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Spontaneous topological transitions in a honeycomb lattice of exciton-polariton
condensates due to spin bifurcations
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We theoretically study the spontaneous formation of the quantum anomalous Hall effect in a graphene system
of spin-bifurcated exciton-polariton condensates under nonresonant pumping. We demonstrate that, depending
on the parameters of the structure, such as intensity of the pump and coupling strength between condensates,
the system shows a rich variety of macroscopic magnetic ordering, including analogs of ferromagnetic,
antiferromagnetic, and resonant valence bond phases. Transitions between these magnetic polarized phases are
associated with dramatic reshaping of the spectrum of the system connected with spontaneous appearance of
topological order.
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I. INTRODUCTION

Recent decades have witnessed a shift in attention from
both the condensed-matter and optical communities in in-
vestigation of the properties of bulk materials to instead the
properties of their interfaces. It is now well known that there
exists a particular class of materials with inverted structure
of the bands, which possess protected states propagating on
the system surface, referred to as topological insulators [1–3].
The energy of these edge states lies within the band gap,
and thus they are protected with respect to scattering into
the bulk. Depending on the dimensionality of a system, one
should distinguish between three-dimensional (3D) topolog-
ical insulators where topological states appear on the two-
dimensional (2D) surface boundary of the bulk [4–10], and
2D topological insulators where chiral 1D channels form on
the system boundary [11,12].

It has been recently shown that optical analogs of topologi-
cally nontrivial phases in 2D systems may arise in purely pho-
tonic structures [13–15] or when driven into the strong light-
matter coupling regime, where hybrid quasiparticles known as
cavity exciton-polaritons (from here on polaritons) are formed
[16–21]. Polaritons combine the advantages of photons, such
as extremely low effective mass and long coherence length,
with those of excitons, namely the possibility of control by
external electric and magnetic fields together with strong non-
linear response stemming from interparticle interactions. The
spin structure of the exciton (or rather, the polariton) is then
directly related to the circular polarization degree of the cavity
photonic mode. Such a union then leads to a rich interplay
between nonlinear and topological properties [22–28] with
optical lasing in topologically protected edge modes [21,29].

The vast majority of current proposals on 2D polariton
topological insulators are based on Z (or Chern) insulators
with the following requirements: Polaritons should be placed

into a 2D lattice of a particular symmetry allowing the appear-
ance of Dirac points in the Brillouin zone where the bands
touch each other. Examples are honeycomb [18,21,30] and
Kagome [19,24,25] lattices which can be obtained either by
controllable etching of a planar microcavity or by using spatial
light modulator to control the profile of the external optical
pump. The band inversion and opening of the topological
gap is then achieved by cumulative action of the TE-TM
splitting of the photonic mode and Zeeman splitting of the
excitonic mode induced by the application of an external
magnetic field [18]. However, in conventional semiconductor
materials, excitonic g-factors are extremely small, and one
needs magnetic fields of tens of Tesla to open the topolog-
ical band gap of at least several meV. The situation can be
potentially improved by using diluted magnetic microcavities
[31,32]. However, the technology of producing a high-quality
patterned semimagnetic cavity is still only in its initial stages.

In the present paper, we develop an alternative approach
for the realization of the quantum anomalous Hall effect in
a 2D polariton Z-topological insulator without application of
any external magnetic fields. Our idea is based on the concept
of the spontaneous spin bifurcation in a system of interacting
polariton condensates forming a net magnetic polarization,
first proposed in Ref. [33] and developed further in Refs.
[34–37]. Here we consider a honeycomb polariton condensate
lattice (polariton graphene) under nonresonant pumping. We
demonstrate that, depending on the pump intensity and cou-
pling strength between the nodes (condensates) of the lattice,
the spin bifurcation mechanism can result in spontaneous
formation of distinct spin-ordered lattice phases analogous to
ferromagnetic (FM), antiferromagnetic (AFM), and resonance
valence bond states. Transition between different phases is
associated with cardinal reshaping of the spectrum of the sys-
tem excitations and spontaneous appearance/disappearance
of topological order.
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II. SPIN BIFURCATIONS AND PHASE TRANSITIONS IN
POLARITON GRAPHENE

A lattice of driven-dissipative connected polariton conden-
sates is conventionally modeled, in the tight-binding picture,
with a set of generalized Gross-Pitaevskii equations for the
spinor order parameters �n = (ψn+, ψn−)T, corresponding to
spin-up and spin-down polaritons at the nth site,

i
d�n

dt
=

[
− i

2
g(Sn) − ε + iγ

2
σ̂x + 1

2

(
ᾱSn + αSz

nσ̂z
)]

�n

− 1

2

∑
〈nm〉

[J + δJ (cos(2ϕm)σ̂x + sin(2ϕm)σ̂y)]�m. (1)

Here the summation is taken over the nearest neighbors, ϕm

are the angles of links connecting the neighboring sites n and
m of the honeycomb lattice. We define the nth node particle
population Sn and z component of the condensate pseudospin
Sz

n as

Sn ≡ |ψn+|2 + |ψn−|2
2

, Sz
n ≡ |ψn+|2 − |ψn−|2

2
. (2)

We also define an effective decay rate g(Sn) = ηSn + � − W
with � being the polariton decay rate, W the replenishment
rate of the condensate nonpolarized incoherent pump, and η is
the gain-saturation nonlinearity. The constants ε and γ define
the splitting of the XY -polarized states in both energy and
decay, respectively, due to the inherent cavity birefringence,
and ᾱ = α1 + α2 and α = α1 − α2 are spin-anisotropic inter-
action parameters. Finally, J > δJ are spin conserving and
nonconserving (TE-TM splitting) tunneling rates of polaritons
between nodes, respectively.

The condensation threshold of the system is defined as the
point where an eigenvalue of the linearized Eq. (1) obtains
a positive imaginary component due to increase of the laser
power W , leading to the triggering of the stimulated bosonic
scattering into the condensed state at Wcond = � − γ . Due
to the splitting γ in the lifetimes of the linear polarized
states, the condensate first forms an in-phase, Y -polarized
state, i.e., �n = �n+1 ∝ (1,−1)T [white area in Fig. 1(a)].
This Y -polarized state, however, becomes unstable at higher
pumping powers and undergoes a bifurcation into a state with
a high degree of the circular polarization at individual nodes
[33,36].

We begin our consideration by presenting a class of
stationary solutions which minimize the spin bifurcation
threshold [37]:

�n =
{
�n+1 if Sz

n = Sz
n+1−σ̂x�n+1 if Sz

n = −Sz
n+1.

(3)

The ansatz above describes in-phase FM bonds and antiphase
AFM bonds between nearest neighbors, respectively.
Plugging Eq. (3) into Eq. (1), and setting the condition that
all nodes have the same number of co- and counterpolarized
nearest neighbors (equivalence criteria), the coupled set of
the equations of motion reduce to a single equation with a
bifurcation threshold,

Wbif = � − γ + η
(ε − n↑↓J )2 + γ 2

α(ε − n↑↓J )
, (4)

where n↑↓ denotes the number of AFM neighbors.
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FIG. 1. (a) Phase map of the honeycomb polariton system. At
low pump powers W , no condensation occurs (red area). When
crossing the condensation threshold (dashed-dotted line) the system
condenses and settles into Y -polarized state (white area). At higher
powers, the system bifurcates into an organized spin pattern (above
red curve). Band-gap opening in each phase takes place in the yellow
area whereas in white patterned areas the band gap is closed. Only
in the FM phase is the gap topologically nontrivial. (b) Cutout
pieces of the four spin graphene patterns labeled (i) AFM, (ii)
dipole, (iii) stripe, and (iv) FM. Yellow arrows denote the unit cell
vectors of each pattern. Parameters are chosen based on experiment
[33]: η = 0.005 ps−1, � = 0.1 ps−1, ε = 0.06 ps−1, γ = 0.2ε, α1 =
0.005 ps−1, α2 = −0.1α1.

In Fig. 1(a), we plot the minimum of Eq. (4) as a function of
coupling strength J (red curve), neglecting TE-TM splitting.
The cusps in the red curve indicate that the lowest bifurcation
point is shared between two distinct spin phases. The four
spin phases of interest, verified by numerical integration of
Eq. (1), are shown in Figs. 1(b)(i)–1(b)(iv) and are labeled
AFM, dipole, stripe, and FM phases, respectively.

We point out that the bifurcation threshold for AFM and
FM phases is invariant of δJ whereas for dipole and stripe
phases, strictly speaking, this is not the case as for them
the ansatz given by Eq. (3) should be modified. However,
given that δJ/J � 1 (which is usually the case in micropillar
structures in standard semiconductor microcavities), it is rea-
sonable to infer that Wbif is only weakly affected by δJ . Thus,
the calculated red curve shown in the Fig. 1(a) serves as a
good indicator for the bifurcation threshold of these nontrivial
states in the presence of TE-TM splitting. We have performed
numerical calculations of Eq. (1) that verify that this is indeed
the case.
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FIG. 2. (i) The band structure of the whole Brillouin zone for the four spin phases in the honeycomb lattice of spin bifurcated polariton
condensates. Here, J = 1 is taken as the unit of energy. (a), (d) All four bands are displayed. (b), (c) Only two bands above and two bands under
the midgap are presented. Bottom panels show (ii) the eigenenergies along � → M → K → � pathway and (iii) band structure of the ribbon
with zigzag edges, the edge states are depicted by red and green dots. Parameters for the AFM: δJ = 0.1J , � = 1.3J . Dipole: δJ = 0.1J ,
� = 2.2J . Stripe: δJ = 0.1J , � = 3J . FM: δJ = 2J/3, � = 5J/3. The band structures of the bulk were calculated on a 200×200 mesh grid
in k-space. The size of ribbons was 30 (width) by 100 (length) unit cells.

III. BAND STRUCTURE AND TOPOLOGICAL STATES

In the following, we discuss the excitation spectra of the
stable spin bifurcated condensate configurations. We employ
an effective field model, treating the effect of spin-polarized
lattice nodes by introduction of local z-directed (out of the
cavity plane) magnetic fields. The idea is based on expan-
sion of the Bogoliubov dispersion in the two spin com-
ponents

√
E±(E± + U±) ≈ E± + U±/2 with U± ≈ α1|ψn±|2

being the self-interaction energy. It yields the effective mag-
netic field magnitude � = α1|Sz

n| and the validity region of the
approximation as E± � U±. The effective field model allows
clear analytical investigation of the topological properties of
the lowest band-gap opening at E ∼ J as long as J � �.
Furthermore, as the pseudospin strength is given by |Sz

n| =
Sn = (W − �)/η for the fully polarized condensates (see Eq.
(S17) in Ref. [38]), one can adjust the strength of � such that
effects due to birefringence are negligible. The effective field
model then obeys J � � � ε. A more rigorous Bogoliubov
treatment is addressed in Ref. [38].

First, to examine the band structures of the AFM (i) and
FM (iv) configurations shown in Fig. 1(b), we scrutinize the
following 4×4 tight-binding Hamiltonian:

Hk = −1

2

(
0 Ĵk

Ĵ †
k 0

)
+ 1

2

(
μ1� σ̂z 0

0 μ2� σ̂z

)
. (5)

The above Hamiltonian is written in the basis of the bispinor
|A+, A−, B+, B−〉 inner-cell states, where A and B indicate
the graphene sublattices, and “+(−)” specifies right (left)
circular polarization (i.e., the spin of the polaritons). The
total Hamiltonian in momentum space is then written Ĥ =∑

k |k〉〈k| ⊗ Hk. The first term in Eq. (5) corresponds to
the polaritonic graphene with TE-TM splitting. The 2×2
operator Ĵk, dependent on the quasi-wave-vector k = (k1, k1),
is written

Ĵk = Ĵ1 + Ĵ2 e−ik1 + Ĵ3 e−ik2 , (6)

with

Ĵm =
(

J δJ e−2iϕm

δJ e2iϕm J

)
, m = 1, 2, 3, (7)

and J and δJ as in Eq. (1). Both k1 and k2 can be chosen to vary
from −π to π and to cover the whole Brillouin zone. In the
second term of Eq. (5), the on-diagonal blocks μ1(2)�σz serve
to account for the excitations in the magnetic patterns depicted
in Fig. 1(b). The magnitude of the Zeeman splitting induced
by the polarized condensate reads � = α1S, where we have
omitted the index n in Sn since the condensate density is taken
equal at each lattice site. Here σ̂z is the z-Pauli matrix, and the
coefficients μ1 and μ2 define FM (μ1 = μ2 = 1) and AFM
(μ1 = −μ2 = 1) phases. The translation basis vectors (a1,2)
in real space are chosen to be conventional for the graphene
lattice.

Since FM phase corresponds to the case of a uniform, out-
of-plane, external magnetic field, a gap opens [see Fig. 2(d)]
between the bands, characterized by different Chern numbers,
and bridged by chiral edge states [18]. Figure 2(d)(i) displays
the band structure of this phase, which is numerically ob-
tained for δJ = 2/3, � = 5/3, with energy counted in units
of J . We used the convention for which K and K ′ points
in the first Brillouin zone are positioned at (k1, k2) equal to
(2π/3,−2π/3), and vice versa, � is placed at the origin, and
M at (π, π ). Figure 2(d)(ii) shows a slice of the band structure
along � → M → K → � pathway, shown by the green solid
line at the bottom of Fig. 2(d)(i). Figure 2(d)(iii) illustrates the
band structure of the graphene stripe [not to be confused with
the stripe phase in Fig. 1(b)] with zigzag edges revealing the
topologically protected edge states, marked by red and blue
colored lines for each edge, respectively.

For the AFM phase, it can be shown that a gap opens
when � > 3δJ , the gap value being Eg = 2(� − 3δJ ) [33].
The gapped spectrum in the AFM lattice is characterized by
trivial topology [see Fig. 2(a)] and no edge states connecting
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FIG. 3. (a)–(d) Color maps of the energy gap Eg, for four spin
phases, as a function of δJ and �. The solid orange line separates the
gapless (solid dark blue) and gapped (linearly fading blue) domains.
The dashed orange lines are positive-integer-Eg contours. (e) The
band structures of FM-type ribbons for (α): δJ = 0.2, � = 0.4, (β ):
δJ = 2/3, � = 5/3, and (γ ): �J = 0.5, � = 3.5. The bands Chern
numbers are displayed in light yellow boxes. Here J = 1 is taken as
a unit of measurement. Red letters A-D correspond to Figs. 2(a) to
2(d), respectively.

the bulk bands. In Fig. 1(a), the dotted white area in the
AFM phase corresponds to the bands touching, whereas the
yellow area to the bands being gapped. Here, the boundary
separating the two regimes in Fig. 1(a) is calculated for the
case of strong TE-TM splitting δJ/J = 0.5. We point out that
that gapped-ungapped AFM boundary coincides with the Wbif

boundary [red curve in Fig. 1(a)] when δJ → 0. The AFM
edge states shown in Fig. 2(a)(iii), separated from the bands
and marked by red and blue colors, are doubly degenerate
and are not topologically protected. Figures 3(a) and 3(d)
show phase diagrams for the AFM and FM spin phases as
a function of effective Zeeman splitting and TE-TM splitting.
The dark orange line marks the boundary between gapless and
gapped phases. Points A and D correspond to Figs. 2(a) and
2(d), respectively. Figure 3(e) shows the band structures of
FM-phase ribbons and serves to illustrate the effect of Chern
numbers of the bands [indicated in Fig. 3(d)] on the dispersion
of the chiral edge states.

To examine the band structure of the stripe and dipole
phases, the following 8×8 Hamiltonian should be constructed
in reciprocal (k1, k2) space:

Hk = 1

2
Ĵ (k) + �

2
diag (μ1, μ2, μ3, μ4) ⊗ σ̂z. (8)

Note that a unit cell in these two cases differs from that
corresponding to AFM and FM phases and should be con-
structed as a pair of graphene unit cells taken successively,
with the translational vectors being a1 and 2a2. The first term
in Eq. (8), Ĵ (k), represents polaritonic graphene with TE-TM
splitting and is specified in the Supplemental Material [38];
the second term is responsible for the magnetic patterns: for
the dipole phase, one sets μ1 = μ4 = 1, μ2 = μ3 = −1, for
the stripe phase μ1 = μ2 = 1, μ3 = μ4 = −1. Both phases
are characterized by topologically trivial band structure and
edge states localized within the bulk [see Figs. 2(b) and 2(c).
Figures 3(b) and 3(c) show the phase diagram for dipole and
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FIG. 4. (a) Color map of the energy gap Eg for the bogolons
dispersions of the FM phase, as a function of δJ and �. The solid or-
ange line separates the gapless (solid dark blue) and gapped (linearly
fading blue) domains. The dashed line is Eg = J level contour. (b),
(c) The bogolons eigenenergies along � → M → K → � pathway
for (b) δJ = 2J/3, � = 5J/3 and (c) δJ = 0.2J , � = 0.4J (black
solid lines). Additionally, green dotted and red dashed lines are the
dispersions of the linear model [Eq. (5)] for � = 0 and � = 0.4J ,
respectively. J = 1 is taken as a unit of measurement.

stripe phases with points B and C corresponding to Figs. 2(b)
and 2(c). In the trivial case δJ = 0, one arrives to the gap
opening condition � > J and � >

√
3J for dipole and stripe

spin phases, respectively, which is plotted in Fig. 1(a), indi-
cating that gap opening only takes place at higher condensate
densities (i.e., higher excitation powers).

To investigate the FM phase in more detail, we performed
Bogoliubov linearization of Eq. (1), generalized to all four
spin patterns, and applied it to the FM one (see Ref. [38] for
more details). Figure 4 demonstrates (a) the topological phase
diagram for the effective spin-orbit interaction strength δJ/J
and the effective interaction energy �, and (b), (c) eigenen-
ergy curves along � → M → K → � pathway. In addition,
green dotted and red dashed curves show the dispersions of
Eq. (5) without and with effective magnetic field, respectively,
with the corresponding value �. Note that the bogolon disper-
sion overlaps with the one obtained in the effective magnetic
field approximation in the region of high energies E � �

and expectedly deviates for low energies (in the vicinity of
� point). This shows that the effective magnetic field model
accurately describes the linear excitations of the condensate
in the vicinity of the K-point. Moreover, Fig. 4(a) clearly
resembles Fig. 3(d).

IV. CONCLUSIONS

We have proposed an experimentally friendly geometry
for realization of an optical Z-topological insulator based
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on polaritonic graphene in the spin bifurcation regime. Dif-
ferently from previous works, our proposal does not require
application of an external magnetic field and the topological
order appears spontaneously in the mean-field picture through
many-particle interactions under nonresonant and nonpolar-
ized pumping. The proposed effective field model due to
interactions produces the topological phase diagram of the
system and is consistent with the Bogoliubov model in a wide
range of parameters.
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