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Many molecular junctions display stochastic telegraphic switching between two distinct current values, which
is an important source of fluctuations in nanoscale quantum transport. Using Markovian master equations,
we investigate electronic fluctuations and identify regions of nonrenewal behavior arising from telegraphic
switching. Nonrenewal behavior is characterized by the emergence of correlations between successive first-
passage times of detection in one of the leads. Our method of including telegraphic switching is general for any
source-molecule-drain setup, but we consider three specific cases. In the first, we model stochastic transitions
between an Anderson impurity with and without an applied magnetic field B. The other two scenarios couple
the electronic level to a single vibrational mode via the Holstein model. We then stochastically switch between
two vibrational conformations, with different electron-phonon coupling λ and vibrational frequency ω, which
corresponds to different molecular conformations. Finally, we model the molecule attaching and detaching
from an electrode by switching between two different molecule-electrode coupling strengths γ . We find, for
all three cases, that including the telegraph process in the master equation induces relatively strong positive
correlations between successive first-passage times, with Pearson coefficient p ≈ 0.5. These correlations only
appear, however, when there is telegraphic switching between two significantly different transport scenarios, and
we show that it arises from the underlying physics of the model. We also find that, in order for correlations to
appear, the switching rate ν must be much smaller than γ .
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I. INTRODUCTION

The physical differences between nanoscale and macro-
scopic conductors are best exemplified by the presence of
electronic fluctuations, which universally occur in the former
yet rarely occur in the latter. Fluctuations arise in nanoscale
systems from various sources: the unavoidable probabilistic
nature of quantum transport, discrete charge carriers coupled
with low currents, and stochastic changes in intrasystem dy-
namics [1]. We are interested in this last source, when the
electric current stochastically moves between two different
values, commonly referred to as telegraphic switching or a
telegraph process.

Telegraphic switching is a common experimental phe-
nomenon, which is visible in scenarios containing two or
more distinct states with different parameters governing the
transport. Telegraph noise, which is distinct from 1/ f and
shot noise, has been measured in systems with localized
electron states [2,3] and charge traps [4,5], as well as bistable
molecular conformations [6–12], and from the forming and
breaking of metal-molecule bonds [13]. Using a quantum
point contact as a charge detector, Fricke et al. have also
measured bimodal counting statistics, arising from telegraphic
switching, in a quantum dot [14]. For molecules interacting
with a vibrational mode there have been reports [15] of a
similar phenomenon: avalanche tunneling. Here, long peri-
ods of zero current are interrupted by phonon-assisted elec-
tron tunnelings. Lau et al. have even reported experimental
measurements of avalanche tunneling in a single-molecule
graphene-fullerene transistor and successfully modeled their
results using a two-state stochastic process [16]. This system,

in particular, is indicative of an important transport scenario
we consider: telegraphic switching arising from molecular
vibrations. We show that temporal correlations arise in this
scenario and are thus potentially crucial for understanding
such experimental results.

There remains, however, a dearth of theoretical literature
on telegraph noise in nanoscale quantum transport. In the
1990s, Galperin et al. studied the average transparency [17]
and low-frequency noise [18] through double barriers with
dynamic defects. After a long gap of 20 years, theoretical
quantum telegraphic switching research has resumed; Entin-
Wohlman et al. [19], for example, used Green’s functions to
study quantum heat transport via a fluctuating electronic level,
proposed as a model for an applied stochastic electric field.
Gurvitz et al. [20] also used a fluctuating electronic level but
instead analyzed steady-state and transient dynamics. One of
the authors (D.S.K.) has recently investigated telegraph noise
in a junction with electron-phonon interactions [21] by adding
a stochastic component to the quantum master equation.

The common theme among these treatments of the tele-
graph noise are time-dependent stochastic additions, ζ (t ),
whether they be to the electronic level, ε + Uζ (t ), or to the
master equation itself: Ṗ(t ) = LP(t ) + ζ (t )AP(t ). Instead,
we use a general Markovian master equation with two dis-
tinct sets of states, associated with transport scenario a and
transport scenario b, connected only by a constant switching
rate ν. All rates are time independent and the master equation
can be solved via normal methods.

This picture of telegraph noise is particularly apt for quan-
tum transport, as the last 20 years has produced a pantheon
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of fluctuation statistics that are easily calculable from the
Markovian master equation. We will analyze two of these
fluctuation statistics, the full counting statistics (FCS) and
first-passage time distribution (FPTD), in the context of re-
newal theory, which is based on the renewal assumption: that
successive electron tunnelings are uncorrelated and the trans-
port is “renewed” after each tunneling event [22]. We expect,
however, that telegraphic switching will produce strongly
positive temporal correlations between successive tunnelings.
The nonrenewal behavior is also expected to destroy any
relationships between relevant cumulants of the FCS, a fixed-
time statistic, and the FPTD, a fluctuating-time statistic [23].

The FCS, for example, generates cumulants of the current
distribution 〈〈I (t )k〉〉 over a fixed time interval [0, t]. The
method arose [24] from the need to go beyond the average
current 〈I〉 and noise S (ω) to analyze fluctuations in terms
of higher-order cumulants, and has been remarkably success-
ful describing Coulomb blockaded quantum dots [25], non-
Markovian transport through a dissipative double quantum
dot [26,27], and systems with electron-phonon interactions
[28,29]. Alongside these theoretical calculations, experimen-
tal groups have measured the FCS [30–32], even up to the 15th
cumulant [33].

The real-time single electron detection techniques required
to measure the FCS have also given us access to a com-
plementary set of statistics, which include the waiting time
distribution (WTD) and the FPTD. Although the WTD has
been used extensively [34–48] in conjunction with FCS since
Brandes introduced it to nanoscale transport [49], we will
use the FPTD only. The FPTD F (n|τ ) is the conditional
probability density that, given an electron has tunneled to the
drain, the jump number first reaches n after a time-delay τ .
Since the jump number is the total number of forward and
backward transitions, it directly relates to bidirectional cur-
rent, whereas the WTD only works for unidirectional transport
[23,50–52].

In this paper, then, we consider three quantum transport
telegraphic processes and search for nonrenewal behavior and
time correlations arising from each. In the first, we stochas-
tically switch a magnetic field B on and off an Anderson
impurity, so that the electronic energy level switches between
being spin split and degenerate. Next, we model two different
molecular conformations via coupling of an electronic level to
two different vibrational modes. Finally, we mimic a contact
forming and breaking the molecule-electrode bonds at random
points in time. Previous fluctuation research using Markovian
rate equations has struggled to find significant correlations
between successive electron tunnelings [23,38,50], since the
T-matrix approach [53] neglects quantum coherent effects and
the Markovian baths are memoryless. In contrast, we find that,
with the inclusion of telegraphic switching in the dynamics,
there are significant correlations present in all scenarios.

In Sec. II, we first briefly outline the general Markovian
master equation and then discuss in depth all models used
in our analysis. Section III introduces the FCS and FPTD,
as well as a discussion on renewal and nonrenewal behavior.
We present results for all three transport scenarios in Sec. IV,
as well as an explanation for each, with the conclusions
contained in Sec. V. Throughout the paper we use natural
units: h̄ = e = kB = 1.

II. MODEL

Our general model is a quantum system weakly coupled
to two macroscopic electron baths. If correlations in the baths
decay rapidly, then the reduced density matrix of the quantum
system, P(t ), satisfies the Markovian master equation:

Ṗ(t ) = LP(t ). (1)

Here, we have mapped the m × m density matrix to an m2

vector of which the first m elements are pure states and the
last m(m − 1) elements are coherences. The superoperator L,
the Liouvillian, thus contains all time-independent system dy-
namics. Off-diagonals [L]lk = 	lk are the transition rate from
state k to state l , while diagonals are [L]kk = −∑

l �=k 	lk . All
transition rates are calculated via the T-matrix approach and
under the secular approximation, which neglects coherences.
This necessarily restricts Eq. (1) to a rate equation in the pure
states only and, while potentially limiting the quantum physics
possible, still leaves us with a nontrivial transport regime.

We assume that Eq. (1) has a unique stationary solution:
the vector P̄, which satisfies LP̄ = 0. In the stationary state,
then, the solution of Eq. (1) is

P(t ) = eLt P̄. (2)

We will, in fact, use the n-resolved probability vector
P(n, t ), whose elements [P(n, t )]l are the probability for the
system to be in state l at time t , and for there to have been n
extra electrons collected in the drain in the interval [0, t]. It
satisfies the n-resolved master equation:

Ṗ(n, t ) =
∑

n′
L(n − n′)P(n, t ), (3)

= L0P(n, t ) + JF P(n − 1, t ) + JBP(n + 1, t ), (4)

where JF and JB are quantum jump operators that move
particles forward to the drain and backward from the drain,
respectively, and L0 = L − JF − JB. The Fourier transform
of the n-resolved probability vector,

P(χ, t ) =
∑

n

einχ P(n, t ), (5)

transforms Eq. (4) into one first-order differential matrix
equation:

Ṗ(χ, t ) = L(χ )P(χ, t ), (6)

where L(χ ) = L0 + JF eiχ + JBe−iχ . Similarly to Eq. (2),
the Fourier transformed n-resolved master equation has the
solution

P(χ, t ) = eL(χ )t P̄, (7)

where the initial condition remains the same as all measure-
ments are performed in the stationary state.

A. General telegraphic process

Since we switch between two transport scenarios, we
unfortunately cannot write a single Hamiltonian to describe
the system dynamics. Rather, we will write the Hamiltonian
for each scenario and then construct the master equation
from ad hoc principles. The master equation for a general
quantum system undergoing telegraphic switching between
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two scenarios a and b is

d

dt

[
Pa(χ, t )
Pb(χ, t )

]
=

[
La(χ ) − ν ν

ν Lb(χ ) − ν

][
Pa(χ, t )
Pb(χ, t )

]
.

(8)

From here, we will use the notation ϕ ∈ [a, b] when re-
ferring to both of the two different transport scenarios and ϕ̄

when referring to the opposite scenario. Each Lϕ (χ ) compo-
nent thus refers to the Liouvillian of the ϕ scenario without
telegraphic switching. The matrix ν contains the telegraphic
switching rates, which are the same for each ϕ. They must
be subtracted from Lϕ (χ ) to conserve probability. Finally,
the vector P(χ, t ) = [Pa(χ, t ), Pb(χ, t )] is comprised of the
probability distributions for the two scenarios. The transport
scenarios we consider will all follow the dynamics in Eq. (8).
The jump operators are similarly defined:

JF =
[

Ja
F 0
0 Jb

F

]
, JB =

[
Ja

B 0
0 Jb

B

]
. (9)

B. Anderson impurity

Our first scenario is the well-known Anderson impurity
model:

HM =
∑

σ∈{↑,↓}
εσ a†

σ aσ + Un↑n↓. (10)

First introduced to describe local magnetic impurities in met-
als [54], Eq. (10) has found use in molecular electronics

theory, where U generally describes repulsive electron-
electron interactions within the orbital. The impurity is also
coupled to two macroscopic metal electrodes, the source (S)
and drain (D), with combined Hamiltonian

Helectrodes =
∑

α=S,D

∑
k

εα,ka†
α,kaα,k, (11)

and interaction Hamiltonian

HT =
∑

α=S,D

∑
k

tα,k (a†
α,ka + a†aα,k ), (12)

enabling tunneling of electrons between the electrode-
molecule configuration. The operators a†

α,k and aα,k create and
annihilate electrons in state k in electrode α, and tα,k is the
tunneling matrix element between the molecular orbital and
state k in electrode α. Combined, the Hamiltonian of the entire
system is

H = HM + Helectrodes + HT . (13)

We will use the Anderson impurity to model switching
between scenarios a and b: a molecular orbital without an
applied magnetic field and a molecular orbital with an applied
magnetic field B, respectively. In the absence of a magnetic
field, and barring further fine splitting, spin-↑ and spin-↓ elec-
trons require the same charging energy to enter the molecule:
εa
↑ = εa

↓ = ε0. Once the magnetic field is applied, however,
the spin-split energies are εb

↓ = ε0 + B/2 and εb
↑ = ε0 − B/2.

We combine these two scenarios in the probability vector

P(χ, t ) = [
Pa

0 (χ, t ), Pa
↑ (χ, t ), Pa

↓ (χ, t ), Pa
2 (χ, t ), Pb

0 (χ, t ), Pb
↑ (χ, t ), Pb

↓ (χ, t ), Pb
2 (χ, t )

]T
. (14)

For sequential tunneling only, and under the Born-Markov approximation [55], the χ -dependent Liouvillian of scenario ϕ is

Lϕ (χ ) =

⎡
⎢⎢⎢⎢⎣

−(
	

ϕ

↑0 + 	
ϕ

↓0

)
	

ϕ

0↑(χ ) 	
ϕ

0↓(χ ) 0

	
ϕ

↑0(χ ) −(
	

ϕ

0↑ + 	
ϕ

2↑
)

0 	
ϕ

↑2(χ )

	
ϕ

↓0(χ ) 0 −(
	

ϕ

0↓ + 	
ϕ

2↓
)

	
ϕ

↓2(χ )

0 	
ϕ

2↑(χ ) 	
ϕ

2↓(χ ) −(
	

ϕ

↑2 + 	
ϕ

↓2

)

⎤
⎥⎥⎥⎥⎦, (15)

and the jump operators are

Jϕ
F =

⎡
⎢⎢⎢⎢⎣

0 	
D,ϕ

0↑ 	
D,ϕ

0↓ 0

0 0 0 	
D,ϕ

↑2

0 0 0 	
D,ϕ

↓2

0 0 0 0

⎤
⎥⎥⎥⎥⎦ and Jϕ

B =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

	
D,ϕ

↑0 0 0 0

	
D,ϕ

↓0 0 0 0

0 	
D,ϕ

2↑ 	
D,ϕ

2↓ 0

⎤
⎥⎥⎥⎥⎥⎦

. (16)

The total χ -dependent rates contain a source and drain
component:

	
ϕ

lk = 	
S,ϕ

lk + 	
D,ϕ

lk e±iχ , (17)

where the ± is positive if the fermionic occupation increases
from state k to state l and negative if the fermionic occupation
decreases. Explicitly now, the spin-dependent rates are

	
α,ϕ
σ0 = γ α,ϕ nF

(
εϕ
σ − μα

)
, (18)

	
α,ϕ
0σ = γ α,ϕ

(
1 − nF

(
εϕ
σ − μα

))
, (19)

	
α,ϕ
σ2 = γ α,ϕ

(
1 − nF

(
εϕ
σ + U − μα

))
, and (20)

	
α,ϕ
2σ = γ α,ϕ nF

(
εϕ
σ + U − μα

)
. (21)

C. Holstein model

We also consider a molecule changing conformations and
thus changing its vibrational interactions. Conformation ϕ is
assumed to be a single molecular orbital ε

ϕ
0 interacting with a
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vibrational mode ωϕ . This is the well-known Holstein model:

HM = ε0a†a + λω(b† + b)a†a + ωb†b : (22)

where a† and a are the fermionic creation and annihilation
operator, respectively, b† and b are the bosonic creation
and annihilation operators, respectively, and λ denotes the
electron-phonon coupling. We ignore spin degeneracy by
working in the Coulomb blockade regime. We note that the
molecule is still coupled to two electrodes, with Hamiltonians
in Eq. (11), interaction Hamiltonians in Eq. (12), and total
system Hamiltonian in Eq. (13).

We apply the canonical Lang-Firsov transformation [56] to
diagonalize the molecular Hamiltonian:

HM = εã†ã + ωb̃†b̃, (23)

which renormalizes the orbital energy to ε = ε0 − λ2

ω
. The

eigenstates of Eq. (23), |mq〉, denote occupation of m = {0, 1}
electrons and q = {0, 1, 2, . . . ,+∞} phonons, with associ-
ated eigenenergies Emq = εm + ωq.

Since the system switches between two configurations,
there will be two sets of parameters: {εa

0, λa, ωa} and
{εb

0, λb, ωb}. We therefore seek a master equation for the
probability that at time t the system is occupied by m electrons
and q phonons, while in configuration ϕ, which is denoted
Pϕ

mq(t ):

Ṗϕ
0q(t ) = ν0

(
Pϕ̄

0q(t ) − Pϕ
0q(t )

)
+

∑
αq′

	
α,ϕ

0q,1q′P
ϕ

1q′ (t ) − 	
α,ϕ

1q′,0qPϕ
0q(t ), (24)

Ṗϕ
1q(t ) = ν1

(
Pϕ̄

1q(t ) − Pϕ
1q(t )

)
+

∑
αq′

	
α,ϕ

1q,0q′P
ϕ

0q′ (t ) − 	
α,ϕ

0q′,1qPϕ
1q(t ), (25)

The molecule switches between the two vibrational modes
with rate ν0, when the system is electronically empty, and rate
ν1, when the system is singly occupied. Transitions within the
configurations obey the usual rules;

	
α,ϕ

0q′,1q = γ α,ϕ
∣∣X ϕ

q′q

∣∣2
[1 − nF (εϕ − ωϕ (q′ − q) − μα )] (26)

is the transition rate from state |1q〉ϕ to state |0q′〉ϕ , via
tunneling to electrode α, and likewise

	
α,ϕ

1q′,0q = γ α,ϕ
∣∣X ϕ

q′q

∣∣2
nF (εϕ + ωϕ (q′ − q) − μα ) (27)

is the transition rate between |0q〉ϕ and |1q′〉ϕ . The energy
level εϕ is broadened by the factor γ α = 2π |tα|2ρ(εϕ ), where
the density of states ρ(εϕ ) is assumed to be constant. In
Eq. (26) and Eq. (27) the transition rates also depend on the
Fermi-Dirac occupation

nF (E − μα ) = 1

1 + e(E−μα )/T
, (28)

the electrode temperature T , and the α-electrode chemical
potential μα . Transitions between different phonon states are
determined by the Franck-Condon factor X ϕ

qq′ :

X ϕ

qq′ = 〈q|e−λϕ (b†−b)|q′〉. (29)

The Fourier transformed n-resolved probability vector is

P(χ, t ) = [
Pa

00(χ, t ), Pa
10(χ, t ), . . . , Pa

0N (χ, t ), Pa
1N (χ, t ),

Pb
00(χ, t ), Pb

10(χ, t ), . . . , Pb
0N (χ, t ), Pb

1N (χ, t )
]
,

(30)

where N is the maximum number of phonons included in
the transport, chosen such that Nωϕ � VSD, γ , T . P(χ, t )
therefore has length 4(N + 1) and its components Pϕ (χ, t )
follow the master equation:

Ṗϕ
0q(χ, t ) = ν0

(
Pϕ̄

0q(χ, t ) − Pϕ
0q(χ, t )

)
+

∑
q′

(
	

S,ϕ

0q;1q′ + 	
D,ϕ

0q;1q′eiχ
)
Pϕ

1q′ (χ, t )

−
∑
αq′

	
α,ϕ

1q′;0qPϕ
0q(χ, t ), (31)

Ṗϕ
1q(χ, t ) = ν1

(
Pϕ̄

1q(χ, t ) − Pϕ
1q(χ, t )

)
+

∑
q′

(
	

S,ϕ

1q;0q′ + 	
D,ϕ

1q;0q′e−iχ
)
Pϕ

0q′ (χ, t )

−
∑
αq′

	
α,ϕ

0q′;1qPϕ
1q(χ, t ). (32)

From here the χ -dependent master equation can easily be
split into the quantum jump operators, which are constructed
according to Eq. (9). The individual Jϕ

F and Jϕ
B are also easily

defined, as in Ref. [50]. At this point the full Liouvillian
remains too large to be written in matrix form, since we
have made no assumptions about the underlying phonon dis-
tribution. If the phonons are in thermal equilibrium with an
external bath at temperature TV , however, then they must be
Boltzmann distributed, and Pϕ

nq(χ, t ) can be factorized:

Pϕ
nq(χ, t ) = Pϕ

n (χ, t )
e−qωϕ/TV

1 − e−ωϕ/TV
. (33)

For equilibrated phononons, therefore, we define effective
transition rates using the ansatz in Eq. (33),

T ϕ

lk =
∑

α

T α,ϕ

lk (34)

=
∑
α,qq′

	
α,ϕ

lq;kq′
e−qωϕ/TV

1 − e−ωϕ/TV
, (35)

which define the corresponding master equation,

L(χ ) =

⎡
⎢⎢⎢⎢⎣

−(
T a

10 + ν0
)

T S,a
01 + T D,a

01 eiχ ν0 0

T S,a
10 + T D,a

10 e−iχ −(T01 + ν1) 0 ν1

ν0 0 −(
T b

10 + ν0
)

T S,b
01 + T D,b

01 eiχ

0 ν1 T S,b
10 + T D,b

10 e−iχ −(
T b

01 + ν1
)

⎤
⎥⎥⎥⎥⎦, (36)

235430-4



FLUCTUATING-TIME AND FULL COUNTING STATISTICS … PHYSICAL REVIEW B 100, 235430 (2019)

and jump operators:

JF =

⎡
⎢⎢⎢⎣

0 T D,a
01 0 0

0 0 0 0

0 0 0 T D,b
01

0 0 0 0

⎤
⎥⎥⎥⎦ and JB =

⎡
⎢⎢⎢⎣

0 0 0 0

T D,a
10 0 0 0

0 0 0 0

0 0 T D,b
10 0

⎤
⎥⎥⎥⎦. (37)

III. FLUCTUATION STATISTICS

A. FCS

We start this section with the FCS, which we calculate as
cumulants of the distribution of transferred charge: P(n, t ) =
(I, P(n, t )), where I is a row vector of ones the same length as
P(n, t ). The moment generating function (MGF) of P(n, t ) is

M(χ, t ) =
∞∑

n=0

einχ P(n, t ) (38)

= (I, P(χ, t )), (39)

where the second line follows by comparing with the Fourier
transform in Eq. (5). We will, in fact, seek the cumulant
generating function (CGF) K (χ, t ) = ln M(χ, t ), from which
successive cumulants 〈〈Ik〉〉 can be calculated, after inserting
the solution from Eq. (7):

〈〈I (t )k〉〉 = d

dt
(−i)k ∂k

∂χ k
ln(I, eL(χ )t P̄)|χ=0. (40)

In the long-time, or large-deviation, limit, the CGF is dom-
inated by the eigenvalue of L(χ ) with the largest real part
[25,57]: limt→∞ K (χ, t ) = t�max(χ ). The current cumulants,
then, are the time-independent asymptotic rates of the cumu-
lants of P(n, t ):

〈〈Ik〉〉 = (−i)k ∂k

∂χ k
λmax(χ )|χ=0. (41)

The long-time limit is generally used, as the full expression in
Eq. (40) is difficult to evaluate for most systems.

The first cumulant 〈〈I〉〉 is just the stationary current,
which, although useful, does not provide information on
fluctuations. The famous Fano factor, defined from the zero-
frequency noise S (0),

F = S (0)

2〈I〉 (42)

= 〈〈I2〉〉
〈I〉 , (43)

provides information on the relative width of the distribution.
The Fano factor scales the current variance in terms of a
Poissonian distribution: If F = 1, the transport is Poissonian;
if F < 1, the transport is sub-Poissonian; and if F > 1, the
transport is super-Poissonian.

B. First-passage time distribution

The FPTD F (n|t0, t0 + τ ) is the probability density that the
jump number first reaches n after a time delay τ , conditioned
upon the initial probability that an electron tunnels to the drain
when counting begins at t0. In the steady state, the initial t0

is arbitrary and the FPTD depends only on the time delay:
F (n|τ ). For a rigorous derivation, we direct the reader to
Ref. [23] and Ref. [51]; however, we provide a brief summary
below.

The FPTD definition rests on the transition matrix T(n −
n′, t − t ′), which contains conditional probabilities that map
some probability distribution P(n′, t ′) to a distribution at a
later time P(n, t ):

P(n, t ) = T(n − n′, t − t ′)P(n′, t ′). (44)

We can now separate this process using the FPTD. Consider
the probability vector P(n, t ), which follows Eq. (45) when
n′ = t ′ = 0:

P(n, t ) = T(n, t )P(0, 0). (45)

We can also obtain P(n, t ), however, by

P(n, t ) =
∫ ∞

0
dτ T(0|t − τ )F(n|τ ). (46)

Here, F(n|τ ) is a vector of first-passage time probabilities
distributed over the molecular states. We multiply the first-
passage time probability by the conditional probability that,
given the jump number is n at time τ , it does not change in
the interval [τ, t]. Of course, we must also integrate over all
possible first-passage times τ .

Combining Eq. (45) and Eq. (46), and taking a Laplace
transform, we get

F̃(n|z) = T̃(0|z)T̃(n, z)P(0). (47)

Since molecular probabilities are normalized, summing all
elements of F̃(n|z) must yield the Laplace transform of the
FPTD:

F̃ (n|z) = (I, T̃(0|z)T̃(n, z)P(0)). (48)

The transition matrix T̃(n, z), which we evaluate numeri-
cally, originates from the dynamics contained in the Liouvil-
lian [23,50,51,58],

T̃(n|z) = 1

2π

∫ 2π

0
dχe−inχ [z − L(χ ), ]−1, (49)

but we must always choose the initial probability vector
P(0) ourselves. To keep our analysis comparable to standard
fluctuating statistics, for all calculations we choose

P(0) = JF P̄
(I, JF P̄)

. (50)

Note that we do not have to define an analogous FPTD
for tunnelings from the drain, as the jump number n is the
sum of forward and backward transitions and so is naturally
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bidirectional. The kth cumulant of F (n|τ ) is easily calculated
from F̃ (n|z):

〈〈
τ k

n

〉〉 = (−1)k lim
z→0+

[
dk

dzk
ln F̃ (n|z)

]
. (51)

Since L(χ ) is singular for χ = {0, 2π} [23], we need to take
the limit z → 0+ in Eq. (51). As we do with the current, we
focus on the first and second cumulants. They combine to
form the randomness parameter, which is analogous to the
Fano factor:

Rn =
〈〈
τ 2

n

〉〉
(〈τn〉)2

, (52)

C. Renewal and nonrenewal theory

Recent work in nanoscale fluctuation statistics has spurred
an interest in renewal theory, which examines the relationships
between fixed-time and fluctuating-time statistics. If the re-
newal assumption is satisfied, then subsequent first-passage
times are uncorrelated and the joint FPTD factorizes [23,51]:

F (n|τn; n′|τn′ ) = F (n|τn) F (n′ − n|τn′ − τn), (53)

or equivalently

F (n|τ ) = F (1|τ )n. (54)

Here, we have introduced the second-order FPTD
F (n|τn; n′|τn′ ): the probability density that the jump number
first reaches n after a time τ , and first reaches n′ after a time
τn′ , conditioned upon an original jump to the drain. Since we
consider only sequential transitions, if n′ > n then τ ′ > τ .
The renewal assumption in Eq. (54), combined with the
cumulant definition in Eq. (51), produces a linear relation
between FPTD cumulants:

〈〈
τ k

n

〉〉 = (−1)k lim
z→0+

[
dk

dzk
ln F̃ (1|z)n

]
, (55)

= n
〈〈
τ k

1

〉〉
. (56)

The simplification in Eq. (56) is the key to connecting
fixed-time and fluctuating-time statistics. It is well established
in quantum transport theory that, if the renewal assumption is
satisfied, exact relations exist between the FCS and equiva-
lent cumulants of fluctuating-time distributions [35,49,51,59],
including the FPTD [23,51].

In the long-time limit, for example, the average current is
constructed from the average first-passage time as

〈I〉 = lim
n→∞

n

〈τn〉 . (57)

But the average first passage time for n electrons can be
expressed using the average first-passage time of a single
electron

〈τn〉 = n〈τ1〉 (58)

only if the renewal relation in Eq. (56) is satisfied or electron
transport is unidirectional [51]; the current becomes

〈I〉 = 1

〈τ1〉 . (59)

Similarly, if the renewal assumption is satisfied, the random-
ness parameter and Fano factor are also equal:

〈〈I2〉〉
〈I〉 = n

〈〈
τ 2

n

〉〉
〈τn〉2

=
〈〈
τ 2

1

〉〉
〈τ1〉2

. (60)

So we see that the fluctuating- and fixed-time statistics provide
a direct test of the renewal assumption; if we plot the FCS and
FPTD cumulants alongside one another and find where they
coincide, we will have found a regime of renewal transport.
In the opposite case, when the FCS are not reproduced by
the FPTD cumulants, then we will have found a regime of
nonrenewal transport.

In this regime, we would by definition expect that there are
correlations between successive first-passage times: informa-
tion unavailable from the zero-frequency counting statistics.
These are quantified by the Pearson correlation coefficient,
defined here for successive first-passage times τ and τ ′:

p = 〈ττ ′〉 − 〈τ 〉2

〈〈τ 2〉〉 . (61)

We see that if the renewal assumption is satisfied then 〈ττ ′〉 =
〈τ 〉2 and the Pearson coefficient is formally zero. Unfortu-
nately, the Pearson coefficient p is not easily defined from the
second-order FPTD F (n′|τ ′; n|τ ). Instead, Ptaszynski [23] has
developed a method from F (2|τ ):

p =
〈〈
τ 2

2

〉〉
2
〈〈
τ 2

1

〉〉 − 1. (62)

In Eq. (62) the correlation is between τ1, when n = 1 for the
first time, and τ1′ = τ2 − τ1, the time delay until n = 2 for the
first time.

IV. RESULTS

We will start this section with a discussion on the fluc-
tuation behavior expected from telegraph noise. Regardless
of the underpinning Hamiltonians, all scenarios we analyze
follow a simple premise. The molecular system Hm randomly
switches between two configurations with two distinct sets of
transport parameters. We expect, therefore, that each trans-
port configuration has an associated characteristic current
〈I〉a and 〈I〉b and an associated characteristic first-passage
time 〈τ 〉a and 〈τ 〉b.

If the transport parameters are set such that these charac-
teristic first-passage times are appreciably different, and the
switching rate between configurations is small enough that
the transport tends to get “stuck” in each for a long amount of
time, then the dynamics will be quantitatively similar to Fig. 1.
In it, there are relatively long periods where the first-passage
times are clustered around 〈τ 〉a and then relatively long
periods where the first-passage times are clustered around
〈τ 〉b. That is, if a first-passage time close to 〈τ 〉a is recorded,
then the next first-passage time is likely to be close to 〈τ 〉a

as well, and likewise for 〈τ 〉b. The transport should thus
be accompanied by positive correlations between successive
first-passage times. We note that all results comparing the
Fano factor and the randomness parameter refer to R = R1,
the randomness parameter of F (1|τ ).
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t

Î

1/ν 1/ν 1/ν

τa τb τa

FIG. 1. Schematic of a time series of current spikes in a system
telegraphically switching, at rate ν, between two characteristic first-
passage times τa and τb. Note that, to exaggerate the effects, we have
reduced the stochasticity of time intervals within each configuration.
For simplicity, each current spike represents the total current increas-
ing by +1 since the last measurement.

A. Magnetic switching: Anderson model

The current plot in Fig. 2(a) displays the I-V characteristics
we expect from an Anderson impurity undergoing telegraphic
switching. The current undergoes steplike increases as VSD

approaches each energy level: ε0, ε0 ± B/2, and εT . The step
at VSD/2 = 1 meV is larger as it corresponds to the εa

↑ and εa
↓

levels simultaneously opening, while the step at VSD/2 =
5 meV corresponds to the double level εT opening for both
scenarios. The FPTD largely mimics this behavior except
for a region between 1 meV � VSD/2 � 2 meV: a regime of
nonrenewal behavior.

The Fano factor and randomness parameter diverge to an
even greater degree over the same voltage, reinforcing that
this is nonrenewal behavior. In fact, Fig. 2(b) shows that F
and R differ at all voltages except VSD/2 < 1 meV, while this
feature is difficult to see from the current alone. Fig. 3(b)
confirms the nonrenewal behavior as p ≈ 0.5 peaks between
1 meV � VSD/2 � 2 meV; as expected, there are relatively

strong positive correlations accompanying telegraphic switch-
ing. What remains now is to analyze why the characteristic
first-passage times of scenario a and b are so different in this
regime. We note that, since F, R → +∞ as VSD → 0, we plot
all results starting just outside this region.

The degenerate εa
σ level is fully open at VSD/2 = 1 meV,

but all levels for the b scenario remain closed. As VSD/2
increases from 1–2 meV, the εb

↑ begins to open due to thermal
effects in the baths. Because it is not fully open, though, the
current (first-passage time) through εb

↑ in this voltage regime
is much smaller (greater) than that through εa

σ .
In Fig. 3(a), we have also plotted the Pearson correla-

tion coefficient, Eq. (62), as a function of VSD and ν. In
it, we see that as ν increases the correlation in 1 meV �
VSD/2 � 2 meV decreases, until it is close to zero when ν =
γ . Physically, if ν = γ , then the molecule switches between
configurations at the same rate at which electrons enter and
leave, so that the system does not spend long enough in either
configuration for significant correlations between successive
first-passage times. Also noticeable is that the correlation
peak shifts closer to VSD/2 = 2 meV, since at larger ν the
system does not spend long enough in the b configuration
to record many tunnelings, and thus correlations, at lower
voltages.

Apart from identifying nonrenewal behavior, the second
cumulants reveal telegraphic switching behavior in the mag-
nitude of their peaks, which are ∼103. This is unusual for
Markovian quantum systems, in which transport is usually
close to Poissonian and F, R ∝ 1. Such large F and R arise
from the large differences between the characteristic first-
passage times 〈τ 〉a and 〈τ 〉b. As the voltage increases and tele-
graphic switching influences the transport less, these effects
accordingly disappear from the F, R and p.

As VSD/2 approaches 4 meV, the εb
↓ begins to open and

there is little difference between scenario a and b. Between
2 meV < VSD < 4 meV the noise is thus better described

2 4 6 8 10 12 14
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1.5

2

2.5
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3.5

4

4.5
FPTD
Exact

(a)

2 4 6 8 10 12 14
0

200

400

600

800

1000

1200

1400

1600

1800

R
,F

R
F

(b)

FIG. 2. Comparison of the first (a) and second (b) cumulants of the FCS and the FPTD as a function of VSD. The spin-degenerate energy
level is ε0 = 1 meV, the magnetic field is B/2 = 3 meV, the Coulomb repulsion is U = 1 meV, the S-D temperature is T = 75 μeV, and
γ α,ϕ = γ

2 . All telegraphic switching rates are equal: νk = ν = 10−4γ , where k ∈ {0, ↑,↓, 2}.
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FIG. 3. Pearson correlation coefficient as a function of (a) VSD and ν, and (b) as a slice at ν = 10−4γ . All other parameters are the same as
in Figs. 2(a) and 2(b).

by the Fano factor under the Coulomb blockade [25], F =
((γ S )2 + 4(γ D)2)/(γ S + 2γ D)2, which for symmetric cou-
pling reduces to F = 5/9. Indeed, at VSD/2 = 4 meV the Fano
factor comes close to this value, although it is not visible in
Fig. 2(b). At higher voltages, when VSD/2 > 5 meV all energy
levels are open and the system is effectively noninteracting;
the corresponding noise is the well-known result [60,61] F =
((γ S )2 + (γ D)2)/(γ S + γ D)2. Since we use symmetric cou-
plings the Fano factor reduces to F = 0.5, which is the exact
value in Fig. 2(b). The corresponding Pearson coefficient,
in this regime, is p ≈ −0.1: the standard result for a single
Anderson impurity in the high-bias limit.

B. Vibrational switching: Holstein model

In Figs. 4(a), 4(b), and 5, we have assumed that a single
level, ε0, telegraphically switches between two different vi-
brational coupling configurations. The energy ε0 is chosen as

the polaron shift for configuration b, λ2
b

ωb
, so that εa = 7 and

εb = 0. We note that, for all calculations from the Holstein
model, we have chosen more natural units. Consequently, all
energy parameters are scaled in terms of ωa (or h̄ωa/e outside
of natural units) and 〈I〉 is also scaled in terms of ωa (or e/ωa).

The polaron-shifted energy of configuration a is large
enough that, at low voltages, many phonon interactions are
required for electrons to tunnel through the molecule. For

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6
10-3

Nonequilibrium
Equilibrium

(a)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

R
,F

104

Nonequilibrium
Equilibrium

(b)

FIG. 4. Comparison of the first (a) and second (b) cumulants of the FCS and the FPTD as a function of VSD, for both equilibrated and

unequilibrated vibrations. The polaron shifted energy levels are εa = λ2
b

ωb
− λ2

a
ωa

and εb = 0, the phonon frequencies are ωa = 1 and ωb = 2,
and the electron-phonon couplings are λa = 1 and λb = 4. The temperature of both the source and the drain, as well as the effective phonon
temperature, is T = TV = 0.05, from which we again define γ = 0.5T . The molecule-electrode couplings are γ α,ϕ = γ

2 and the telegraphic
switching rates are ν0 = ν1 = 10−6γ .
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FIG. 5. Pearson correlation coefficient as a function of VSD for
the same parameters as Figs. 4(a) and 4(b).

λa = 1, however, only small |q − q′| transitions have non-
negligible Franck-Condon matrix elements, and so the con-
tribution to the current remains zero until VSD/2 → 7, when
εa begins to open for elastic q = 0 transitions.

The Franck-Condon blockade [15] is present at low volt-
ages for configuration b, since λb = 4 and ωb = 2; hence
the small current steps VSD/2 = 2n. The current due to
unequilibrated phonons is initially larger than that due to
equilibrated phonons, since at low voltages the high |q − q′|
transitions required to overcome the blockade are more likely
when phonons are out of equilibrium. When the voltage
window contains both energy levels, however, the equilibrated
phonons provide a larger current, since low |q − q′| transitions
dominate through the εa level and transitions to the q = 0 state
are required for transport through the εb level.

Figure 4(a), while illuminating, does not visually display
any nonrenewal behavior. Numerical differences between 〈I〉
and 1

〈τ1〉 may be present, but they are not easily visible to
the naked eye. In Figs. 4(b) and 5, however, we can easily
determine the renewal behavior. When VSD/2 < 2, F = R
and the transport is clearly renewal, which we can also see
in Fig. 5, since in this voltage range p = 0. This result
seems counterintuitive: The two conformations have different
characteristic currents, so why does telegraphic switching not
produce positive correlations?

The transport is renewal in this regime because the cur-
rent through configuration a is negligible; the telegraphic
switching simply places large time gaps of no tunneling
between periods of tunneling through configuration b. This
produces “avalanche” tunneling, in which the mean of the
first-passage time distribution is much larger than the mode
and is accompanied by large Fano factors and randomness
parameters F, R ∼ 104. A similar effect occurs during extreme
Franck-Condon blockades [15].

The most noticeable nonrenewal behavior is the correlation
peak p ≈ 0.5 at VSD/2 ≈ 6.5: when the εa level begins to
open for elastic q = 0 transitions, which for λa = 1 are the
dominant current contribution. At this point, the current from
configuration a is non-negligible and telegraphic switching
correlations appear. These are larger for equilibrated phonons
for two reasons. First, when phonons are in equilibrium
the elastic q = 0 transition is maximized, and second, when
phonons are unequilibrated, the Franck-Condon blockade is
minimized. There are also two similar, but much smaller,
correlation spikes at VSD/2 ≈ 4.5 and VSD/2 ≈ 5.5 corre-
sponding to q = 1 and q = 2 transitions beginning to open.
As expected, these nonrenewal regimes are accompanied by a
discrepancy between F and R.

In Figs. 6(a), 6(b), and 7 we exclude the polaron shift
by setting εa = εb = 0, which implies that the two molecular
configurations correspond to two different orbitals separately
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FIG. 6. Comparison of the first (a) and second (b) cumulants of the FCS and the FPTD as a function of VSD, for both equilibrated and
unequilibrated vibrations. The polaron shifted energy levels are εa = εb = 0, the phonon frequencies are ωa = 1 and ωb = 2, and the electron-
phonon couplings are λa = λb = 3.

235430-9



SAMUEL L. RUDGE AND DANIEL S. KOSOV PHYSICAL REVIEW B 100, 235430 (2019)

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Nonequilibrum
Equilibrium

FIG. 7. Pearson correlation coefficient as a function of VSD for
the same parameters as Fig. 6(a) and 6(b).

coupled to two vibrational modes. We also keep identical
electron-phonon couplings, so that telegraphic switching phe-
nomena arises solely from the difference between ωa = 1 and
ωb = 2.

At all VSD in Fig. 6(a), we can clearly see double steps
in the I-V characteristics. As with Fig. 4(a), there are
small steps at VSD/2 = (2n + 1), corresponding to phonon
interactions in configuration a only, and larger steps at
VSD/2 = 2n, corresponding to phonon interactions in both
configurations. The Franck-Condon blockade is present at
low voltages for configuration a, since λa = 3 and ωa = 1.
However, current is not suppressed through configuration
b, as the magnitude of the blockade effect depends on the
ratio λ

ω
.
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FIG. 9. Comparison of the first (a) and second (b) cumulants of the FCS and the FPTD as a function of VSD. The only difference between
configuration a and b are the molecule-lead couplings. We first define a constant γ = 0.5T , and then γ S,ϕ = γ D,a = γ /2, and γ D,b = 0.01γ .
Otherwise, they share the same parameters: εϕ = 0, λϕ = 3, ωϕ = 1, T = 0.05, TV = 0.05, ν0 = ν1 = ν = 10−6γ .

FIG. 8. The Franck-Condon matrix elements over a range of
q and q′, for two different sets of parameters: (a) λa

ωa
= 3 and (b)

λb
ωb

= 3
2 .

Although, again, we cannot see any difference between
〈I〉 and 1

〈τ 〉 , at all voltages F � R, indicating nonrenewal
behavior. Figure 7 corroborates this as the Pearson correlation
coefficient peaks at 0.65 between 0 < VSD/2 < 1 and never
fully decays to zero. We can understand the peak in terms of
the Franck-Condon blockade.

The matrix elements |Xq1q2 |2 in Fig. 8(a), for VSD/2 < 1,
are suppressed for low |q − q′| and especially for q = q′ = 0.
In contrast, the matrix element |X00|2 in Fig. 8(b) is nonzero.
The elastic q = 0 transition, therefore, is available to
configuration b in the voltage range 0 < VSD/2 < 1, but
not to configuration a. Since this is the only transition
available in this voltage range, there is current through
configuration b and no current through configuration a: hence
the large correlations between successive first-passage times.
Because the Franck-Condon blockade affects equilibrium
phonons more than unequilibrated phonons, the correlations
for equilibrated phonons last into higher voltages than that for
unequilibrated, which decay to p ≈ 0.1 immediately outside
of 0 < VSD/2 < 1.
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FIG. 10. Corresponding Pearson correlation coefficient for the
same parameters and voltage range as Figs. 9(a) and 9(b).

C. Noise on the interface: Holstein model

Our last analysis concerns a fluctuating molecular-
electrode coupling. Defining a scaling constant γ = 0.5T , we
fix the molecule-source coupling at γ S

ϕ = γ /2, and vary the
molecule-drain coupling between configuration a, γ D

a = γ /2,
and configuration b, γ D

b = 0.01γ . In this manner, we are
able to model, albeit crudely, the molecule attaching to and
detaching from the drain electrode.

The current associated with this process, shown in
Fig. 9(a), does not display double-step behavior, as ωa = ωb

and λa = λb. Figures 9(b) and 10 show that the transport
dynamics are nonrenewal; F � R and p �= 0, for all nonzero
voltages.

The correlation for unequilibrated phonons peaks at p ≈
0.3 between 0 � VSD/2 � 1 before decaying to near zero
and then stepping up to a maximum of p ≈ 0.5 at higher
voltages. Since λϕ

ωϕ
= 3, the Franck-Condon blockade is in

effect at low voltages. We surmise, then, that the weak γ D
b

is unable to overcome the blockade and the two currents
〈Ia〉 and 〈Ib〉 are different enough so as to see correlations.
Between 1 < VSD/2 < 4, however, configuration a overcomes
the blockade but 〈Ib〉 is still negligible. The difference between
configuration a and b is large enough that avalanche tunneling,
not telegraphic switching, is the result. At higher voltages
still, 〈Ib〉 is now non-negligible, so telegraphically switching
between the two currents 〈Ia〉 and 〈Ib〉 produces correlations.
Correlations arising from equilibrated phonons, in contrast,
are stable around p ≈ 0.6 over the same voltage regime, since

the Franck-Condon blockade is stronger than the difference
between 〈Ia〉 and 〈Ib〉.

V. CONCLUSIONS

Molecular junctions regularly undergo telegraphic switch-
ing due to a variety of physical effects. If the rate of tele-
graphic switching ν is much less than the rate of electron
transfer γ , then the molecule spends a long time in each con-
figuration before switching over. If the conductance difference
between the two configurations |〈Ia〉 − 〈Ib〉| is large, and both
〈Ia〉 and 〈Ib〉 are non-negligible, then successive first-passage
times are positively correlated.

Experimentally, one of the most important sources of
telegraphic switching could come from an interaction with
two different vibrational modes. To test this behavior, we
applied the telegraphic switching rate equation to the Holstein
model. We found that, when the Franck-Condon physics
induced large differences between 〈Ia〉 and 〈Ib〉, there are
strong positive correlations between successive first-passage
times; features that are not evident from the first- and second-
order current cumulants alone. The correlations, therefore,
potentially provide a transport picture beyond what the current
alone can see. We also found that if the current through one
configuration is completely suppressed, due to the Franck-
Condon blockade for example, and the other is non-negligible,
then the transport is more aptly described by “avalanche”
tunneling, which is not accompanied by strong nonrenewal
behavior.

Via the Anderson model, we also analyzed telegraphic
switching between a spin-split electronic level ε↑ �= ε↓ and a
degenerate electronic level ε↑ = ε↓, corresponding to stochas-
tically switching a magnetic field B on and off. We found
positive correlations, with Pearson correlation coefficient p ≈
0.5 in voltages where the degenerate level is fully open, but
only one spin-dependent level is partially open. As ν increases
the correlations decrease, until they are negligible at ν ∝ γ .

Finally, we constructed a rudimentary model of molecule-
drain bonds stochastically forming and breaking, by switching
between a transport scenario with normal γ , and one in which
γ D � γ . Here, the Franck-Condon blockade plays a role in
the nonrenewal behavior at low voltages. At high voltages,
however, the different γ D produced strong positive correla-
tions, which for high voltages were equal for equilibrated and
unequilibrated phonons.

ACKNOWLEDGMENT

This work was supported by an Australian Government
Research Training Program Scholarship to S.L.R.

[1] Y. V. Nazarov and Y. M. Blanter, Quantum Transport: Introduc-
tion to Nanoscience (Cambridge University Press, New York,
2009).

[2] S. Boussaad, B. Xu, L. Nagahara, I. Amlani, W.
Schmickler, R. Tsui, and N. Tao, J. Chem. Phys 118, 8891
(2003).

[3] M. Lastapis, M. Martin, D. Riedel, L. Hellner, G. Comtet, and
G. Dujardin, Science 308, 1000 (2005).

[4] Y. Kim, H. Song, D. Kim, T. Lee, and H. Jeong, ACS Nano 4,
4426 (2010).

[5] D.-g. Cho, M. Yang, M. Lee, and S. Hong, Nanotechnology 29,
425704 (2018).

235430-11

https://doi.org/10.1063/1.1566933
https://doi.org/10.1063/1.1566933
https://doi.org/10.1063/1.1566933
https://doi.org/10.1063/1.1566933
https://doi.org/10.1126/science.1108048
https://doi.org/10.1126/science.1108048
https://doi.org/10.1126/science.1108048
https://doi.org/10.1126/science.1108048
https://doi.org/10.1021/nn100255b
https://doi.org/10.1021/nn100255b
https://doi.org/10.1021/nn100255b
https://doi.org/10.1021/nn100255b
https://doi.org/10.1088/1361-6528/aad761
https://doi.org/10.1088/1361-6528/aad761
https://doi.org/10.1088/1361-6528/aad761
https://doi.org/10.1088/1361-6528/aad761


SAMUEL L. RUDGE AND DANIEL S. KOSOV PHYSICAL REVIEW B 100, 235430 (2019)

[6] A. E. Baber, H. L. Tierney, and E. C. H. Sykes, ACS Nano 2,
2385 (2008).

[7] R. A. Wassel, R. R. Fuierer, N. Kim, and C. B. Gorman, Nano
Lett. 3, 1617 (2003).

[8] A. M. Kuznetsov, I. G. Medvedev, and J. Ulstrup, J. Chem. Phys
127, 104708 (2007).

[9] Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, L. A. Bumm,
J. D. Monnell, J. J. Stapleton, D. W. Price, A. M. Rawlett, D. L.
Allara, J. M. Tour, and P. S. Weiss, Science 292, 2303 (2001).

[10] W. Auwärter, K. Seufert, F. Bischoff, D. Ecija, S.
Vijayaraghavan, S. Joshi, F. Klappenberger, N. Samudrala, and
J. V. Barth, Nat. Nanotechnol. 7, 41 (2012).

[11] D. Cho, M. Yang, N. Shin, and S. Hong, Nanotechnology 29,
365704 (2018).

[12] J. M. Artés, M. López-Martínez, I. Díez-Pérez, F. Sanz, and P.
Gorostiza, Small 10, 2537 (2014).

[13] R. J. Nichols, W. Haiss, S. J. Higgins, E. Leary, S. Martin, and
D. Bethell, Phys. Chem. Chem. Phys. 12, 2801 (2010).

[14] C. Fricke, F. Hohls, W. Wegscheider, and R. J. Haug, Phys. Rev.
B 76, 155307 (2007).

[15] J. Koch and F. von Oppen, Phys. Rev. Lett. 94, 206804
(2005).

[16] C. S. Lau, H. Sadeghi, G. Rogers, S. Sangtarash, P. Dallas, K.
Porfyrakis, J. Warner, C. J. Lambert, G. A. D. Briggs, and J. A.
Mol, Nano Lett. 16, 170 (2016).

[17] Y. M. Galperin, N. Zou, and K. A. Chao, Phys. Rev. B 49, 13728
(1994).

[18] Y. M. Galperin and K. A. Chao, Phys. Rev. B 52, 12126 (1995).
[19] O. Entin-Wohlman, D. Chowdhury, A. Aharony, and S.

Dattagupta, Phys. Rev. B 96, 195435 (2017).
[20] S. Gurvitz, A. Aharony, and O. Entin-Wohlman, Phys. Rev. B

94, 075437 (2016).
[21] D. S. Kosov, J. Chem. Phys. 148, 184108 (2018).
[22] N. G. van Kampen, Stochastic Processes in Physics and Chem-

istry (Elsevier Science, Amsterdam, 1992).
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