].

It is also worthwhile to consider not only the total transition
rates, but also the Purcell factors. The right side axis of
Fig. 4(b) shows the Purcell factor for spin relaxation into
SMPs, computed as the ratio between the enhanced transi-
tion rate and the free-space transition rate, and denoted as
Fp(ω) = �dipole/�0. We note that while the transition rate
in the magnonic environment is technically the sum of the
SMP emission rate and the radiative rate, in our systems the
radiative rate is so small that it need not be considered.

Thinner films offer even more drastic capabilities for en-
hancement. The dipole transition rate and Purcell factor scale
as η3, which means that shrinking the film thickness d even
by conservative factors can result in a rapid increase in the
maximum transition rate achievable. This η3 scaling is exactly
the same scaling found for Purcell factors of electric dipole
transition enhancement in the vicinity of highly confined elec-
trostatic modes such as surface plasmon polaritons [14,17,33].

Having established the duality between electric and mag-
netic surface polaritonics in the context of Purcell enhance-
ment, other important conclusions about the scope and utility
of SMPs follow. Most notably, Purcell factors for higher order
magnetic processes should scale with mode confinement iden-
tical to those for the corresponding electric processes. Given
an emitter-material system that can support such processes,
it should be possible to compute transition rates of higher
order processes such as magnetic quadrupole transitions and
multimagnon emission processes. Conveniently, electromag-
netic duality implies that the confinement scaling properties of
all electric multipolar or multiphoton transitions into electric
polaritons are identical to those of their magnetic analogs. For
example, the magnetic quadrupole transition Purcell factor
should scale as ∝ η5. For emission into modes confined to
factors of 1000 or more, this enhancement factor could easily
exceed 1015, alluding to the possibility of making highly
forbidden magnetic quadrupole processes observable.

B. Emission with in-plane anisotropy

Thus far, we have considered geometries of MnF2 in which
the anisotropy axis of the crystal is out of the plane of a thin
film (in the z direction). Past work has brought both theoretical
interest as well as experimental studies on antiferromag-
netic surface interfaces in which the magnetic permeability
anisotropy axis lies in plane. In other words, the material has
negative permeability in the out-of-plane direction as well as
one in-plane direction, while having a permeability of 1 in
the other in-plane direction. This geometry gives rise to an
rich anisotropic dispersion relation of SMP modes, which in
turn result in a nontrivial angular dependence for processes of
spontaneous emission. We summarize those findings here.

For the in-plane anisotropic geometry with μ =
(μ(ω), 1, μ(ω)), the dispersion (obtained again by solving
Maxwell’s equations for a quasimagnetostatic scalar
potential) is given by solutions to

eqd
√

β(θ,ω) = 1 − μ(ω)
√

β(θ, ω)

1 + μ(ω)
√

β(θ, ω)
, (11)

where β(θ, ω) = cos2 θ + sin2 θ/μ(ω) and θ is the in-plane
propagation angle measured with respect to the x axis. When
β > 0, the mode function has a z dependence of cosh(qz)
or sinh(qz), dependent on the parity of the solution. When
β < 0, the modes have a cos(qz) or sin(qz) dependence.
We note that the β < 0 solutions have a multiply branched
structure which correspond to higher harmonic modes, just as
with the in-plane isotropic case discussed throughout the text.
Furthermore, recalling that μ < 0 and examining β(θ, ω), we
see that for angles of propagation near 0, β will be positive,
while for angles of propagation near π/2, β is negative. Based
on the sign of β, we can classify the modes into two distinct
types. We refer to β > 0 modes as type-I modes and β < 0
modes as type-II modes. The fundamental type-I modes prop-
agate in the range θ ∈ (0, θx ), where θx = tan−1(

√−μ(ω)),
while the type-II modes with n = 1 propagate in the range θ ∈
(θy, π/2), with θy = cos−1(1/

√−μ(ω)). The angular prop-
agation ranges for the type-I modes and the lowest order
type-II mode are nonoverlapping and the gap between θx and
θy increases with ω.

The dispersion for even type-I and type-II modes are,
respectively, given as

qI = − 1

2d
√

β(θ, ω)
tanh−1

(
1

μ(ω)
√

β(θ, ω)

)
, (12)

qn
II = 1

2d
√−β(θ, ω)

tan−1

(
1

μ(ω)
√−β(θ, ω)

+ nπ

2

)
,

(13)

where n is an integer. We see that for even type-I modes,
only a single band of surface polariton modes exists, while
for type-II modes, a richer structure with harmonics exists
due to the multivalued nature of the arctangent, just as in
the in-plane isotropic case. In Fig. 5, we see the isofrequency
contours for the dispersion in the case of in-plane anisotropy.
We clearly observe that the mode structure is anisotropic,
in that type-I modes behave differently than type-II modes.
We comment briefly on the polarization of the modes. The
in-slab H-field polarization of the type-I and -II modes are,
respectively, given as

ε̂q =
{

q̂ cosh(qz)+i sinh(qz)ẑ√
2

, type I
q̂ cos(qz)+i sin(qz)ẑ√

2
, type II.

(14)

Applying the same formalism as before, the rate of emis-
sion into SMPs per unit angle by a z-oriented spin flip of
strength μB is given by

d�(eg)

dθ
= μ2

Bμ0ωeg

2π h̄

q3(θ, ωeg)|σeg · ε̂q|2
Cq(θ, ωeg)|vg(θ, ωeg)|e−2q(θ,ωeg )z0 . (15)
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FIG. 5. Dispersion for anisotropic modes. Isofrequency contours
for MnF2 of thickness d = 200 nm. The frequency labels are given
as ω/ω0, where ω0 is the resonance frequency of the material. The
first type-I modes are shown in red, while the type-II modes with
n = 1 are shown in blue.

The total rate is obtained by integrating over all angles:

�(eg) = μ2
Bμ0ωeg

2π h̄

∫ 2π

0

q3(θ, ωeg)|σeg · ε̂q|2
Cq(θ, ωeg)|vg(θ, ωeg)|e−2q(θ,ωeg )z0 dθ.

(16)

In Fig. 6 we see the lossless differential decay rate
d�(eg)/dθ plotted as a function of polar angle θ for a z-
oriented spin-flip transition at different emitter frequencies
ω. We see that with increasing frequency, the angular spread
of type-I modes narrows, while the angular spread of type-II
modes increases. We can understand this behavior in terms
of the availability and confinement of modes for different
propagation angles θ . The most highly confined modes are
the type-I modes near the angular cutoff. As ω increases the

FIG. 7. Magnetic dipole transition rate for in-plane anisotropic
MnF2. Magnetic dipole transition rate for a z-oriented dipole transi-
tion a distance z0 = 5 nm from the surface into two different SMP
modes in a d = 200-nm-thick anisotropic slab of MnF2. The type-I
mode emits most strongly but over a narrower range of frequencies.
The cutoff frequency is the frequency at which the first type I mode
no longer satisfies the boundary conditions. The first-order type-II
mode is emitted more weakly but is supported over the entire range
of frequencies for which μ(ω) < 0.

confinement of type-I modes at low angles increases, while
the confinement of type-II modes decreases. This system
exhibits the interesting property that tuning the frequency
of the emitter over a narrow bandwidth dramatically shapes
the angular spectrum of polariton emission. An interesting
consequence is that for an emitter with a broadened spectral
line (broader than 0.001ω0), the angular spectrum will be
a complicated mixture of the qualitatively different angular
spectra in Fig. 6.

In Fig. 7, we see the total transition rate �(eg) for a dipole
emitter above MnF2 oriented with the anisotropy axis in the y
direction. While the transition rates of both modes are greatly
enhanced compared to the free-space transition rate of order
10−6 s−1, the type-I mode benefits approximately two orders
of magnitude more than the first type-II mode. In particular,
the Purcell factor for the type-I mode ranges from 1010 to 1012,
and is thus quite comparable to Purcell factors obtained for
the in-plane isotropic discussed previously. In this sense, we
see that extreme enhancement of magnetic dipole transition

FIG. 6. Angular distribution of SMP emission. Magnetic dipole transition rate per unit angle d�(eg)/dθ for radiation into SMPs on a
200-nm-thick slab of MnF2. The radial axis shows d�(eg)/dθ plotted on a log scale in units of s−1. The first type-I modes are shown in red
and the first type-II modes are shown in blue. Dashed lines indicate the angular cutoffs θx and θy for each type of mode. Note that at low
frequencies, θx and θy become very close. We additionally note that for ω/ω0 > 1.0035, the type-I mode branch shown in red vanishes entirely,
leaving only the type-II modes.
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rates is achievable in both crystal orientations. The dispersion
relation, however, is notably different in these cases. As
an additional degree of freedom, one can consider how the
dispersion, and consequently the dipole emission rate, will be
influenced by an applied magnetic field along the anisotropy
axis of a material such as MnF2. In this case, an effective
Zeeman splitting causes the resonance frequency ω0 to split
into two frequencies which move away from each other in
linear proportion to the applied field, as described, for exam-
ple, in Ref. [82]. When the anisotropy axis lies in the plane
of the material, such an applied field results in nonreciprocal
propagation of waves due to the broken reflection symmetry.
For these reasons, applied fields may be used to tune the
AFMR frequencies or to shape the properties of the spin
waves emitted by magnetic dipole transitions. The net result
is a highly flexible platform for strong interaction between
magnetic transitions and matter.

IV. EXPERIMENTAL CONSIDERATIONS AND OUTLOOK

We have shown that highly confined SMPs, such as those
on antiferromagnetic materials, could speed up magnetic tran-
sitions by more than ten orders of magnitude, bridging the
inherent gap in decay rates which typically separates elec-
tric and magnetic processes. We predict that these confined
magnetic surface modes in systems with realizable parameters
may exhibit confinement factors in excess of 104. We devel-
oped the theory of magnon polaritons and their interactions
with emitters in a way that unifies this set of materials with
other more well-known polaritonic materials, casting light on
opportunities to use these materials to gain unprecedented
control over spins in emitters.

To push the field of magnon polaritonics at THz fre-
quencies forward, it will be necessary to identify an ideal
experimental platform for manipulating these modes and in-
terfacing them with matter. For antiferromagnetic platforms,
experiments will need to take place below the Néel tem-
perature of the material to establish antiferromagnetic order.
Importantly, we note that the only strict material requirement
for SMPs is that Re(μ) < 0 over some frequency range,
presenting opportunities for other types of magnetic order,
2D magnetic materials, or even metamaterials which exhibit
negative permeability. The other key consideration is what
class of emitters may be well-suited to interact with these
polaritonic modes. In terms of existing materials, a potential
emitter system which can interact with the antiferromagnetic
SMPs discussed here is ErFeO3, which has several electric
and magnetic dipole transitions in the range between 0.25 and
1.5 THz [83]. Recent work has also considered THz magnon
polaritons in TmFeO3 [84]. It could also prove interesting
to consider GHz-THz orbital angular momentum transitions
between high-energy levels in Rydberg atoms, Landau levels,
or vibrational modes in molecules. In addition, one could
consider THz transitions arising from impurity states in semi-
conductors [85], which have the benefit of the tunability
over THz scale by the application of an external magnetic
field.

The theoretical predictions made in this paper could be
verified by fluorescence spectroscopy measurements on a thin
layered sample as shown in Fig. 8. We represent the emitter

FIG. 8. Schematic for a potential fluorescence spectroscopy ex-
periment to observe enhancement of magnetic dipole (MD) tran-
sitions through surface magnon polaritons. We consider a lay-
ered sample which contains a thin negative permeability film
which supports SMPs and a material containing an appropriately
chosen emitter material. An external laser prepares the emitters
into an excited state via an IR/optical transition. This excited state
then decays via a THz transition into SMPs in the thin film and then
relaxes via a photon transition into the far field. The far-field signal
can be measured with a spectrometer to detect the Raman shift in the
fluorescence frequency compared to the incident laser frequency.

as a three-level system, where the gap between the lower level
and the higher levels is in the optical/IR and is excited with
an external laser via an electric dipole transition. The excited
state can then decay into SMPs in the material below via a
magnetic dipole transition. Such a magnetic dipole transition
is usually very slow in free space, but as detailed in our
paper, will occur orders of magnitude faster due to decay
into SMPs. The emitter state populations and transition rates
can then be monitored via spectroscopy of the optical photon
emitted to free space. One would expect to see a decrease in
fluorescence at the exciting laser frequency, in conjunction
with the appearance of a new Raman peak, shifted from
the exciting frequency by the THz SMP frequency. Similar
schemes for monitoring Purcell enhancements in plasmonics
have been implemented in Ref. [86]. Time-resolved measure-
ments have also been made in Ref. [87] to directly measure
the decay in excited state populations which occurs through
Purcell-enhanced emission of polaritons. Alternatively, a sub-
stantial rate increase in a THz MD transition due to SMP
excitation could influence rate dynamics in a way which
produces optical/IR far-field decays at frequencies entirely
different from the exciting laser. Methods for analyzing such
mechanisms are detailed in Ref. [88].

Future work could also consider processes involving the
emission of multiple surface magnons using the framework
presented in Ref. [33] or mixed processes with the emission
of a magnon polariton in addition to one or more excitations
of another nearby material. In any case, SMPs provide an in-
teresting degree of control over magnetic degrees of freedom
in matter as well as a means to consider magnetic analogs at
THz frequencies of many famous effects in plasmonics and
polaritonics.
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