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Numerically investigating mode-conversion effects of phonons on Anderson localization in random su-
perlattices, we make it clear the changes in localization properties when the LA and TA phonons which
independently show Anderson localization for the normal incidence interact as the incident angles increase. The
mode conversions which occur for oblique propagation at small incident angles induce collaboration among the
phonons, giving rise to extension of the localization length or delocalization, depending on the system size. On
the other hand, at large incident angles, the transmission decay becomes larger than for the normal incidence. In
contrast to the small incident angles, the transmission decay and transmission fluctuations become independent
of the incident phonon modes and show the frequency dependences that are not predictable from those at the
small incident angles, evidencing that the coupled modes of phonons are formed by the mode conversions.
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I. INTRODUCTION

Anderson localization is a phenomenon which is common
to electrons and classical waves such as light and sound waves
in disordered media [1–12]. It is known that phonons will not
propagate through such a medium containing a large amount
of randomness. Anderson localization arises from interfer-
ence among scattered phonons owing to the randomness, and
then the phenomenon is apt to take place at low dimensions
[13]. In particular, in one dimension any disorder is strong
enough to induce the exponential localization of eigenmodes.
In previous studies [14–16], Anderson localization of phonons
in randomly layered superlattices are investigated, using the
transfer-matrix method and Green’s functions. The random
superlattices (RSL’s) are the multilayered system where two
kinds of unit layers of dissimilar materials are randomly
stacked. The relevant quantity to characterize the phonon
propagation is the transmission rates. The frequency depen-
dence of transmission rates exhibits a fine spiky structure
specific to the particular realization of disorder of constituent
layers. The fine structures are smeared out by the ensemble
average over the possible configurations of the constituting
layers, and the resultant global structures exhibit the transmis-
sion decay due to Anderson localization in the wide frequency
region and some peaks due to the resonance transmission
where the phonon wavelength matches the thicknesses of
the unit layers. As for the fluctuations of transmission rates,
there is a universal relation for the transmission fluctuations
versus the average transmission irrespective of the kinds of
randomness.

From the transmission properties of phonons, the one-
dimensional RSL’s are expected to be a thermal device to
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control heat conduction [17–21]. The transmission properties
of phonons in the RSL’s stated above are obtained for single
mode phonons when the phonons impinge normally on the
RSL’s. Supposing that the RSL’s are connected to a heat bath,
most of the phonons will impinge on the RSL’s at oblique an-
gles. For oblique phonon incidence, the longitudinal acoustic
(LA) phonons and transverse acoustic (TA) phonons are no
longer independent due to the mode conversions occurring
at the interfaces of RSL’s. Then the LA phonons and TA
ones coexist in each layer of the RSL’s, irrespective of the
incident phonon modes. Because the LA phonons have a
sound velocity larger than that of the TA phonons, their wave
vectors are not parallel in the layers due to Snell’s law and
the phases develop individually with propagation, modify-
ing the interference conditions of phonons. Then Anderson
localization for oblique phonon propagation is expected to
be substantially different from those in case of the normal
phonon incidence.

Here we guess the effects of the mode conversions on
the phonon propagation in the RSL’s. Suppose that the LA
phonons are localized and the TA phonons are extended in
a finite RSL at the same frequency. We expect that phonon
energy input by the LA phonons is possible to be transmitted
as the TA phonons, and vice versa. If so, the effective phonon
transmission will not decay thanks to the collaboration of
phonons. On the other hand, the mode conversions might form
coupled phonon modes peculiar to the system. If the phonon
modes exist in the RSL’s, contrary to the above speculation,
the phonons will decay due to Anderson localization because
the coherence of phonons should be maintained as long
as in the absence of inelastic scattering of phonons. These
speculations lead to the opposite transmission properties of
phonons in the RSL’s. If the former effects violate Anderson
localization of phonons, the usage of random superlattice
might not be appropriate for controlling phonon propagation.
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FIG. 1. Model of a random superlattice made of N layers sand-
wiched between the substrate(S) and detection layer(D). Arrows
labeled by L and T represent the longitudinal and transverse acoustic
phonon propagations.

Thus, we are interested in the phonon transmission in the
RLSs at oblique angles from not only for scientific reasons
but also for engineering ones.

The purpose of this work is to elucidate the effects of mode
conversions of phonons on Anderson localization. In Sec. II
we model the RSL’s and give an equation of motion in the
system. We introduce in Sec. III the transfer-matrix method
for describing phonon propagation in the RSL’s, and define
the transmission rate using the Poynting vector of phonons.
In Sec. 4 we illustrate the transmission rates, Lyapunov expo-
nents, and transmission fluctuations for GaAs/AlAs RSL’s,
varying the incident angles of phonons. We investigate the
changes in characteristics of phonon modes with respect to the
incident angles. Summary and discussion are given in Sec. V.

II. MODEL

We introduce the RSL’s that are constructed by stacking
two kinds of single layers at random with equal occurrence
probabilities, i.e., 0.5 as illustrated in Fig. 1. Each layer is
composed of a material A or B with a thickness dA or dB. The
total number of layers is N , and the RSL is sandwiched be-
tween the substrate(S) and detection layer(D), both of which
are composed of material A. Considering that phonons with
wavelength larger than the unit layers exhibit characteristic
transmission properties of Anderson localization [15], we
may simulate the RSL’s using an elastic continuum model
rather than microscopic models [11,12] with random atomic
configurations. We also assume isotropic elasticity for the
constituting materials, avoiding complexities arising from
anisotropic elasticity such as phonon focusing effects.

We put the x axis to be parallel to the normal direction of
interfaces in the RSL and assume the layers to be uniform in
the y-z plane. Here we define the position of the interface ln
separating (n − 1)th and nth layers by

ln =
n−1∑
i=0

di, (1)

where l1 = d0 = 0.

The equation of motion in each layer including the sub-
strate and detection layer is

ρ{n,S,D}üi = ∂ jC{n,S,D},i jkl∂kul , (i, j, k, l = x, y, z) (2)

where ui is an ith component of the displacement vector,
ρ{n,S,D} and C{n,S,D},i jkl are the mass density and the stiffness
tensor of the corresponding layer. A sum over repeated indices
is assumed in Eq. (2).

III. FORMALISM

Transmission properties of phonons depend on the polar-
izations for oblique propagation in the layered structures. One
of the two TA phonon modes, which has the polarization
parallel to the interface, does not give rise to mode conversions
at the interfaces of RSL’s. Then, the transmission properties in
the RSL’s are essentially the same as those of single mode
phonons studied in Refs. [15,16]. Another TA mode has
the polarization in the sagittal plane formed by the wave
vector q and the superlattice axis. Since the LA phonons have
the polarization in the sagittal plane, the mode conversions
between the TA and LA phonons take place at the interfaces.
In the present system, we assign the x-y plane to be the sagittal
plane and the z axis to be perpendicular to the plane. Putting
the z component of a wave vector to be qz = 0, we investigate
the mode-conversion effects of phonons propagating in the
sagittal plane. The relevant LA and TA phonons have the
displacement vectors in the x-y plane as u = (ux, uy, 0).

We use the transfer-matrix method to examine phonon
propagation in the RSL’s. We express the sound velocities and
wave vectors of phonons in an nth layer, the substrate and the
detection layer as c{n,S,D},{L,T } and q{n,S,D},{L,T }, and assume the
linear dispersion relations

ω = |q{n,S,D},{L,T }|c{n,S,D},{L,T },

where the subscripts L and T stand for the LA and TA modes.
The wave vectors have the same y component in all the layers
given by

qy = ω

c{n,S,D},{L,T }
sin θ{n,S,D},{L,T }, (3)

due to Snell’s law. Here θ{n,S,D},{L,T } is the angle of the wave
vector of phonons in each layer measured from the x axis.
The wave number in the x direction of phonons propagating
toward the x+ direction yields

q{n,S,D},{L,T } = ω

c{n,S,D},{L,T }
cos θ{n,S,D},{L,T }. (4)

Putting the wave vectors of transmitted and reflected phonons
as q+ and q− as

q±
{n,S,D},{L,T } = (±q{n,S,D},{L,T }, qy, 0), (5)

the corresponding polarization vectors are given by

e±
{n,S,D},L = q±

{n,S,D},L/|q±
{n,S,D},L| (6)

e±
{n,S,D},T = q±

{n,S,D},T /|q±
{n,S,D},T | × ez. (7)

Using them, the displacement vector of phonons in the nth
layer becomes

un = (e+
n,Laneiqn,Lx + e−

n,Lbne−iqn,Lx )eiqyy

+ (e+
n,T cneiqn,T x + e−

n,T dne−iqn,T x )eiqyy, (8)
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where anbncn and dn are coefficients of transmitted and re-
flected phonons. We express the displacement vectors in the
substrate and detection layer in the same way;

uS = (e+
S,LaSeiqS,Lx + e−

S,LbSe−iqS,Lx )eiqyy

+ (e+
S,T cSeiqS,T x + e−

S,T dSe−iqS,T x )eiqyy (9)

uD = e+
D,LtLeiqD,L (x−lD )eiqyy + e+

D,T tT eiqD,T (x−lD )eiqyy, (10)

where aS and cS are the coefficients of incident LA and TA
phonons, and bS and dS are those of reflected phonons in
the substrate. tL and tT are the coefficients of transmitted
LA and TA phonons in the detection layer. Here lD = lN+1,
which denotes the interface between the RSL and D-layer. The
displacement vectors (8), (9), and (10) satisfy Eq. (2) in each
layer.

The x and y components of a stress vector acting on the y-z
plane yield

σ{n,S,D},xX = C{n,S,D},11∂xu{n,S,D},x + C{n,S,D},12∂yu{n,S,D},y
(11)

σ{n,S,D},yX = C{n,S,D},44∂xu{n,S,D},y + C{n,S,D},44∂yu{n,S,D},x,

(12)

where the stiffness tensors are substituted by the stiffness
constants in Voigt notation for cubic materials.

Considering that the displacement vectors and the stress
vectors in adjoining layers match at their interface, we obtain
the following equation about the coefficients of the incident
phonons and the transmitted phonons

(aS, bS, cS, dS )T = W (tL, 0, tT , 0)T , (13)

where W is the matrix defined by

W ≡ �−1
S

[
N∏

n=1

�n(0)�−1
n (dn)

]
�D. (14)

Here �n(dn), �S , and �D are matrices, which are given in
Appendix.

Putting wi j as a matrix element of W , the transmission
coefficients tL and tT are related to aS and cS as(

tL
tT

)
= 1

w11w33 − w13w31

(
w33

−w31

)
aS

+ 1

w11w33 − w13w31

(−w13

w11

)
cS. (15)

Thus, even if the incident phonons were either the LA
phonons (aS = 1, cS = 0) or TA ones (aS = 0, cS = 1), the
transmitted phonons are composed of them. This is the case
for the reflection. The reflection coefficients bS and dS in the
substrate are given by(

bS

dS

)
= 1

w11w33 − w13w31

(
w21w33 − w23w31

w41w33 − w43w31

)
aS

+ 1

w11w33 − w13w31

(−w21w13 + w23w11

−w41w13 + w43w11

)
cS. (16)

Here we define the transmission rate using the Poynting
vector of phonons. From the equation of continuity of elastic

energy, we define an ith component of the Poynting vector as
Ji ≡ −u̇ jσi j . The x component of Poynting vector for incident
phonons having ω and qy becomes

JS,x (ω, qy) = |aS|2ω2 CS,11

cS,L
cos θS,L + |cS|2ω2 CS,44

cS,T
cos θS,T ,

(17)

and that of transmitted phonons in the detection layer is

JD,x (ω, qy) = |tL|2ω2 CD,11

cD,L
cos θD,L + |tT |2ω2 CD,44

cD,T
cos θD,T .

(18)

We define the transmission rate T (ω, qy) by the ratio of these
quantities

T (ω, qy) ≡ JD,x (ω, qy)

JS,x (ω, qy)
. (19)

Here we introduce Tlm that is defined by the ratio of the
Poynting vector of m-mode phonons in Eq. (18) to that of
the incident l-mode phonons in Eq. (17). In terms of them,
the transmission rates are divided into two parts as TL =
TLL + TLT for the LA phonon incidence and TT = TT L + TT T

for the TA phonon incidence. The contributions of them will
be discussed below. We also introduce the reflectances Rlm

defined by the ratio of the Poynting vector of reflected m-
mode phonons to that of incident l-mode phonons.

IV. RESULTS

We illustrate the phonon transmission properties of the
RSL’s made of GaAs and AlAs which are referred to as
the materials A and B in the rest of the paper. The unit
layers have the same thickness dA = dB = 3.4 nm so that
the size of RSL’s can be fixed for a given N . We introduce
the effective Lamè constants λA,B and μA,B which are
estimated from the sound velocities averaged over the
angles in the x-y plane; λA = 4.351 × 1011 dyn/cm2, μA =
4.490 × 1011 dyn/cm2, λB = 4.652 × 1011 dyn/cm2, μB =
4.419 × 1011 dyn/cm2. Their mass densities are ρA =
5.36 g cm−3 and ρB = 3.76 g cm−3. The material parameters
used for calculations are quoted from Refs. [22,23] for GaAs
and from Refs. [24,25] for AlAs.

Using the material parameters, we have the
sound velocities of LA and TA phonons as cA,L =
4.987 × 103 m/s, cA,T = 2.894 × 103 m/s, cB,L = 5.990 ×
103 m/s, cB,T = 3.428 × 103 m/s. Since cA,L/cB,L < 1, the
angles of incident phonons θS,L and θS,T must be within the
following ranges from Eq. (3),

0 � θS,L < sin−1 cA,L

cB,L
= 56.3◦ (20)

0 � θS,T < sin−1 cA,T

cB,L
= 29.0◦. (21)

A. Transmission rates

For the oblique phonon incidences, the LA phonons and
TA ones that have the same frequency and wave number in
the y direction (ω, qy) as the incident phonons coexist in all
the layers of the RSL’s, irrespective of the incident phonon

235441-3



TATSUYA YOSHIHIRO AND NORIHIKO NISHIGUCHI PHYSICAL REVIEW B 100, 235441 (2019)

1.0

0.8

0.6

0.4

0.2

0.0

<
 T

 >

1.00.80.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0

<
 T

 >

1.00.80.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0

<
 T

 >

1.00.80.60.40.20.0

)b()a(

)d()c(

1.0

0.8

0.6

0.4

0.2

0.0

<
 T

 >
1.00.80.60.40.20.0

FIG. 2. The averaged transmission rates versus frequency in
GaAs/AlAs RSL’s. The number of layers is N = 1000, and 300
samples of RSL’s are used for ensemble average of the transmission
rates. The incident angles are (a) θS,L = 0◦, θS,T = 0◦, (b) θS,L =
15.0◦, θS,T = 8.6◦, (c) θS,L = 30.0◦, θS,T = 16.9◦ and (d) θS,L =
45.0◦, θS,T = 24.2◦. The solid lines with open circles denote 〈T 〉 for
the LA phonon incidence (aS = 1, cS = 0), and the solid lines with
solid circles denote 〈T 〉 for the TA phonon incidence (aS = 0, cS =
1). νA,L , νA,T , νB,L , and νB,T are the resonance frequencies of LA and
TA phonons in the unit layers of A and B.

modes. However, the resultant transmission rates depend on
the incident phonon modes. Then, we examine the transmis-
sion rates versus frequency for single mode phonon incidences
at four pairs of incident angles θS,L and θS,T which satisfy the
Snell’s law; qy = ω sin θS,L/cS,L = ω sin θS,T /cS,T .

Figure 2 shows the averaged transmission rates 〈T 〉 versus
frequency for the LA phonon incidence (aS = 1, cS = 0) and
that for the TA phonon incidence (aS = 0, cS = 1) in the
RSL’s of N = 1000 layers. The ensemble averages of the
transmission rates are taken over 300 different configurations
of unit layers. The data are shown at the four pair of incidence
angles θS,L and θS,T ranging from the normal incidence to
θS,L = 45◦ for the LA phonon incidence and to θS,T = 24.2◦
for the TA phonon incidence. The four pairs of incident angles
θS,L and θS,T are given in the figure caption.

In case of the normal incidence of phonons [Fig. 2(a)], the
LA and TA phonons propagate independently in the RSL’s
without mode conversions. Their averaged transmission rates
individually show decay due to Anderson localization and
peaks denoted by arrows owing to the resonance transmission
where the wavelength matches the thicknesses of unit layers.
The resonance frequencies are given by [15,16]

ν{A,B},{L,T} = c{A,B},{L,T}
d{A,B}

. (22)

Figure 2(b) shows 〈T 〉 versus frequency at θS,L = 15.0◦ and
θS,T = 8.6◦. The incident phonons are split into the LA and
TA phonons having the same qy. Like the normal incidence of
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FIG. 3. Reflectance of the LA and TA phonons impinging on
a single interface between A and B layers versus incident angles;
(a) reflectance of the incident phonons in the A layer and (b) re-
flectance of the incident phonons in the B layer. The mode conver-
sions become dominant for θ{A,B},L > 25◦ or θ{A,B},T > 17◦.

phonons shown in Fig. 2(a), 〈T 〉 exhibits the decay and peaks
distinctly for the LA and TA phonon incidences. Although the
frequency dependences of 〈T 〉 resemble those for the normal
incidence, the transmission peaks shift to the higher frequency
region as

ν{A,B},{L,T} = c{A,B},{L,T}
d{A,B} cos θL,T

(23)

because the wave number in the x direction decreases as
the incident angle increases. It is found that the transmis-
sion peaks are obviously smaller than those of the normal
incidence. It is attributed to that phonons converted from the
incident phonons do not simultaneously satisfy the resonance
conditions of the incident phonons.

We also find that the transmission rates at the valleys are
larger than those in Fig. 2(a) as if they are partly compensated
by the transmission peaks of the converted phonons. It is con-
sidered that the converted phonons that satisfy the resonance
conditions raise the total transmission rates.

Figure 2(c) shows 〈T 〉 versus frequency at (c) θS,L = 30.0◦
and θS,T = 16.9◦. Remarkably, 〈T 〉 are almost independent of
the incident phonon modes. The transmission peaks of both
cases appear at νA,T and νB,T , and there is also a bump at νA,L.
In addition to the peaks, there is a peak between νB,T and νA,L

which is not predicted by Eq. (23). The tendency becomes
more apparent for θS,L = 45.0◦ and θS,T = 24.2◦ in Fig. 2(d).
〈T 〉 for the LA and TA phonon incidences coincide well in
the entire frequency region, and the magnitudes decrease more
than Fig. 2(c). The frequencies of the two major peaks do not
agree with Eq. (23) at all.

In order to investigate the transitional characteristics of
〈T 〉 with increasing incident angles, we examine the inci-
dent angle dependence of reflectance at a single interface
between the materials A and B since phonon backscattering
is responsible for Anderson localization. Figure 3 shows
the reflectance (a) when phonons in the A-layer impinges on
the interface and (b) when phonons in the B-layer impinges
on the interface. At the small incident angles, the mode
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FIG. 4. The scalar products of the polarization vectors given by
Eqs. (24) and (25) versus the propagation angle of LA phonons in a
layer made of material A. The propagation angle of TA phonons is
estimated from Snell’s law. The results agree well those for a layer
of material B in the entire angle region because the ratio of sound
velocities cA,L/cA,T ≈ cB,L/cB,T . The polarization vectors of trans-
mitted and backscattered phonons (solid line) become parallel as the
propagation angle increases in contrast to the phonons propagating
in the same direction (dashed line).

conversions do not substantially take place. As a consequence,
the phonon propagation in the RSL’s will maintain their
characteristics of the incident phonons. In contrast, the mode
conversions become significant at large incident angles, in
particular for θL > 25◦ or θT > 16◦. In the RSL’s, the alter-
nate exchanges of phonon modes occur repeatedly at all the
interfaces, and the transmitted and backscattered phonons of
different modes having wave vectors q±

n,L and q∓
n,T encounter

within every layer.
The polarization vectors of LA and TA phonons are per-

pendicular when the phonons propagate normally. For oblique
propagating phonons, their polarization vectors will not be
perpendicular but tend to be parallel at large angles of propa-
gation. It is remarkable for the transmitted and backscattered
phonons. The scalar product of the polarization vectors of the
phonons becomes

e±
L(T ) · e∓

T (L) = sin(θn,L + θn,T ) (24)

and for phonons having wave vectors q±
n,L and q±

n,T

e±
L(T ) · e±

T (L) = sin(θn,L − θn,T ). (25)

Figure 4 shows the scalar products of polarization vectors for
the two cases in a layer of material A. The results agree well
with those for a layer of material B in the entire angle region
because the ratio of sound velocities cA,L/cA,T ≈ cB,L/cB,T .
The polarization vectors of transmitted and backscattered
phonons are found to become parallel as the propagation
angle increases. Considering that the phonons have almost the
same polarization characters, we can expect coupling between
the phonons at large incident angles. Actually such coupled
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FIG. 5. The Lyapunov exponents versus frequency for the same
four pairs of incident angles as Fig. 2. The solid lines with open
(solid) circles indicates the Lyapunov exponents for the incident LA
(TA) phonons.

phonon modes are found in a periodic superlattice for oblique
phonon incidences [26]. The coupled phonon modes give
rise to phonon stop bands inside the folded Brillouin zone
as well as at the zone center and boundary. Assuming that
the coupled phonon modes are supported in the RSL’s, it is
understandable that the transmission rates become insensitive
to the incident phonon modes since they just are a portion
of the coupled modes, and the coupled mode will have the
resonance frequencies peculiar to the modes.

B. Lyapunov exponent

Localized states are characterized by the localization
length ξ . Here we introduce the Lyapunov exponent γ which
is the reciprocal of the localization length, i.e., γ = 1/ξ . The
Lyapunov exponent γ is defined by the ensemble average of
logarithm of transmission rates [27],

γ = − lim
L→∞

1

2L
〈ln T (L, ω)〉. (26)

Figure 5 shows γ versus frequency for the four pairs of
incident angles of phonons corresponding with Fig. 2. γ

shows peaks and valleys with increasing frequency for the
normal incidence of phonons in Fig. 5(a), and the peaks reach
approximately 1.1 μm−1 for the LA phonons and 1.3 μm−1

for the TA phonons. At θS,L = 15.0◦ or θS,T = 8.6◦, the peaks
of γ become smaller than those of the normal incidence and
are 0.8 μm−1 for the LA phonon incidence and 0.9 μm−1

for the TA phonon incidence as shown in Fig. 5(b). At the
incident angles, the peaks of γ are smaller than those of the
normal incidence of phonons in the entire frequency region.
In a finite system shorter than the localization length, i.e.,
Lγ � 1, phonons are regarded to be extended. Supposing the
RSL with L = 1 μm for instance, phonons with γ � 1 μm−1
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FIG. 6. The transmission fluctuations �T versus the averaged
transmission rates 〈T 〉 for four incident angles (a)–(d) corresponding
to Fig. 2. The data are obtained by statistical evaluations of trans-
mission rates of 300 samples of the RSL’s composed of N = 1000
layers. The open (solid) circles indicate �T for the LA(TA) incident
phonons. The black solid lines are the theoretical �T versus 〈T 〉
derived for single modes.

are extended. Then all the phonons in the entire frequency
region are extended in the case of Fig. 5(b). The delocalization
of phonons for the oblique phonon incidence is owing to the
collaborations of phonons as mentioned above.

At θS,L = 30.0◦ and θS,T = 16.9◦, the Lyapunov exponents
gather and exhibit similar frequency dependence as the trans-
mission rates do. They coincide in particular at the incident
angles θS,L = 45.0◦ or θS,T = 24.2◦ as shown in Fig. 5(d).
The magnitude of γ becomes larger than that of Figs. 5(b)
and 5(c), and the peaks reach γ ≈ 2.5 μm−1. It is almost
twice as large as that of Fig. 5(c). Thus, the coupled modes
induced by the mode conversions exhibit strong localization
with increasing incident angles.

C. Transmission fluctuations

Because phonon propagation in the RSL’s is owing to
interference among multiply scattered phonons, the trans-
mission rates fluctuate, depending on the realizations of the
random order of unit layers. It is known for the single mode
phonon transmission that the fluctuations defined by �T =√

〈T 2〉 − 〈T 〉2 depends only on 〈T 〉. The relation between
�T and 〈T 〉 is analytically proved to be a universal relation
between them, independent of types of randomness [15].

Figure 6(a) shows �T versus 〈T 〉 for the normal incidence
of LA phonons (open circles) and that of TA phonons (solid
circles) together with the theoretical results (solid line) for
single mode phonons [15]. It is found that �T are small when
〈T 〉 ∼ 1 and 〈T 〉 ∼ 0, whereas �T are large for intermediate
magnitudes of 〈T 〉. Since the mode conversions do not occur
for the normal phonon incidence, the numerical data for the
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FIG. 7. The transmission fluctuations �T versus the averaged
transmission rates 〈T 〉 at θS,L = 45◦ and θS,T = 24.2◦ in the fre-
quency region (a) ν � 0.2 THz and (b) 0.2 THz � ν � 1 THz. The
open (solid) circles indicate �T for the LA(TA) incident phonons.
The black solid lines are the theoretical �T versus 〈T 〉 derived for
single modes. Figure 6(d) is composed of Figs. 7(a) and 7(b).

LA phonons and TA ones converge on the theoretical curve.
Supposing that �T for the oblique incident phonons depends
only on 〈T 〉 like the normal incident phonons, we plot �T
versus 〈T 〉 in Figs. 6(b)–6(d) together with the theoretical
results for single mode phonons. The incident angles are the
same as those in Fig. 2.

As immediately found in Figs. 6(b)–6(d), �T for oblique
phonon incidences are smaller than the theoretical curve for
the normal incident phonons, meaning that the transmission
fluctuations are suppressed. In addition, Figs. 6(c) and 6(d) ex-
hibit complicated distributions of �T . At first, we find the two
arc-shaped distributions of �T similar to the theoretical curve
for the normal incidence. It is also found that �T distribute
between the two arcs in the region of 〈T 〉 < 0.4 for Fig. 6(c)
and 〈T 〉 < 0.3 for Fig. 6(d). The arc-shaped distributions
appear continuously from the extended states to the localized
states, and the smooth variation is possible only in the low
frequency region as understood from Figs. 2(c) and 2(d). On
the other hand, the latter ones appear only for the localized
states in the high frequency region. Then we divide the data
in Fig. 6(d) at 0.2 THz and plot individually �T versus 〈T 〉
for (a) ν < 0.2 THz and for (b) 0.2 THz < ν < 1.0 THz in
Fig. 7. Although we attributed above the phonon transmission
to the phonons of coupled modes, Fig. 7(a) indicates that the
phonon transmission in the low frequency region looks owing
to the weakly linked single modes. Meanwhile the coupled
mode phonons contribute in the high frequency region as
confirmed in Fig. 7(b).

In order to confirm that the phonon transmission is owing
to the single mode phonons in the low frequency region, we
separate 〈T 〉 for the RSL’s examined in Fig. 2(d) into the
compositions due to the transmitted phonons of LA and TA
modes for the incident LA and TA phonons below 0.3 THz in
Fig. 8. The predominant transmitted phonon modes are obvi-
ously the same as the incident phonon modes below 0.1 THz,
indicating that the phonons propagate as the single modes at
low frequencies. Since the wavelengths are larger than dA,B

in the frequency region, the phonon scattering is owing to the
Rayleigh scattering. In the case of normal phonon incidence
[15], the backscattering rate of phonons is proportional to ν2

and then the reflection in the frequency region is very small.
Supposing this is the case for the oblique incident phonons,
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FIG. 8. The LA and TA components of 〈T 〉 in the RSL’s of N =
1000 versus frequency. The incident angles are the same as Fig. 2(d).
The solid lines with open or solid circles indicate the transmission
rates of the same modes as the incident ones. The solid lines with
open or solid triangles show the components of the different mode
phonons from the incident phonons.

the mode coupling due to the encounters of transmitted and
backscattered phonons is insufficient to induce the coupled
modes and the incident phonons will remain as the predom-
inant phonons. Thus we can consider that the transient in
phonon modes from the single modes to the coupled ones is
caused by the change in the scattering strength with frequency.

Before proceeding to investigate the origin of suppression
of �T , we briefly review the statistics on the transmission
fluctuations of single mode phonons [15,28]. The transmis-
sion fluctuations for single mode phonons are related to the
following probability density W (z, t ) with which one can
express the average of an arbitrary function f (z) of z = 1/T as

〈 f 〉 =
∫ ∞

1
f (z)W (z, t )dz. (27)

The probability density yields

W (z, t ) = 2√
πt3

∫ ∞

x0

x√
cosh2 x − z

e−( t
4 + x2

t )dx (28)

where t = 〈− ln T 〉 = 2Lγ and x0 = cosh−1 √
z. For t � 1,

the probability density is proved to be the log-normal
distribution of transmission rates [28]

W (z, t )z = 1

2
√

πt
exp

[
− (ln z − t )2

4t

]
. (29)

W (z, t )z becomes the probability density for ln z since
W (z, t )dz = W (z, t )zd (ln z). It is apparent that the parameter
t gives the peak position of Eq. (29) and the variance of ln z
as (� ln z)2 = 2t .

Here we investigate the phonon transmission at very small
incident angles where the mode-conversion effects on the
phonon propagation are very little as shown in Fig. 3. The
incident phonons will remain largely unchanged, and a very
small portion of the energy of incident phonons is converted
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FIG. 9. The probability distributions of − ln Tlm at ν = 0.1 THz.
The incident angles are θL = 1◦ for LA phonons and θT = 0.58◦ for
TA phonons. The open circles are the numerical data for 10 000 sam-
ples, and the solid lines indicate the theoretical distribution estimated
with Eq. (28). The arrows indicate the averaged magnitude t of the
numerical data. From the standard deviation of numerical data, we
have tLT = 1.547 and tT L = 1.586, which are smaller than t = 8.495
and t = 8.493. The dashed lines indicate the revised probability
distributions Eq. (30).

to the countermode phonons. Here we can ignore further
mode conversions since the phonon intensity of the successive
occurrences of reflectance is proportional to the product of
RLT and RT L. As a consequence, we may approximate the
transmission rates to be composed of those of single mode
phonons. Then we expect that the transmission rates of in-
cident phonons TLL and TT T and those of mode-converted
phonons TLT and TT L as well as their fluctuations are essen-
tially the same as those of single mode phonons.

Figure 9 shows the probability distributions of the trans-
mission fluctuations at ν = 0.1 THz of (a) TLL, (b) TLT , (c)
TT T , and (d) TT L. The incident angles are θL = 1◦ for LA
phonons and θT = 0.58◦ for TA phonons. The averaged trans-
mission rates are 〈TLL〉 = 0.452 and 〈TT T 〉 = 0.189, while
〈TLT 〉 and 〈TT L〉 ≈ 8 × 10−4. The abscissa is − ln Tlm and the
ordinate is the probability distribution. The solid lines indi-
cate the theoretical probability distribution W (z, t )z calculated
from Eq. (28) for single mode phonons, where the parameter
t for W (z, t )z in each case is estimated by averaging the
logarithm of numerical data (open circles) of transmission
rates as t = −〈ln Tlm〉. Obviously Figs. 9(a) and 9(c) show
excellent agreement of the numerical data (open circles) with
the theoretical results for the single mode phonons. The
magnitudes of the numerical data are adjusted so that the
peak heights of the data would match the theoretical ones. In
contrast, although the peak positions of numerical data agree
with those of theoretical curves for Figs. 9(b) and 9(d), the
numerical data are distributed noticeably narrower than the
theoretical curves.
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As shown in Eq. (29), the parameter t determines both the
peak position and the variance of the probability distribution.
The disagreement about the variances found in Figs. 9(b)
and 9(d) indicates that a single parameter is insufficient to
express the probability distributions of phonons generated by
mode conversions. Considering that the variance of transmis-
sion which is proportional to the Lyapunov exponent γ is an
intrinsic property of Anderson localization, we reexamine the
relation of t to the peak position of probability distribution.

As long as the detected phonon modes are the same,
we may assume the same frequency dependence for TLL

and TT L as the LA phonons and for TT T and TLT as the
TA phonons. Introducing positive coefficients α, β, α′ and
β ′ which are smaller than unity, we put TLL = αT 0

L , TLT =
βT 0

T , TT T = α′T 0
T , and TT L = β ′T 0

L , where T 0
l means the

transmission rates of single l-mode phonons without mode
conversions for normal incidence. For very small incident
angles, α, α′ ≈ 1. As for TLT , we have t = −〈ln TLT 〉 =
− ln β − 〈ln T 0

T 〉. T 0
T is essentially dependent on the product

of the Lyapunov exponents and the system length t = 2γ L =
−〈ln T 0

T 〉, and the magnitude is expected to be the same
as t obtained in Figs. 9(c). However, they do not match
because the mode conversions take place through the RSL’s
and then the system length L is not well defined. The ac-
tual magnitudes of tLT = −〈ln T 0

T 〉 and tT L = −〈ln T 0
L 〉 can

be derived from the variance of the numerical data, and
then we have tLT = 1.547 and tT L = 1.586 in the case of
Figs. 9(b) and 9(d). Then β and β ′ are obtained by the
subtractions − ln β = t − tLT = 8.495 − 1.547 = 6.984 and
− ln β ′ = t − tT L = 8.493 − 1.586 = 6.907. From the con-
siderations, the probability distribution for TLT has variance
given by tLT and the peak position shifts by − ln β from tLT .
We rewrite accordingly Eq. (29) for TLT as

W (z, t )z = 1

2
√

πtLT
exp

[
− (ln z − ln β − tLT )2

4tLT

]
. (30)

We have the same probability distribution as Eq. (30) for TT L

where tLT and β are replaced by tT L and β ′. The revised
probability distribution curves are plotted with the dashed
lines in Figs. 9(b) and 9(d), showing substantial agreement
with the numerical data for both cases. Thus, the disagreement
about the variances for TLT and TT L is owing not to the change
in essential properties of Anderson localization but to the
change in phonon intensities caused by mode conversions.

For the small incident angles discussed above, the suppres-
sion of transmission fluctuations of mode-converted phonons
does not affect the statistics of the total transmission rates.
With increasing incident angles, RLT and RT L become large,
so that α and α′ decrease while β and β ′ increase. The
probability distributions of both incident phonons and mode-
converted phonons will shift as discussed above, leading
to the suppression of transmission fluctuations of them.
Figure 10 shows the probability distributions of (a) − ln TLL,
(b) − ln TLT , (c) − ln TT T , and (d) − ln TT L. The solid lines
are the theoretical curves, and the open circles indicate the
numerical results for 10 000 samples. The parameter t for each
case is evaluated from the ensemble average of numerical data
by t = 〈− ln Tlm〉. The distributions of all the numerical data
are found to be narrower than the theoretical ones.
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FIG. 10. The probability distributions at ν = 0.0912 THz for
(a) − ln TLL and (b) − ln TLT and those at ν = 0.0552 THz for
(c) − ln TT T and (d) − ln TT L . The incident angles are θL = 30◦

for LA phonons and θT = 16.9◦ for TA phonons. The open circles
are the numerical data for 10 000 samples, and the arrows indicate
the averaged magnitude t of the numerical data. The averaged
transmission rates are for each case (a) 〈TLL〉 = 0.296, (b) 〈TLT 〉 =
0.0955, (c) 〈TT T 〉 = 0.332, and (d) 〈TT L〉 = 0.0728. The averaged
total transmission rates are 〈TL〉 = 0.392 and 〈TT 〉 = 0.405. The solid
lines indicate the theoretical probability distributions Eq. (28).

Figure 11 shows the probability distributions of the total
transmission fluctuations of Fig. 10. The averaged transmis-
sion rates of Figs. 11(a) and 11(b) are the same 〈T 〉 ≈ 0.4.
Comparing the two cases, we find that the probability distri-
bution for the TA phonon incidence is suppressed more than
that for the LA phonon incidence. The substantial suppression
occurs at high transmission rates in particular for TT . The
difference between Figs. 11(a) and 11(b) stems from that the
shift of the probability distribution of TA phonons shown in
Fig. 10(c) is larger than that of LA phonons in Fig. 10(a).
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FIG. 11. The probability distribution of − ln TL at
ν = 0.0912 THz and that of − ln TT at ν = 0.0552 THz. TL

and TT are the total transmission rates of Fig. 10. The open circles
are the numerical data for 10 000 samples, and the arrows indicate
the averaged magnitude t of the numerical data. The solid lines are
the theoretical probability distributions Eq. (28).
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FIG. 12. The probability distributions of (a) − ln TL and
(b) − ln TT at ν = 0.4 THz. The incident angles are (a) θL = 30◦ for
LA phonons and (b) θT = 16.9◦ for TA phonons. The open circles
are the numerical results for 10 000 samples, and the arrows indicate
the averaged magnitude t of the numerical data. The difference
between the t’s is quite negligible since the ratio of the difference
in t versus the standard deviation becomes �t

σ
≈ 0.006. Accordingly

the averaged transmission rates are (a) 〈TL〉 = 0.039 and (b) 〈TT 〉 =
0.040. The numerical data also show excellent agreement with the
theoretical probability distributions (solid lines) Eq. (28).

As a result, the transmission fluctuations of TA phonons are
suppressed more than those of LA phonons as found in Fig. 6.

We finally investigate the probability distributions at ν =
0.4 THz for θL = 30◦ and θT = 16.9◦ where the coupled
phonon modes are expected. Figure 12 shows the numerical
data for (a) LA phonon incidence and (b) TA phonon inci-
dence together with the theoretical curves. The results are
independent of the incident phonon modes like the averaged
transmission rates in Fig. 2(c) and the Lyapunov exponents
in Fig. 5(c). In contrast to Fig. 11, the numerical data show
excellent agreement with the theoretical probability distribu-
tion of single mode phonons, which evidences the formation
of coupled modes in the RSL’s. The deviations of the nu-
merical data from the theoretical curves are found at large
transmission rates. This can be attributed to that there are no
phonons simultaneously satisfying the resonant transmission
conditions of LA and TA phonons in the RSL’s.

V. SUMMARY AND DISCUSSIONS

We investigated the mode-conversion effects on Anderson
localization of phonons in GaAs/AlAs random superlattices
with the transfer matrix method, and made it clear what
happens when the LA and TA phonons that independently
show Anderson localization for normal incidence interact.
For oblique phonon incidence, the mode conversions between
the LA and TA phonons occur and the coupling becomes
stronger with increasing incident angles. We revealed the
characteristics brought by the mode conversions, paying atten-
tion to the change in the incident phonon mode dependences
of transmission rates and the relation between the averaged
transmission rates and transmission fluctuations.

One of the interesting findings of the present work is
weakening localization properties. The mode conversions in-
duce the collaborations among the phonons at small incident
angles that compensate for the transmission decay. As a result,
the localization lengths are extended, and then the phonons
are possibly delocalized, depending on the system size. The

transmission fluctuations are suppressed in comparison with
those of single modes phonons. The disagreement is not
owing to the change in intrinsic statistics of transmission
fluctuations but stems from the energy sharing of phonons due
to the mode conversions.

At larger incident angles, the mode conversions become
strong enough to form the coupled modes peculiar to the
system whose transmission rates and transmission fluctuations
are independent of the incident phonon modes. The agreement
of transmission fluctuations of the coupled mode phonon with
the single mode phonons confirms the formation of single
mode phonons.

To conclude, the presence of mode conversions does not
violate the localization phenomena but gives rise to a variety
of phenomena owing to interaction among phonons.

APPENDIX: MATRIX ELEMENTS

The matrix elements of �n(dn) are given as

λn
11(dn) ≡ eiqn,Ldn cos θn,L (A1)

λn
12(dn) ≡ −e−iqn,Ldn cos θn,L (A2)

λn
13(dn) ≡ −eiqn,T dn sin θn,T (A3)

λn
14(dn) ≡ e−iqn,T dn sin θn,T (A4)

λn
21(dn) ≡ eiqn,Ldn sin θn,L (A5)

λn
22(dn) ≡ e−iqn,Ldn sin θn,L (A6)

λn
23(dn) ≡ eiqn,T dn cos θn,T (A7)

λn
24(dn) ≡ e−iqn,T dn cos θn,T (A8)

λn
31(dn) ≡ (Cn,11 cos2 θn,L + Cn,12 sin2 θn,L )

cn,L
eiqn,Ldn (A9)

λn
32(dn) ≡ (Cn,11 cos2 θn,L + Cn,12 sin2 θn,L )

cn,L
e−iqn,Ldn (A10)

λn
33(dn) ≡ − (Cn,11 − Cn,12) sin θn,T cos θn,T

cn,T
eiqn,T dn (A11)

λn
34(dn) ≡ − (Cn,11 − Cn,12) sin θn,T cos θn,T

cn,T
e−iqn,T dn (A12)

λn
41(dn) ≡ Cn,44 sin 2θn,L

cn,L
eiqn,Ldn (A13)

λn
42(dn) ≡ −Cn,44 sin 2θn,L

cn,L
e−iqn,Ldn (A14)

λn
43(dn) ≡ Cn,44 cos 2θn,T

cn,T
eiqn,T dn (A15)

λn
44(dn) ≡ −Cn,44 cos 2θn,T

cn,T
e−iqn,T dn . (A16)

The matrix elements of �S and �D are derived from the above
expressions by putting dn = 0 and substituting the elastic
constants by those of the S and D layers, and θn,{L,T } is also
substituted by θS,{L,T } for �S or by θD,{L,T } for �D.
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