
PHYSICAL REVIEW B 100, 235432 (2019)

Time-dependent Green’s function approach to spin transport assisted by nonclassical light

M. X. Bi,1 X. H. Yan,2,* Y. Xiao ,1,† and Hong Guo3

1College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China

3Center for the Physics of Materials and Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8

(Received 27 March 2019; revised manuscript received 20 October 2019; published 17 December 2019)

The generation of spin current is of significant importance for advanced spintronic applications. In conven-
tional theory and experiment, microwave sources are usually described by a classical time-varying field in which
all fluctuations are neglected. Here, we study the spin current driven by nonclassical light by developing a
Green’s function method in which both effects of nonclassical light and electron-related interaction can be taken
into account. Our theoretical method has more advantages than the linear response theory developed recently
as it can be easily extended to the electronic transport problem with interaction. As an example, we calculate
the spin current due to the rotating magnetic field in the presence of nonclassical light. It is found that the
spin current is sensitive to the state of nonclassical light. Under certain conditions, the transmission and spin
current can be smaller than the classical limit, which cannot be broken by a pure classical microwave field. The
method developed here and the results reported here will be important for understanding complicated physical
phenomena occurring in the hybrid field of spintronics and circuit quantum electrodynamics.
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I. INTRODUCTION

Time-dependent electronic transport has attracted much
interest in both theoretical and experimental physics in recent
decades [1–12]. Some interesting characteristics, such as n-
photon-assisted tunneling, have been observed experimentally
or predicted theoretically [8–13]. In a number of experiments,
conventional ac microwave sources are, in general, used
[14–16]. To some extent, the microwave source is equivalent
to a time-varying potential exerted in the device. In light of
this, the microwave signal is treated as a cos ωt function of
electric potential in many theoretical calculations [1,9]. This
can be regarded as a classical treatment of microwave field in
which all fluctuation effects are removed.

With rapid progress in the field of quantum optics, it is now
possible to prepare a photon state other than a classical state,
such as the Fock state or squeezed state [17,18]. In such a
case, the conventional treatment of the microwave field and
the physical picture of photon-assisted tunneling should be
amended. Recently, Souquet et al. studied theoretically elec-
tronic tunneling in a nanojunction which is illuminated with
nonclassical microwave photons [8]. Some unique character-
istics, which cannot be observed in pure classical microwave
experiments, are predicted. As is known, the detection of
nonclassical light is usually performed in the optical means.
Souquet et al.’s work provides an alternative, i.e., an electrical
means, for the detection of nonclassical light in the future.

Despite the importance of Souquet et al.’s work, it still
can be improved in some aspects. First, electronic transport
in Ref. [8] is treated within the framework of Ohm’s law,
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i.e., I = V/RT , with RT being the resistance of the junction.
Therefore, it is a semiclassical theory and is hard to use
to study a pure quantum problem, such as the interference
between different channels in quantum transport. To study
a quantum coherent conductor, a fully quantum-mechanical
method is desired. Second, it is noticed that the device in
Ref. [8] consists of only the left lead and right lead. The direct
coupling between two leads reproduces the tunneling current.
However, as various types of interactions are present in the
device, e.g., electron-electron or electron-phonon interaction,
the method and device geometry in Ref. [8] make the treat-
ment of interaction difficult. So it is important to develop
a pure quantum-mechanical theory of electronic transport
which can deal with both nonclassical light and the interaction
effect.

Moreover, the spin-polarized transport becomes more and
more important due to potential applications in the spintronic
field [19–30]. Some new physical phenomena, e.g., spin
pumping and spin transfer torque, and new devices, e.g., mag-
netic random access memory, have been proposed [31–38].
Since spin is not considered in Ref. [8], the new method
developed should be able to handle the spin-related properties.
Furthermore, some recent studies of spin transport are focused
on the cavity-related problems in which distinct couplings,
e.g., electron-spin-photon coupling [39] and magnon-photon
coupling [40], are present. When cavity photons are prepared
in the nonclassical states, the spin-photon coupling and non-
classical nature of photons will reproduce fascinating behav-
ior. The study of such a problem requires the development of
new theoretical tools. Based on the above, we notice that the
Green’s function method is a suitable one for our purpose. It
has been widely used in the calculation of electronic trans-
port problems of a quantum coherent conductor. Especially,
different types of electron interactions, including spin-related
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interaction, can be treated by introducing the self-energy of
the interaction in the Green’s function method. Therefore,
it is physically meaningful to develop a Green’s function
method for the calculation of spin transport in the presence
of nonclassical light.

In this work, we develop a time-dependent Green’s func-
tion method to deal with the spin current driven by the
nonclassical microwave photons. Formulas of the charge and
spin current are obtained which may be used to explain
experimental results in the future. Moreover, the process of
building the self-energy and Green’s function of the Zeeman
coupling between a rotating magnetic field and spin can be
extended to the other interaction problems in the presence of
nonclassical light, e.g., the coupling between electrons and
phonons, photons, and magnons and the strong coupling be-
tween magnons and cavity photons. The results of the charge
current indicate that the unique distributions of nonclassical
light have an important effect on electronic transport. For
example, the transmission in the case of nonclassical light
can be lower than a classical limit which cannot be broken
in the classical photon state. As for the spin current, the
combination of spin-dependent tunneling and the nonclassical
effect reproduces many phenomena which cannot be obtained
in the classical case.

This paper is organized as follows. In Sec. II, we present a
comprehensive derivation of the current formula for four types
of photon states based on the Green’s function method. After
the problem without interaction is treated, we take the Zeeman
interaction between spin and a time-varying magnetic field
into account to show how the interaction effect is implemented
in the Green’s function. In Sec. III, we discuss the numerical
results based on the current and transmission formulas derived
in Sec. II. We focus on the effect of nonclassical light on spin
transport. The findings are concluded in Sec. IV. Moreover,
some cumbersome derivations are put into the Appendices.

II. THEORY AND METHOD

In this section, we describe the procedure of deriving the
current formulas for various states of nonclassical light. To
this end, we first present the Hamiltonian which describes the
device model. An important treatment, which is different from
the pure classical calculation, is the phase factor in which
the photon’s operator is introduced in order to describe the
fluctuation. Then, the correlator arising from the phase factor
is built and calculated for each state. Finally, the formulas of
current and transmission are presented.

A. The Hamiltonian and Green’s function

Our theoretical Hamiltonian mimics a two-probe device
driven by nonclassical light that generates a time-dependent
current in the microwave frequency range. It is written as

Ĥ = ĤLead + ĤC + ĤT , (1)

ĤLead =
∑

q,α=L,R

εqα (t )ĉ†
qα ĉqα, (2)

ĤC =
∑

m

εmd̂†
md̂m, (3)

ĤT =
∑
qα,n

Vqα,nĉ†
qα d̂n + V ∗

n,qα d̂†
n ĉqα, (4)

where ĤLead is the Hamiltonian of the leads of the two-probe
device, ĤC is the Hamiltonian of the device itself, and ĤT is
the coupling Hamiltonian between the leads and the device.
The creation (annihilation) operator in the lead labeled by
α = L, R is ĉ†

qα (ĉqα ), with q being the wave vector, and in the

device it is d̂†
m (d̂m). In Eq. (3), εm is the single-particle energy

of the device with quantum number m. For convenience, we
consider only one energy level in the device, i.e., εm = ε0. As
shown in Eq. (4), the coupling strength between the device
and the lead is given by the parameter Vqα,n. The form of
Eq. (4) arises from the charge conservation in the process of
electronic tunneling between the lead and central region.

The time-dependent and nonclassical nature of electronic
transport is represented by the single-particle energy of the
leads. In general, the single-particle energy in the classical
case is of the form

εqα (t ) = εqα0 + eV (t ), (5)

where V (t ) is the oscillating voltage arising from the sur-
rounding environment, such as the external circuit in the
microwave cavity [8]. e is the elementary charge. In the
treatment of the pure classical state of a microwave, it
is customary to consider V (t ) to be the pure ac voltage,
i.e., V (t ) = V0 cos(ωt ). However, in nonclassical microwave
states, the quantum fluctuation should be carefully considered.
As studied by some other authors [8,41–47], such a quantum
fluctuation will lead to fluctuation of the charge distribution in
the leads and fluctuation of charge transfer across the quantum
electronic conductor. In our work, the nonclassical light is
introduced through these quantum fluctuations.

To describe the nonclassical light, we consider the elec-
tron’s operator in the Heisenberg picture,

ĉqα (t ) = ĉqα0(t ) exp

(
−i

∫ t

−∞
eV̂ (t1)dt1

)
, (6)

where the phase operator is defined as [8]

ϕ̂(t ) = e
∫ t

−∞
V̂ (t1)dt1 = −i

√
ρ[â(t ) − â†(t )]. (7)

Due to quantum fluctuation, the voltage is treated as an
operator V̂ with the commutation relation [V̂ (t ), V̂ (t ′)] = 0.
â† (â) is the creation (annihilation) operator of the cavity
photon mode, and ρ describes the strength of the zero-point
fluctuation of the cavity. Since a single level is used in the
central region shown in Eq. (3), the single-mode states of the
external circuit are considered in our calculations.

The Green’s function of the lead is modified due to the
phase factor and is rewritten as

g(t, t ′) = −i〈Tcĉqα (t )ĉ†
qα (t ′)〉 = igqα0(t, t ′)gec(t, t ′), (8)

where we define the Green’s function of the bare lead
gqα0(t, t ′) = −i〈Tcĉqα0(t )ĉ†

qα0(t ′)〉 and the Green’s function

of the external circuit gec(t, t ′) = −i〈Tce−iϕ̂(t )eiϕ̂(t ′ )〉, respec-
tively. Here, Tc is the time-ordering operator.

Furthermore, we define the lesser Green’s function

g<(t, t ′) = ig<
qα0(t, t ′)g<

ec(t, t ′), (9)
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with g<
ec(t, t ′) = −i〈eiϕ̂(t ′ )e−iϕ̂(t )〉, and the advanced Green’s

function

ga(t, t ′) = ga
qα0(t, t ′)〈eiϕ̂(t ′ )e−iϕ̂(t )〉 + [

ga
2 + ga

3

]
, (10)

with ga
2 = −iga

qα0(t, t ′)ga
ec(t, t ′) and ga

3 = ig<
qα0(t, t ′)ga

ec(t, t ′).
It can be proved that the term ga

2 does not contribute to the
current, and thus, it is omitted from now on. However, the
term ga

3 makes a contribution to the current. Further analysis
shows that the current arising from this term decreases as the
temperature increases. So we consider the regime where the
temperature is not so low that the contribution from this term
can be neglected (for details see Appendix B).

The Green’s function of the bare lead, i.e., in the absence
of device and electromagnetic field, takes the familiar form
of [1]

g<
qα0(t, t ′) = i f (εqα0)e−iεqα0(t−t ′ ), (11)

ga
qα0(t, t ′) = iθ (t ′ − t )e−iεqα0(t−t ′ ), (12)

where θ (t ′ − t ) is the Heaviside step function and f (εqα0) is
the Fermi-Dirac distribution.

B. Cavity fluctuation

In the presence of pure classical photons, the phase factor
is represented by a complex number. But for nonclassical
light, we have to deal with the phase factor and the correlator
〈eiϕ̂(t ′ )e−iϕ̂(t )〉 quantum mechanically. For each nonclassical
light with density matrix ρ̂cav , the correlator is written as

〈eiϕ̂(t ′ )e−iϕ̂(t )〉 = Tr(ρ̂caveiϕ̂(t ′ )e−iϕ̂(t ) ). (13)

We next derive the form of the correlator for each photon
state.

(1) When the microwave photon is in a Fock state, i.e.,
ρ̂cav = |n〉〈n|, the fluctuation is

〈eiϕ̂(t ′ )e−iϕ̂(t )〉 = P0(t, t ′)PFock
occ (t, t ′), (14)

where P0(t, t ′) = ∑∞
k=0

e−ρρk

k! eikω(t−t ′ ) is the vacuum fluctua-
tion and ω is the frequency of the photon. PFock

occ (t, t ′), which
is the fluctuation arising from photon absorption (emission)
when the cavity is not in the ground state [8], reads

PFock
occ (t, t ′) =

n∑
l=0

Cl
n

l!
[ρ(eiω(t−t ′ ) + e−iω(t−t ′ ) − 2)]l . (15)

In the photon’s ground state, PFock
occ (t, t ′) = 1, and thus, the

vacuum fluctuation dominates the quantum fluctuation. Here,
Cl

n is the binomial distribution, and l! is the factorial.
(2) In the coherent state with ρ̂cav = |α〉〈α|, the vacuum

fluctuation remains unchanged, but the fluctuation Pocc(t, t ′)
is expressed by

Pcoh
occ (t, t ′) =

∑
n

∑
m

Jn(x)Jm(x)einωt e−imωt ′
, (16)

with x = 2
√

ρ|α| and Jn being the Bessel function of order n.
(3) In the thermal state, the density matrix is ρ̂cav =∑
n Pn|n〉〈n|, where Pn = (n)n

(n+1)n+1 , with n = 1

e
h̄ω

kBT −1
. The fluc-

tuation is thus written as

Pth
occ(t, t ′) = e2ρn[cos ω(t−t ′ )−1]. (17)

C. Current formula

Without the loss of generality, the time-dependent current
flowing across the left lead is written as [1]

JL(t ) = −e

〈
d
( ∑

qL ĉ†
qL(t )ĉqL(t )

)
dt

〉
= 2e

h̄
Re

∑
qLn

VqLnG<
nqL(t, t ),

(18)

where Re (Im) is the real (imaginary) part of the quantity and
h̄ is the reduced Planck constant.

With the Green’s function of the central region of the
device, the current formula is given by

JL(t ) = J (1)
L (t ) + J (2)

L (t ), (19)

J (1)
L (t ) = −e�L

h̄
Im

{
i
∑

α

�α

∫
dε

2π
fα (ε)

×
∫∫

dt1dt2θ (t − t1)θ (t − t2)e−iε(t1−t2 )e−�t

× ei(ε0− i
2 �)t1 e−i(ε0+ i

2 �)t2〈eiϕ(t2 )e−iϕ(t1 )〉
}
, (20)

J (2)
L (t ) = −2e�L

h̄
Im

∫
dε

2π
fL(ε)

∫ t

−∞
dt1

{ − iθ (t − t1)

× ei(ε0− i
2 �)(t1−t )e−iε(t1−t )〈eiϕ(t )e−iϕ(t1 )〉}, (21)

where � = �L + �R. �L and �R are the level-width functions
of the left and right leads. fL is the Fermi-Dirac distribution
of the left lead. The detailed derivation of the current formula
can be found in Appendix A. Next, we will discuss the current
formulas for each state of nonclassical light.

1. Pure classical photon

We first consider the pure classical photon, which has been
well studied [1]. Due to the absence of fluctuation, we can
write V (t ) = V0 cos(ωt ). Then the fluctuation becomes

〈eiϕ̂(t2 )e−iϕ̂(t1 )〉c =
∑
m1

∑
m2

Jm1 (V0/ω)Jm2 (V0/ω)eim1ωt1 e−im2ωt2 .

(22)

Inserting Eq. (22) into Eq. (19) and averaging over t , the
average current is

〈
Jc

L (t )
〉 = − e

h̄

+∞∑
n=−∞

pc
tot[n]

∫
dε

2π
�R�L fR(ε) − fL(ε)

(ε − ε0 − nω)2 + �2

4

,

(23)

where pc
tot[n] = J2

n (V0/ω) describes the weight of total photon
absorption or emission. Equation (23) is the same as those
obtained in [1,9].

2. Thermal state

In the thermal state, the total fluctuation is written as

〈eiϕ̂(t2 )e−iϕ̂(t1 )〉th =
∞∑

k1,k2,k3

e−ρe−2ρnρk1 (ρn)k2+k3

k1!k2!k3!

× ei(k1+k2−k3 )ωt1 e−i(k1+k2−k3 )ωt2 . (24)
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The average current is

〈
Jth

L (t )
〉 = − e

h̄

+∞∑
n=k1−k3

pth
tot[n]

∫
dε

2π
�R�L fR(ε) − fL(ε)

(ε − ε0 − nω)2 + �2

4

,

(25)

where

pth
tot[n] =

+∞∑
k1=0

p0[k1]pth
occ[n − k1]

=
+∞∑
k1=0

e−ρρk1

k1!

+∞∑
k3=0

e−2ρn(ρn)n−k1+2k3

(n − k1 + k3)!k3!
, (26)

in which pth
tot[n] represents the weight of total photon absorp-

tion or emission, p0[k1] describes the probability of k1-photon
absorption by the cavity in the ground state, and pth

occ[n − k1]
is a quasiprobability of an additional (n − k1)-photon absorp-
tion or emission process when the cavity is not in the ground
state.

3. Coherent state

In the coherent state, the fluctuation is determined by both
vacuum fluctuation and photon occupation fluctuation and
reads

〈eiϕ̂(t2 )e−iϕ̂(t1 )〉coh

=
∞∑

k=0

e−ρρk

k!

∑
n

∑
m

JnJmei(n+k)ωt1 e−i(m+k)ωt2 . (27)

The average current is

〈
Jcoh

L (t )
〉 = − e

h̄

+∞∑
n=−∞

pcoh
tot [n]

×
∫

dε

2π
�R�L fR(ε) − fL(ε)

(ε − ε0 − nω)2 + �2

4

, (28)

where

pcoh
tot [n] =

+∞∑
k=0

p0[k]pcoh
occ[n − k] =

+∞∑
k=0

e−ρρk

k!
J2

n−k . (29)

4. Fock state

In the Fock state, the fluctuation is written as

〈eiϕ̂(t2 )e−iϕ̂(t1 )〉Fock =
+∞∑

n�−k

pFock
tot,k [n]e−inω(t2−t1 ), (30)

where

pFock
tot,k [n] = e−ρρnk!

(k + n)!

[
L(n)

k (ρ)
]2

, (31)

in which L(n)
k (ρ) is the generalized Laguerre polynomial.

The average current is thus given by

〈
JFock

L (t )
〉 = − e

h̄

+∞∑
n�−k

pFock
tot,k [n]

×
∫

dε

2π
�R�L fR(ε) − fL(ε)

(ε − ε0 − nω)2 + �2

4

. (32)

D. Spin current

As mentioned in Introduction, the merit of the Green’s
function method is the ability of treating the interaction
in electronic transport calculation. Here, we consider the
Zeeman coupling between a rotating magnetic field and the
spin to see how both interaction and nonclassical effects
are treated in the Green’s function method. The rotating
magnetic field takes the form of

−→
B = B0(sin θ cos ωt

−→
i +

sin θ sin ωt
−→
j + cos θ

−→
k ), where θ is the angle between ro-

tating magnetic field and the z axis. The Hamiltonian consists
of the terms in the absence of Zeeman interaction, i.e., Eq. (1),
and the terms with Zeeman interaction written as

Hzeeman = γc[d̂†
↑d̂↑ − d̂†

↓d̂↓] + γs[e
−iωt d̂†

↑d̂↓ + eiωt d̂†
↓d̂↑],

(33)

where γc = B0 cos θ and γs = B0 sin θ .
The current operator of the α lead in spin space is written

as [19]

Îασσ ′ = −i
∑

q

[Vkα ĉ†
qασ d̂σ ′ − V ∗

qα d̂†
σ ĉqασ ′ ]. (34)

In order to obtain the spin current, we consider the self-
energy arising from the Zeeman interaction based on the
nonequilibrium Green’s function theory. Detailed derivations
can be found in Appendix C. The spin current obtained is
written as〈

Îν
α,↑↑(t )

〉
= −〈

Îν
α,↓↓(t )

〉
=

∞∑
n

pν
tot[n]��α

∫
dE

2π

∣∣∣∣ γsG0r
↓↓(E )G0r

↑↑(E + ω)

1 − γ 2
s G0r

↓↓(E )G0r
↑↑(E + ω)

∣∣∣∣
2

× [ f (E + nω) − f (E + ω + nω)], (35)

where ν denotes pure classical, thermal, coherent, and Fock
states. The explicit forms of G0r

↑↑ and G0r
↓↓ are given in Ap-

pendix C.

III. NUMERICAL RESULTS AND DISCUSSION

With the formulas of the current, Eqs. (23), (25), (28), and
(32), we calculate the transmission coefficient (integrand in
the current formula) numerically. We discuss the results in two
cases, i.e., the nonspin polarization and spin polarization.

A. Nonspin polarization

Figure 1 shows the transmission coefficient as a function
of energy for each state of the microwave. First, as shown
in Fig. 1(a), one can see that for a pure classical microwave
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FIG. 1. Transmission coefficient versus (ε − ε0)/� with ω/� = 5 for each cavity state. (a), (b), and (c) correspond to the pure classical
state, coherent state, and thermal state, respectively. (d), (e), and (f) are Fock states |k = 2〉 with different ρ. The blue dashed line represents
the classical limit.

the transmission presents many resonance tunneling peaks
located at

(ε − ε0)/� = nω/�, n = 0, 1, 2, . . . . (36)

These peaks have been well studied in the literature [1,10] and
are attributed to the classical photon-assisted tunneling. Each
peak represents the contribution from the n-photon absorption
or emission process. We also notice that the main peak (ε =
ε0) has a lower height than some other side peaks due to the
oscillation of the Bessel function and large microwave am-
plitude [9]. A unique feature of the pure classical microwave
state is the symmetry of transmission with respect to ε = ε0.
This feature is absent in all other microwave photon states. As
for the thermal state, the transmission is no longer symmetric.
Compared to the pure classical microwave, the heights of the
main and side peaks present a Poisson distribution which can
be appreciated from the distribution functions in Eq. (26). But
for the coherent state, the transmission is distinct from both

pure classical and thermal states. First, no Poisson distribution
is shown for the main and side peaks. Second, compared to the
pure classical state, the transmission is not symmetric. More
important, some photon-assisted tunneling, which is very
weak in the pure classical state [e.g., one- and three-photon-
assisted tunneling shown in Fig. 1(a)], becomes large in the
coherent state. This is a consequence of vacuum fluctuation
and represents a signature which cannot be observed in the
conventional pure classical microwave.

We next discuss the Fock state shown in Figs. 1(d)–1(f).
As ρ = 0.5, a striking behavior is that the main peak becomes
very small, which is not seen in the other three photon states.
This indicates that the resonant process contributes little to
electronic tunneling. As ρ increases further, as shown in
Fig. 1(e), the contribution arising from the resonant tunneling
is almost zero. This cannot be explained based on the classical
tunneling theory and thus could be regarded as a nonclas-
sical effect. In order to further demonstrate the effect of a
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FIG. 2. Current (in units of e�/h̄) as a function of V/� with ω/� = 5. The parameters in (a) and (b) are the same as those in Figs. 1(a) and
1(e), respectively.

nonclassical microwave, we adopt the method proposed by
Souquet et al. to calculate the classical limit, which is a
lower bound of the transmission coefficient for a classical mi-
crowave. Such a limit can be broken only in the nonclassical
case and is described here by an inequality (for details see
Ref. [8]),

T (0) >
T (1) + T (−1)

2
− 1

4
p0[1] − 1

4
(p0[1]

+ p0[2]) +
{

p0[0] − 1

4
p0[1] +

(
5

4
p0[1]

− p0[0] − 1

4
p0[2]

)


}
pocc[0] +

{
3

2
p0[1]

− p0[0] − 1

2
p0[2] +

(
2p0[0] − p0[1] + 3

2
p0[2]

− 1

2
p0[3]

)


}
pocc[1] +

(
3

2
p0[1] − p0[2] − 1

2
p0[0]

+ 1

2
p0[3] − 1

2
p0[4]

)
pocc[2], (37)

where  = 1
4(ω/�)2+1 . Inserting the constraint condition

+∞∑
n=−∞

pocc[n] = 1,

pocc[n] = pocc[−n]

(38)

into Eq. (37), one can obtain the minimum T (0)min. The limit
is represented by the blue dashed line in Figs. 1(d)–1(f). It
represents the lowest value of the transmission coefficient
which can be achieved for the classical state. But T (0) of the
Fock state is much smaller than this limit. When looking at
the current formula, i.e., Eq. (32), we can find that the above
nontrivial behavior actually arises from the negativity of
pocc[n]. So we can tune the value of ρ to make any n-photon-

assisted tunneling vanish. For example, for ρ = 1.268, shown
in Fig. 1(f), the first generalized Laguerre polynomial L(n)

k (ρ)
is zero, and thus, pocc[1] becomes negative. In such a case,
T (1) is below the classical limit T (1)min.

Figure 2 shows the average current versus bias voltage
which is calculated from the integration of the transmission
coefficient. As for the pure classical microwave, the current
presents steps at bias voltage V/� = nω/� corresponding to
n-photon-assisted tunneling. When the photon is in the |k =
2〉 Fock state with ρ = 0.586, the step at V/� = 15 vanishes
due to the negative quasiprobability distribution pocc[k]. The
absence of some steps in the current-bias relation is directly
related to the nonclassical nature of the microwave photon.
Therefore, it may be used to discriminate the nonclassical
feature of microwave photons in future experiments of circuit
quantum electrodynamic dynamics.

Here, we will make some comments on the similarities
and differences between our work and Ref. [8]. First, in our
work, the Green’s function method produces results physi-
cally consistent with the linear response theory of Ref. [8].
This indicates that it is feasible to employ the Green’s function
method in the electronic transport calculations in the presence
of a nonclassical microwave. Second, the power of the Green’s
function method is in the problem of interaction between
electron and other quasiparticles. So in the next section, we
will present the numerical results of the effect of the Zeeman
interaction on the spin current.

B. Spin polarization

To better understand the results of spin polarization, we
divide the total transmission into two parts, i.e.,

T (E ) = ξ (E )χ (E ), (39)

where

ξ (E ) = ��α

∣∣∣∣ γsG0r
↑↑(E + ω)G0r

↓↓(E )

1 − γ 2
s G0r

↑↑(E + ω)G0r
↓↓(E )

∣∣∣∣
2

(40)
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FIG. 3. (a) ξ versus energy E/� and (b) schematic of spin current generation in the weak-coupling regime. (c) and (d) The same as (a) and
(b), but for the strong-coupling regime.

and

χ (E ) =
+∞∑

n

pν
tot[n][ f (E + nω) − f (E + ω + nω)]. (41)

In these two terms, the function ξ determines the contribution
of spin-polarized electron tunneling, while the function χ (E )
is the contribution of nonclassical microwave photons. We
first discuss the characteristics of the function ξ .

For convenience, the ξ function is further simplified with
the expressions of G0r and can be written as

ξ = ��αγ 2
s[

(E − ε0)2 + ω(E − ε0) + ω2−�2
LR

4

]2 + �2

4 �2
LR + �4

4

.

(42)

The discussion can focus on two regimes according to the
quantity �2

LR = (2B0 cos θ − ω)2 + 4γ 2
s − �2. The first one is

the weak-coupling regime with �2
LR > 0, i.e., the coupling

between the device and the lead is relatively weak. From
Eq. (42), one can see that the function ξ reaches the maximum
at

E = ε0 − ω

2
± �LR

2
. (43)

In the terminology of quantum optics, �LR can be regarded
as the Rabi frequency, indicating the oscillation of electrons
between spin-up and spin-down dressed energy levels [20].
The Rabi oscillation splits the original spin-down level, caus-
ing E = ε0 − ω

2 to be E = ε0 − ω
2 ± �LR

2 . The same holds
for the spin-up level; that is, E = ε0 + ω

2 changes to E =
ε0 + ω

2 ± �LR
2 . The numerical results of the function ξ are

plotted in Fig. 3(a). The two peaks are well described by the
above analytic expressions. Figure 3(b) depicts the schematic
diagram of a two-channel spin-dependent tunneling process.
One spin-down electron with incident energy E = −ω

2 + �LR
2

tunnels into the device from the left lead; it absorbs a photon
with frequency ω and then transits to the spin-up dressed
energy level (E = ω

2 + �LR
2 ) with a spin flip. Finally, this

spin-up electron tunnels out of the device to the left lead.
Another spin-down electron has a similar tunneling process,
but with incident energy E = −ω

2 − �LR
2 . Therefore, a spin

current is produced in the left lead, but the charge current
remains zero over the whole process.

The second regime is the strong-coupling regime which
occurs when �2

LR < 0; that is, the coupling between the device
and lead is strong. In such a case, there is no solution for the
condition of �2

LR < 0. So there is only one maximum for the
function ξ , which takes place at

E = ε0 − ω

2
. (44)

Figure 3(c) shows the function ξ versus the energy in the
strong-coupling regime. As expected, there is only one peak
and thus only one spin tunneling channel. In this regime, the
tunneling process shown in Fig. 3(d) indicates that a spin-
down electron with energy E = −ω

2 enters the device from
the left lead and leaves the device and goes back to the left or
right lead with a spin flip.

The second part is the function χ , which reflects the
contribution of the nonclassical microwave. The results of the
function χ are shown in Fig. 4. For the sake of comparison,
the function ξ is also given by the red line. Figures 4(a)–4(d)
are for the strong-coupling regime in which no Rabi splitting
is present. So one can see only one peak in the function ξ .
Like for the pure classical state, the function χ displays an
oscillating behavior which arises from the oscillation of the
Bessel function. For the thermal state, the curve of χ is similar
to the Poisson distribution, as expected. But for the coherent
state, the function χ is similar to the pure classical state,
but the height of the step becomes smaller. This is due to
the contribution of vacuum fluctuation in the coherent state.
Like for the Fock state |n = 2〉 with ρ = 0.5, the function
χ presents interesting characteristics. One can see that the
probability of resonant tunneling, i.e., ptot[0], is much smaller
than that of nonzero-photon-assisted events. Here, we give the
classical limit in the case of spin polarization,

ptot[0] >
ptot[1] + ptot[−1]

2
− 1

4
p0[1]

+
(

p0[0] − 1

4
p0[1]

)
pocc[0]

+
(

3

2
p0[1] − p0[0] − 1

2
p0[2]

)
pocc[1]. (45)

In Fig. 4(d), ptot[0] is below the classical limit, which indi-
cates the effect of the nonclassical Fock state on electronic
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FIG. 4. ξ (red line) and χ (blue line) versus energy E/� for various photon states. (a)–(d) are for the strong-coupling regime with
parameters ε0/� = 0, B0/� = 1, θ = 20◦, and ω/� = 1.88. (e) is for the weak-coupling regime with parameters ε0/� = 0, B0/� = 10,
θ = 20◦, and ω/� = 18.8. (f) is also for the weak-coupling regime but with parameters ε0/� = 0, B0/� = 10, θ = 60◦, and ω/� = 10.
The dashed line represents the classical limit.

tunneling. As mentioned above, such behavior arises from
the negativity of pocc[k], which is always positive in classical
states.

Since the transmission coefficient is determined by both
ξ and χ , we next discuss the behavior of ξ and χ at some
energy interval. To this end, we label ptot[n] in each step
of Figs. 4(d)–4(f). Here, we focus on ptot[n] with n = 0,±1
due to the relatively large contribution. In the strong-coupling
regime shown in Fig. 4(d), the function ξ is very small in the
region where ptot[±1] dominates. Therefore, only the region
of ptot[0] is needed in the transmission calculation. In this
region, the function ξ is large, but the function χ corre-
sponding to ptot[0] is negligibly small. So the transmission
coefficient is small, and the spin current is suppressed in this
case. In the weak-coupling regime, there are two possibilities
corresponding to small and large Rabi splittings. For small
Rabi splitting, as shown in Fig. 4(e), the two peaks of the
function ξ are close and stay in the region of ptot[0]. Because
the function χ is small, the transmission coefficient is small
as well. However, for large Rabi splitting that is larger than

the photon frequency, the two peaks of the function ξ are no
longer within the range of ptot[0] but stay in the region of
ptot[±1]. As seen in Fig. 4(f), the function χ corresponding
to ptot[±1] is large. In such a case, both the nonclassical
effect and spin effect contribute to the transmission coefficient
significantly. Based on these results, one can see that, as
the nonclassical microwave is used in experiment, one can
achieve both high-spin-current and low-spin-current states by
tuning either the photon frequency ω or the amplitude of the
rotating magnetic field B0.

Figure 5(a) shows the spin current as a function of photon
frequency for three different photon states. As the photon
frequency is low, the spin currents of the three photon states
are close, and thus enlarged views are shown in Figs. 5(b)
and 5(c). In the low-frequency region shown in Fig. 5(b), the
spin current of the pure classical state is the largest among
the three states. In order to explain this behavior, we plot the
variation of ξ and χ in Fig. 5(d). When the photon frequency
takes a small value of 0.2�, the Rabi splitting is large, and the
spin current depends on the distribution of χ . Compared to
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FIG. 5. (a) Spin current of three photon states as a function of photon frequency. (b) and (c) are enlarged views of (a) in the low-frequency
parts defined by the shaded region. The parameters used are ε0/� = 0, B0/� = 2, θ = 20◦. Moreover, V0 = � for the pure classical state;
ρ = 0.5 and |α| = √

0.5 for the coherent state. (d) ξ and χ versus energy for a low photon frequency.

the Fock state and coherent state, the classical state is widely
distributed and can take a larger value of ξ . On the contrary,
the other two states are concentrated within the region where
ξ is close to zero. As the photon frequency increases, the
spin current of the Fock state increases rapidly. At some
frequency, the Fock state dominates over the other two states.
This could be explained based on Fig. 4(f), in which both ξ

and χ are large. As photon frequency increases further, as
shown in Fig. 5(c), the spin current of the Fock state decreases
since the small ptot[0] dominates the current. This has been
demonstrated in Fig. 4(e). The above results reveal the roles
played by the spin-dependent tunneling and the distribution
of nonclassical light. We expect that future experiments can
be performed to observe the above phenomena.

IV. SUMMARY

In summary, we investigated the novel physics of spin
current assisted by nonclassical microwave photons by devel-
oping a time-dependent Green’s function method. First, the
Green’s function method was extended from the case of a
pure classical state, which has been well studied for several
decades, to the case with a nonclassical state. With some
approximations used, a current formula of nonspin-polarized
tunneling was obtained in which the effect of nonclassical
light manifests itself with a correlator. Most important, the
method developed here was used for the problem of spin
current under the excitation of a rotating magnetic field.
This makes possible the application of the Green’s function
method in the circuit quantum electrodynamics with strong
electron-photon or electron-phonon interactions. Second, the

spin current presents new characteristics in the presence of
nonclassical microwave photons. Our results show that the
spin current is determined by both the spin electron tunneling
and the state of nonclassical light. By tuning the amplitude or
the direction of the magnetic field, we can arrive at the strong-
or weak-coupling regime. In the strong-coupling regime, as
the nonclassical microwave photons are used, the spin cur-
rent depends on the Rabi splitting. That is to say, the spin
current can be improved when the peak corresponding to
n-photon-assisted tunneling coincides with the region with
high probability of photon absorption or emission. Moreover,
due to the negativity of the photon occupation distribution, the
transmission and spin current can be smaller than the classical
limit. This represents a genuine nonclassical-light-assisted
electronic transport. The above feature can be used both to
detect the nonclassical microwave for quantum manipulation
applications and to tune the spin current for spintronic appli-
cations.
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APPENDIX A: THE TIME-DEPENDENT CURRENT

In this Appendix, we give a detailed derivation of the time-
dependent current in the presence of nonclassical microwave
photons based on the Green’s function method. First, based
on Ref. [1], the time-dependent current flowing across the left
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lead can be written as

JL(t ) = −e

〈
d
[ ∑

qL ĉ†
qL(t )ĉqL(t )

]
dt

〉

= 2e

h̄
Re

∑
qLn

VqLnG<
nqL(t, t ). (A1)

By defining the Green’s function GnqL(t, t ′) =
−i〈Tc[d̂n(t )ĉ†

qL(t ′)]〉, we get

G<
nqL(t, t ′) =

∑
m

∫
dt1VmkL

[
GR

nm(t, t1)g<
qL(t1, t ′)

+ G<
nm(t, t1)ga

qL(t1, t ′)
]
. (A2)

With the help of Eqs. (9)–(12), Eq. (A2) becomes

G<
nqL(t, t ) = i

∑
m

∫
dt1VmqLe−iε(t1−t )〈eiϕ̂(t )e−iϕ̂(t1 )〉

× [
GR

nm(t, t1) f (ε) + θ (t − t1)G<
nm(t, t1)

]
, (A3)

where GR,<
nm (t, t1) is the lesser Green’s function of the central

region. Using Eq. (A3), Eq. A(1) can be rewritten as

JL(t ) = −2e

h̄
Im

∑
qLnm

VqLn

∫ t

−∞
dt1VmqLe−iε(t1−t )

× 〈eiϕ̂(t )e−iϕ̂(t1 )〉[GR
nm(t, t1) f (ε) + G<

nm(t, t1)
]

= −2e

h̄
Im

∫ t

−∞
dt1

∫
dε

2π
�Le−iε(t1−t )〈eiϕ̂(t )e−iϕ̂(t1 )〉

× Tr[GR(t, t1) f (ε) + G<(t, t1)], (A4)

where [�L(ε)]mn = 2πρ(ε)Vm,qLVqL,n is the level-width func-
tion of the left lead. Under the wide-band-limit approxima-
tion, we have �L(ε) = �L.

In the presence of a nonclassical microwave, the forms of
the Keldysh equation and Dyson equation do not change, i.e.,

G<(t, t ′) =
∫∫

dt1dt2GR(t, t1)�<(t1, t2)GA(t2, t ′), (A5)

GR(t, t ′) = GR
0 (t, t ′) +

∫∫
dt1dt2GR

0 (t, t1)�R(t1, t2)GR(t2, t ′).

(A6)

However, the lesser self-energy takes a new form,

�<(t1, t2) = i
∑

α

∫
dε

2π
�α fα (ε)e−iε(t1−t2 )〈eiϕ̂(t2 )e−iϕ̂(t1 )〉,

(A7)

and the retarded self-energy is

�R(t1, t2) = −i
∑

α

∫
dε

2π
�αθ (t1 − t2)e−iε(t1−t2 )〈eiϕ̂(t2 )e−iϕ̂(t1 )〉.

(A8)

Due to
∫

dε
2π

eiεt = δ(t ) and 〈eiϕ̂(t )e−iϕ̂(t )〉 = 1, we have

�R(t1, t2) = − i

2
�δ(t1 − t2), (A9)

where � = �L + �R.

Following Ref. [1], the solution of Eq. (A6) can be written
as

GR(t, t ′) = −iθ (t − t ′)ei(ε0− i
2 �)(t ′−t ). (A10)

Finally, we have the current formula

JL(t ) = J (1)
L (t ) + J (2)

L (t ), (A11)

J (1)
L (t ) = −e�L

h̄
Im

{
i
∑

α

�α

∫
dε

2π
fα (ε)

×
∫∫

dt1dt2θ (t − t1)θ (t − t2)e−iε(t1−t2 )e−�t

× ei(ε0− i
2 �)t1 e−i(ε0+ i

2 �)t2〈eiϕ̂(t2 )e−iϕ̂(t1 )〉
}
, (A12)

J (2)
L (t ) = −2e�L

h̄
Im

∫
dε

2π
fL(ε)

∫ t

−∞
dt1

{ − iθ (t − t1)

× ei(ε0− i
2 �)(t1−t )e−iε(t1−t )〈eiϕ̂(t )e−iϕ̂(t1 )〉}, (A13)

where the effect of the cavity fluctuation has been introduced.

APPENDIX B: INFLUENCE OF ga
2 AND ga

3

ON THE CURRENT

In this Appendix, we will discuss the contribution from two
terms, i.e., ga

2(t, t ′) and ga
3(t, t ′), which are neglected in the

main text.
We first consider ga

2(t, t ′), which is written as

ga
2(t, t ′) = −iga

qα0(t, t ′)ga
ec(t, t ′)

= iθ (t ′ − t )θ (t ′ − t )e−iεqα0(t−t ′ )

[〈e−iϕ̂(t )eiϕ̂(t ′ )〉 − 〈eiϕ̂(t ′ )e−iϕ̂(t )〉]. (B1)

By virtue of Eqs. (10) and (19), we can write the current,
which is contributed by ga

2(t, t ′) as

J
ga

2
L (t ) = −e�L

2h̄
ImG<(t, t )[〈e−iϕ̂(t )eiϕ̂(t )〉 − 〈eiϕ(t )e−iϕ(t )〉].

(B2)

Due to the equality of 〈e−iϕ̂(t )eiϕ(t )〉 = 〈eiϕ̂(t )e−iϕ̂(t )〉 = 1,
we have

J
ga

2
L (t ) = 0. (B3)

But this does not hold for ga
3(t, t ′), which is written as

ga
3(t, t ′) = ig<

qα0(t, t ′)ga
ec(t, t ′)

= −i f (ε)θ (t ′ − t )e−iεqα0 (t−t ′ )

× [〈e−iϕ̂(t )eiϕ̂(t ′ )〉 − 〈eiϕ̂(t ′ )e−iϕ̂(t )〉]. (B4)

Similarly, we derive the current for ga
3(t, t ′),

J
ga

3
L (t ) = 2e�L

h̄
Im

∫
dε

2π

∫
dt1G<(t, t1) f (ε)e−iε(t1−t )θ (t − t1)

× [〈e−iϕ̂(t1 )eiϕ̂(t )〉 − 〈eiϕ̂(t )e−iϕ̂(t1 )〉]. (B5)

Clearly, one can see that the current is nonvanishing. If this
term is included in the formula, it is difficult to give analytical
expressions of the self-energy, Green’s function, and current.
So we discuss the condition in which the contribution of this
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term to the current is small. To that end, we consider the
identity

〈eiϕ̂(t )e−iϕ̂(t1 )〉 = 〈e−iϕ̂(t1 )eiϕ̂(t+ih̄β )〉, (B6)

where β = 1/kBT .
From the above relation, one can see that, due to the small

value of h̄, the quantity of h̄β is actually negligibly small.
Unless the temperature in experiment is zero or negligibly
small, one can make a reasonable approximation,

〈eiϕ̂(t )e−iϕ̂(t1 )〉 ≈ 〈e−iϕ̂(t1 )eiϕ̂(t )〉. (B7)

In such a case, the current from ga
3 becomes zero, i.e.,

J
ga

3
L (t ) = 0. (B8)

APPENDIX C: THE FORMULA OF THE SPIN CURRENT

In the following, we will derive the spin current arising
from the rotating magnetic field by using the Green’s function
method. The current operator of the α lead in spin space is
written as

Ĵασσ ′ = −i
∑

k

[Vqα ĉ†
qασ d̂σ ′ − V ∗

qα d̂†
σ ĉqασ ′ ]. (C1)

The spin current is obtained by averaging the current
operator from Eq. (C1),

Iασσ ′ (t ) = 〈Ĵασσ ′ (t )〉
= −

∑
q

[VqαG<
dσ,qασ ′ (t, t ) − V ∗

qαG<
qασ ′,dσ (t, t )].

(C2)

The lesser Green’s functions take the form

G<
dσ,qασ ′ (t, t ) =

∫
dt1V

∗
qα

[
Gr

σσ ′ (t, t1)g<
qασ ′σ ′ (t1, t )

+ Gr
σσ ′ (t, t1)g<

qασ ′σ ′ (t1, t )
]
, (C3)

G<
qασ ′,dσ (t, t ) =

∫
dt1V

∗
qα

[
g<

qασ ′σ ′ (t, t1)Ga
σ ′σ (t1, t )

+ gr
qασ ′σ ′ (t, t1)G<

σ ′σ (t1, t )
]
. (C4)

Substituting Eqs. (C3) and (C4) into Eq. (C2) and then
employing double-time Fourier transformation, we obtain

Iασσ ′ (t ) = −
∫

dE1dE2dE4

(2π )3
ei(E4−E1 )t{[Gr

σσ ′ (E1, E2)

− Ga
σσ ′ (E1, E2)

]
�<

ασ ′σ ′ (E2, E4) + G<
σσ ′ (E1, E2)

× [
�a

ασ ′σ ′ (E2, E4) − �r
ασ ′σ ′ (E2, E4)

]}
. (C5)

After averaging over t in Eq. (C5), we obtain the spin
current〈

Iν
α,↑↑(t )

〉
= −〈

Iν
α,↓↓(t )

〉
=

∞∑
n

pν
tot[n]��α

∫
dE

2π

∣∣∣∣ γsG0r
↓↓(E )G0r

↑↑(E + ω)

1 − γ 2
s G0r

↓↓(E )G0r
↑↑(E + ω)

∣∣∣∣
2

× [ f (E + nω) − f (E + ω + nω)], (C6)

with ν representing each type of cavity state. Two Green’s
functions are used, i.e.,

G0r
↑↑(E + ω) = 1

E + ω − ε0 − B0 cos θ + i�/2
, (C7)

G0r
↓↓(E ) = 1

E − ε0 + B0 cos θ + i�/2
. (C8)
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