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Effects of spin-dependent electronic correlations on surface states in topological insulators
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The effect of electron-electron interactions on the energy spectrum of surface electrons in a three-dimensional
topological insulator is studied theoretically. The interaction includes both charge- and spin-dependent correla-
tions. Using the Green’s function method, we calculate the electron self-energy and determine the renormalized
spin-orbit coupling strength. We find that the energy spectrum renormalized by spin-dependent electronic
correlation turns nonlinear with respect to the wave vector k measured from the perfect Dirac cone (in the
absence of electron-electron interactions). We also discuss charge screening contributions from surface and bulk
electrons.
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I. INTRODUCTION

Topological insulators (TIs) form a class of materials with
specific topological properties of electron energy bands [1,2].
It was predicted theoretically that a two-dimensional elec-
tron gas (2DEG) appears by necessity at the interface be-
tween topologically nonequivalent insulators—including the
TI-vacuum interface as a particular case. TIs have surface
electron states with relativistic-type (Dirac) gapless energy
spectra, resulting in distinct physical features such as robust-
ness to perturbations that preserve time-inversion symmetry.
Owing to spin-momentum locking, a chiral spin mode appears
at the surfaces of TIs, as observed experimentally [3].

Properties of TIs have been studied extensively in the
context of various physical phenomena, such as the spin
Hall effect, nonequilibrium topological states, antiferromag-
netic magnonic spintronics, interfacial skyrmions on the sur-
face of a TI, and Klein tunneling [4–15]. Recently, current-
induced spin-orbit torques and magnetic switching in hybrid
TI-ferromagnet heterostructures and in a TI with magnetic
molecules on its surface were also analyzed [16–18]. Further-
more, features akin to TIs were exploited for the intercon-
version of spin and charge currents and for the generation of
thermally assisted magnonic spin currents [19–21]. Because
of the proximity effect, magnetic structures on the surface
of TIs, like, for instance, magnetic impurities [22–24], mag-
netic stripes, or helicoidal magnetic structures [25], were also
shown to have a substantial influence on the electronic band
structure of the surface states of TIs and may even suppress
the topological phase.

Most physical properties of TIs are derivable from a one-
particle description of their electronic structure. The role of
electronic and spin correlations is relatively less explored
[20,26–41]. Generally, the electron-electron interaction leads

to a renormalization and a finite lifetime of the energy states.
The strength of the spin-orbit interaction can also be modified.
Numerous first-principles studies demonstrated that a proper
account of the electron-electron interaction, for instance, us-
ing the GW approximation [42], can correctly capture the
spectral properties of both bulk and surface electronic states
in TIs [43,44]. The impact of electron-electron interaction on
the topological properties was found to be material specific.
A strong nonlinearity of the topological states was found
in Bi2Se3, while Sb2Te3 exhibits Dirac surface states with
a linear dispersion [44]. At the same time, the electronic
structures of Bi2Se3 and Sb2Te3 are almost unaffected by the
screened Coulomb interaction [43]. It was also shown that
neglecting the spin-orbit interaction leads only to a simple
energy shift, while a proper accounting of all relativistic
effects and screened Coulomb interaction results in a non-
trivial dispersion of the topologically protected surface states,
in good agreement with experiments [43,44]. The electron-
electron interaction may also change the electron velocity or
modify the anisotropy of the energy spectrum in the low-
energy limit. Accounting for the vertex corrections in the GW
approximation, it was also shown that plasma satellites may
appear in the elementary excitation spectrum, which leads to
a shift of the valence state bottom to a lower energy [45].
We note that similar effects have been already discovered in
graphene [46–53].

The present contribution addresses the effect of spin-
dependent electron-electron interaction on the energy spec-
trum of surface electrons in a three-dimensional (3D) topo-
logical insulator. Here, we calculate the electron self-energy
while accounting for spin-independent (density-density) and
spin-dependent (spin density-spin density) electron correla-
tions. We analyze explicitly the impact of exchange and
Hartree contributions to the self-energy and conclude that the
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contributions of exchange diagrams lead to some deviation
of the energy dispersion from the linear behavior. We also
inspect correlation-induced corrections to the spin-orbit in-
teraction and find the energy spectrum at k → 0 is charac-
terized by a higher electron velocity. Moreover, we analyze
screening of the electron-electron interaction by surface and
bulk electrons. While generally small, the latter contribution
may turn comparable (or even larger) than the screening in
two-dimensional (2D) electron systems.

In Sec. II, we present a theoretical model of a topo-
logical insulator with electron correlations. Self-energy due
to electron-electron correlations (both Coulomb and spin-
dependent) is calculated in Sec. III, showing that the exchange
diagrams renormalize the band structure and give rise to some
nonlinearity in the dispersion relations. In addition, electron-
electron interactions modify the spin-orbit coupling strength.
In Sec. IV, we show the result of using a self-consistent model
for the electron energy spectrum of surface electrons. Charge
screening is analyzed in Sec. V, where screening by both
surface and bulk electrons is considered. Summary and final
conclusions are in Sec. VI.

II. THEORETICAL MODELLING

Two-dimensional surface electrons in TIs with electron-
electron interaction included are described by the following
Hamiltonian:

H = −iv ψ†(r) (σx∇y − σy∇x ) ψ (r)

+ g1(r − r′) [ψ†(r) ψ (r)] [ψ†(r′) ψ (r′)]

+ g2(r − r′) [ψ†(r) σi ψ (r)] [ψ†(r′) σi ψ (r′)], (1)

where ψ†(r) and ψ (r) are spinor field operators, σi (i =
x, y, z) are the spin Pauli matrices, and the functions g1(r) =
g1(r) and g2(r) = g2(r) describe respectively the density-
density and spin density–spin density interactions of electrons
at a distance r.

The first term in Eq. (1) is the 2D Hamiltonian H0 of free
surface electrons in TIs without electron-electron interactions.
The corresponding electron energy spectrum consists of two
energy branches with a linear dispersion, ε1,2(k) = ±vk. Note
that v in our model depends on the strength of the bare spin-
orbit interaction. Both g1(r) and g2(r) are screened and have
the generic form in momentum (q) space in 2D,

g1(q) = 2πe2

q + κ1
, g2(q) = 2πe2λ0

q + κ2
, (2)

where κ1,2 > 0 are the inverse screening lengths (with usu-
ally κ2 > κ1) and λ0 stands for a dimensionless coupling
parameter.

III. SELF-ENERGY

The exchange and Hartree diagrams yield the following
contributions to the self-energy of surface electrons:

�̂ex
1 (k) = i

∫
dε

2π

d2k′

(2π )2
g1(k − k′) Ĝ0(k′, ε), (3)

�̂ex
2 (k) = i

∫
dε

2π

d2k′

(2π )2
g2(k − k′) σi Ĝ0(k′, ε) σi, (4)

�̂H
1 (k) = −ig1(0)σ0 Tr

∫
dε

2π

d2k′

(2π )2
Ĝ0(k′, ε), (5)

�̂H
2 (k) = −ig2(0)

∫
dε

2π

d2k′

(2π )2
Ĝ0(k′, ε). (6)

The subscript 1(2) refers to the Coulomb (spin-dependent)
electron interactions, while σ0 is the unit matrix in the spin
space. The Green’s function Ĝ0(k) of free electrons at the
surface of TI has the form

Ĝ0(k, ε) = ε + μ + v ẑ · (σ × k)

2vk

(
1

ε + μ − vk + iδ sgn ε

− 1

ε + μ + vk + iδ sgn ε

)
, (7)

where μ is the chemical potential. Only when we deem it
needed to avoid misunderstanding is σ0 displayed; otherwise,
it is suppressed.

Performing the integral over energy for the Green’s func-
tion given by Eq. (7), one obtains∫

dε

2π
Ĝ0(k, ε) = i

2
[θ (μ − vk) − ẑ · (σ × nk )θ (vk − μ)],

(8)

where nk = k/k. Substituting (2) and (8) into Eqs. (3)–(6), we
find

�̂ex
1 (k) = − e2

2π

∫ π

0
dθ

∫ μ/v

0

k′dk′

ζ (k, k′) + κ1

+ e2ẑ · (σ × nk )

2π

∫ π

0
dθ

∫ kmax

μ/v

k′dk′ cos θ

ζ (k, k′) + κ1
, (9)

�̂ex
2 (k) = −3e2λ0

2π

∫ π

0
dθ

∫ μ/v

0

k′dk′

ζ (k, k′) + κ2

− e2λ0ẑ · (σ × nk )

2π

∫ π

0
dθ

∫ kmax

μ/v

k′dk′ cos θ

ζ (k, k′) + κ2
,

(10)

�̂H
1 (k) = e2μ2

4v2κ1
, (11)

�̂H
2 (k) = e2λ0μ

2

2v2κ2
, (12)

where ζ (k, k′) =
√

k2 + k′2 − 2kk′ cos θ and θ is the angle
between the vectors k and k′. Note that the integrals (9) and
(10) contain the terms in the form of spin-orbit interaction
(second terms). Both of them are formally divergent at the up-
per limit. This divergence is, however, removed by the cutoff
at k = kmax. This is fully justified because the linear dispersion
of surface electrons (in which we are interested and for which
our model is valid) describes only the low-energy region. The
total self energy is a sum of all four contributions (9)–(12).
The real part of self-energy determines the correction to the
electron energy spectrum due to the interactions.

The Hartree contributions to the self-energy, Eqs. (11) and
(12), do not depend on k. Correspondingly, they do not affect
the energy structure. Such contributions can be viewed as a
renormalization of the chemical potential. Therefore, one can
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=0.1 meV
10 meV
20 meV
30 meV

=0.1 meV
10 meV
20 meV
30 meV

FIG. 1. Contributions �
ex(1)
1 and �

ex(2)
1 , following from the

charge density-density correlations, Eq. (9). Note that the corre-
sponding full contribution to the self-energy is �

ex(1)
1 + ẑ · (σ ×

nk )�ex(2)
1 . The dependence on wave vector k is presented for different

values of the chemical potential μ. Other parameters as in the text.

exclude such terms assuming that the chemical potential is
already properly renormalized.

For convenience, contributions from the exchange dia-
grams will be written as

�̂ex
1 (k) = �̂

ex(1)
1 (k) + ẑ · (σ × nk ) �̂

ex(2)
1 (k), (13)

where the first and second terms stand for the corresponding
terms on the right-hand side of Eq. (9). Similar notation is also
introduced for �̂ex

2 (k). The results of numerical calculations
of �̂

ex(1)
1 (k) and �̂

ex(2)
1 (k) are shown in Fig. 1. In turn, results

of similar calculations for �̂
ex(1)
2 (k) and �̂

ex(2)
2 (k) are shown

in Fig. 2. In these calculations, we assumed the following
parameters: v = 10−8 eV cm, λ0 = 0.1, vkmax = 0.5 eV, κ1 =
105 cm−1, and κ2 = 107 cm−1. Two terms �

ex(2)
1 and �

ex(2)
2

are responsible for the renormalization of the spin-orbit in-
teraction. As we can see from Figs. 1 and 2, the contribution
of the charge density-density interaction is much larger than
that due to spin-dependent screening part, and it determines

=0.1 meV
10 meV
20 meV
30 meV

=0.1 meV
10 meV
20 meV
30 meV

FIG. 2. Contributions �
ex(1)
2 and �

ex(2)
2 , following from spin-

dependent electron correlations to the first order in perturbation
theory, Eq. (10). Full contribution to the self-energy is �

ex(1)
2 +

ẑ · (σ × nk )�ex(2)
2 . The dependence on wave vector k is shown for

different values of the chemical potential μ. Other parameters as in
the text.

the nonlinear k dependence of the renormalized spin-orbit
coupling.

Using the self-energy �(k), one can define the renor-
malized one-particle Hamiltonian as H̃0(k) = H0(k) + �(k),
which describes the renormalized energy spectrum of surface
electrons. The corresponding energy spectrum is presented in
Fig. 3, which reveals some nonlinearity in the dependence on
the wave vector k. We note that this nonlinearity is an effect
of electron-electron interaction to first order in the many-body
perturbation theory.

IV. SELF-CONSISTENT APPROACH

The results presented in Sec. III have been obtained in
the first-order perturbation theory, and thus any higher order
correction to the spectrum should be small. However, to get
more realistic results one should sum up the higher order
terms. Instead of this, we use a different (nonperturbative)
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=0.1 meV
10 meV
20 meV
30 meV

FIG. 3. Electron energy spectrum E (k) with the contributions of
�ex

1 and �ex
2 included. The dependence on wave vector k is shown

for different values of the chemical potential μ. Other parameters are
as in the text.

approach, in which the electron-electron interaction is taken
into account in a self-consistent way.

To do this, we present Hamiltonian of the system in the
form

H = f1(k) + v(k · σ ) f2(k), (14)

where f1,2(k) are some unknown functions to be deter-
mined self-consistently. In the first-order perturbation theory,
we found f1(k) = �

ex(1)
1 + �

ex(1)
2 and f2(k) = 1 + [�ex(2)

1 +
�

ex(2)
2 ]/vk. In agreement with the perturbation approach, one

may assume that f1(k) is small and f2(k) is close to 1. As in
the perturbation approach, the Hartree terms lead to a shift of
the Fermi level, so we focus on the exchange terms only.

In the framework of self-consistent approach, we need
to calculate the Green’s function at a given step with the
self-energies calculated in one step earlier. Accordingly, the
self-energy should be calculated with full Green’s function
Ĝ(k, ε), which takes into account nonlinearity of the energy
spectrum as described by Hamiltonian (14). Thus, we get

Ĝ(k, ε) = ε − f1(k) + μ + vẑ · (σ × k) f2(k)

2vk| f2(k)|

×
(

1

ε − ε1(k) + μ + iδ sgn ε

− 1

ε − ε2(k) + μ + iδ sgn ε

)
, (15)

where ε1,2(k) = f1(k) ± vk| f2(k)| corresponds to the energy
spectrum of the two bands.

Integration over ε gives∫
dε

2π
Ĝ(k, ε)=− i

4
{θ [ε1(k) − μ] − θ [μ − ε1(k)]

+ θ [ε2(k) − μ] − θ [μ − ε2(k)]}
+ iẑ · (σ × nk )

4
{θ [(ε1(k) − μ] − θ [μ − ε1(k)]

− θ [ε2(k) − μ] + θ [μ − ε2(k)]}, (16)

=0.1 meV
10 meV
20 meV
30 meV

FIG. 4. The same as in Fig. 3 calculated by using the self-
consistent model. After several iterations, there is no dependence on
the location of chemical potential μ.

where we assumed f2(k) > 0 since this function should be
close to 1.

Let us assume ε2(k) < 0 and μ > 0. Then, θ [ε2(k) − μ] =
0 , θ [μ − ε2(k)] = 1, and we obtain∫

dε

2π
Ĝ(k, ε) = i

2
θ [μ − ε1(k)] − iẑ · (σ × nk )

2

× θ [ε1(k) − μ]. (17)

Thus, the only difference with Eq. (8) is that in the expression
for �ex(k) we have to substitute μ/v → kF in the limits of
integration, where the Fermi wave vector kF is the solution of
equation

f1(k) + vk f2(k) = μ. (18)

Using Eqs. (17) and (18) and Eqs. (9) and (10) with the
substitution μ/v → kF , we calculated the self-energy and
electron energy spectrum by iterations starting from f1(k) =
0 and f2(k) = 1, which correspond to �ex(k) = 0 (without
electron-electron interactions). The self-consistent result is
shown in Fig. 4. Thus, in the self-consistent approach the
energy spectrum is nonlinear, and it does not depend on the
chemical potential μ (compare Figs. 3 and 4).

V. CHARGE SCREENING

Now we consider charge screening at the surface of TI.
In general, one can distinguish two contributions to the
screening: One of them is related to free electrons at the
surface, and the other is due to electrons in the bulk of
topological insulator.

A. Screening by surface electrons

The polarization operator determining the renormalization
of Coulomb interaction reads

�(q, ω) = −i Tr
∫

dε

2π

d2k
(2π )2

G0(k + q, ε + ω)G0(k, ε).

(19)
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Substituting the Green’s function of surface electrons, Eq. (7),
into Eq. (13), we find the following expression for the polar-
ization operator at ω = 0:

�(q, 0) =
∫

d2k
(2π )2

[
f (εk+q) − f (εk )

εk+q − εk

+ f (−εk+q) − f (−εk )

εk − εk+q

]
, (20)

where f (ε) is the Fermi-Dirac distribution function. The two
terms in the above equation are related to the contributions of
the two bands ε1(k) ≡ εk = vk and ε2(k) = −εk.

In the limit of q → 0, one obtains from Eq. (20)

�(0, 0) = 1

2π

∫
kdk[ f ′(εk ) + f ′(−εk )]. (21)

In particular, for εk = vk, assuming the chemical potential
μ > 0, one finds �(0, 0) = −μ/2πv2 at T = 0.

In the framework of the self-consistent approach, we have
to use Green’s functions (15) instead of G0(k, ε) in Eq. (19).
Then, using the energy spectrum ε1,2(k) = f1(k) ± vk f2(k),
we find

�(0, 0) = − kF

2πε′
1(kF )

. (22)

The Fourier transform of the renormalized electron inter-
action at the surface is

g(q) = g0(q)

1 − g0(q) �(q, 0)
, (23)

where g0(q) = 2πe2/q corresponds to the unscreened 2D
Coulomb interaction in vacuum. In the limit of small q, we
obtain

g(q) � 2πe2

q + κ1a
, (24)

where

κ1a = −2πe2 �(0, 0) (25)

FIG. 5. Parameter κ1a calculated self-consistently and shown as
a function of the chemical potential for the parameters described in
the text.

is the inverse screening length related to the charge screening
by 2D electrons at the surface of TI.

The dependence of parameter κ1a on chemical potential,
calculated with polarization operator (22), is presented in
Fig. 5. This dependence is a nonlinear function of μ due to
nonlinearity of the electron energy spectrum (see Fig. 4).

B. Screening by electrons in the bulk

To calculate the contribution to screening from bulk elec-
trons, we start from the relation

gq(z, z′) = g0,q(z, z′) +
∫ 0

−∞
dz1 dz2 g0,q(z, z1)

×�q(z1, z2) gq(z2, z′), (26)

where g0,q refers to the unscreened bare (Coulomb) inter-
action, and the polarization operator �q(z, z′) at frequency
ω = 0 has to be calculated with the Green’s functions of
electrons in the bulk. In this equation, we used Fourier trans-
formation in the x-y surface plane

gq(z, z′) =
∫

d2r g(r − r′; z, z′) e−iq·(r−r′ ). (27)

The electronic structure in the bulk corresponds to the in-
sulating state with the chemical potential in the gap. In the
following, we omit the in-plane label q = (qx, qy).

We take into account that g0(z, z′) = g0(z − z′) and
�(z, z′) = �(z − z′). Then Eq. (26) can be transformed to

g(z, z′) = g0(z − z′) +
∫ 0

−∞
dz1 χ (z − z1) g(z1, z′), (28)

where

χ (z) =
∫

dqz

2π
�(qz ) g0(qz ) eiqzz, (29)

whereas �(qz ) and g0(qz ) are the Fourier transforms of the
functions �(z − z′) and g0(z − z′), respectively.

With z′ = 0 and denoting g(z, 0) = W (z), one can write the
following integral equation for the function W (z):

W (z) = g0(z) +
∫ 0

−∞
dz1 χ (z − z1)W (z1), (30)

with the asymptotic behavior

W (z) ∼ e−qz, z → ∞,

W (z) ∼ eκz, z → −∞. (31)

Here, κ is the inverse screening length in the bulk, which is as-
sumed to be known. Our objective is to determine the inverse
screening length κ1b of surface charges by bulk electrons, by
relating κ1b to κ in the bulk.

Equation (30) can be solved with the Wiener-Hopf method
(see Appendix A). As a result, we obtain the following
solution:

W (z) = 2πe2√
κ2 + q2

{
e−qz, z > 0,

ez
√

κ2+q2
, z < 0.

(32)
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Taking z = 0, one finds

W (0) ≡ g(0, 0) = 2πe2√
κ2 + q2

. (33)

Correspondingly, a potential of a charge e at the point (0, 0, 0)
is screened. At the point (x, y, 0), it reads

g(r) = 2πe2
∫

d2q
(2π )2

eiq·r√
κ2 + q2

. (34)

Calculation of this integral at large distances, κr 	 1, leads
to the interaction g(r) = e2e−κr/r (see Appendix B). This
behavior is mostly determined by the Fourier transform (33) at
small q 
 κ . The Fourier transform (2) also leads to the same
function g(r) at large r. Therefore, one can approximately
use the same form (2) for both types of screening, leading to
the same asymptotics of interaction. Thus, we account for the
screening of electron-electron interaction by surface and bulk
electrons using g1(q) in Eq. (2) with κ1 = κ1a + κ1b, where κ1a

is determined by (18) and κ1b is the inverse screening length
of the bulk, κ1b = κ .

VI. SUMMARY AND CONCLUSIONS

We have presented a theoretical description of the influ-
ence of electron-electron interactions on the surface states in
topological insulators, taking into account the charge density-
density and spin density-density interactions to first order in
perturbation theory (Hartree and exchange contributions). By
calculating the self-energy, we have found that the electron-
electron interactions lead to some modification of the band
structure. The exchange diagrams give rise to a nonlinear-
ity of the electron dispersion relation. In the self-consistent
approach, the spectrum is nonlinear and independent of the
chemical potential (up to a shift due to Hartree terms). The
electron-electron interactions also renormalize and enhance
the spin-orbit coupling strength. The renormalized band struc-
ture may be observed directly in ARPES (angle-resolved
photoemission spectroscopy) measurements. Furthermore, the
renormalization of band structure may also have an im-
pact on transport properties, especially on electron mobility
at the Fermi level, which is important for high-frequency
applications.

Screening of electric charges at the surface of TI was taken
into account, and the contributions to the screening due to
surface and bulk electrons were calculated. In the latter case,
the corresponding inverse screening length has been related
to the bulk screening length, and we have shown that at large
distances it is equal to the bulk screening length.
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APPENDIX A: SOLUTION OF EQ. (30)
BY THE WIENER-HOPF METHOD

Following the Wiener-Hopf method we consider the exten-
sion of Fourier transform of W (z),

W (k) =
∫ ∞

−∞
dz W (z) e−ikz, (A1)

to complex k. In correspondence with (31),

W (z) e−ikz ∼ e−z(q−Im k) e−iz Re k as z → ∞, (A2)

W (z) e−ikz ∼ ez(κ+Im k) e−iz Re k as z → −∞. (A3)

This means that for z → ∞, the function W (z) e−ikz → 0, if
Im k < q, whereas for z → −∞ the function W (z) e−ikz → 0,
if Im k > −κ . Hence, the Fourier transform (A1) for complex
k is an analytic function of k in the strip −κ < Im k < q.

We present the function W (z) as a sum [54,55]:

W (z) = W (z) θ (z) + W (z) θ (−z). (A4)

Correspondingly, for the Fourier transform of W (z), we get

W (k) = ϕ+(k) + ϕ−(k), (A5)

where

ϕ+(k) =
∫ 0

−∞
dz W (z) e−ikz, (A6)

ϕ−(k) =
∫ ∞

0
dz W (z) e−ikz. (A7)

As one can see, the functions ϕ±(k) are analytic in the upper
and lower half-planes of complex k, respectively.

After the Fourier transformation of Eq. (30), we obtain

ϕ+(k) + ϕ−(k) = g0(k) + χ (k) ϕ+(k), (A8)

where

χ (k) = �(k) g0(k). (A9)

From (A8) follows

ϕ+(1 − χ ) = g0 − ϕ−. (A10)

Then, we present (χ − 1) as

1 − χ = �+

�− , (A11)

where �±(k) are some analytic functions in the upper and
lower half-planes of complex k, respectively. From (A8), we
obtain

�+ϕ+ = �−V0 − �−ϕ−. (A12)

To solve this equation, we have to present �−g0 as a sum of
functions being analytic in the upper and lower half-plane of
complex k, respectively:

�−g0 = �+ + �−. (A13)

After that, Eq. (A12) acquires the required form,

�+ϕ+ − �+ = �− − �−ϕ−, (A14)

with the functions analytical in upper half-plane on the left
side, and the functions analytical in lower half-plane on the
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right-hand side of this equation. Thus, the function on the
left and the function on the right determine the same entire
function P(k), which can be taken as a polynom with the
coefficients to satisfy the asymptotic behavior (31). Using
Eq. (A14), we obtain

ϕ+ = P + �+

�+ , (A15)

ϕ− = �− − P

�− . (A16)

Now we have to find �± and �±.
Let us assume �(k) � �(0) = const (the usual assump-

tion when we are looking for the screening length). The
inverse screening length κ in the bulk is related to �0 via
κ2 = −4πe2�. The function 1 − χ can be presented as

1 − χ = 1 + κ2

k2 + q2

= (k + i
√

κ2 + q2)(k − i
√

κ2 + q2)

(k + iq)(k − iq)
, (A17)

which gives

�+ = k + i
√

κ2 + q2

k + iq
, (A18)

�− = k − iq

k − i
√

κ2 + q2
. (A19)

Note that with this choice of �±, the function 1/�−(k) is also
an analytic function of k in the lower half-plane of complex k.

The function (A13) can be presented as

�−g0 = k − iq

k − i
√

κ2 + q2

4πe2

q2 + k2

= 4iπe2√
κ2 + q2 + q

(
1

k + iq
− 1

k − i
√

κ2 + q2

)
, (A20)

which leads to

�+ = 4iπe2√
κ2 + q2 + q

1

k + iq
, (A21)

�− = − 4iπe2√
κ2 + q2 + q

1

k − i
√

κ2 + q2
. (A22)

Substituting (A18), (A19), (A21), and (A22) into (A15) and
(A16), we obtain

ϕ+ = P
√

κ2 + q2 (k + iq) + 4iπe2√
κ2 + q2 (k + i

√
κ2 + q2)

, (A23)

ϕ− = −P
√

κ2 + q2 (k − i
√

κ2 + q2) + 4iπe2√
κ2 + q2 (k − iq)

. (A24)

Using Eq. (A5), we get

W (k) = P
√

κ2 + q2 (k + iq) + 4iπe2√
κ2 + q2 (k + i

√
κ2 + q2)

− P
√

κ2 + q2 (k − i
√

κ2 + q2) + 4iπe2√
κ2 + q2 (k − iq)

(A25)

and

W (z) =
∫

dk

2π
eikz

[
P(k)

√
κ2 + q2 (k + iq) + 4iπe2√

κ2 + q2 (k + i
√

κ2 + q2)

− P(k)
√

κ2 + q2 (k − i
√

κ2 + q2) + 4iπe2√
κ2 + q2 (k − iq)

]
.

(A26)

Thus, for z > 0 we find

W (z) = e−qz P(iq)
√

κ2 + q2 (q −
√

κ2 + q2) + 4πe2√
κ2 + q2

= e−qz

[
4πe2√
κ2 + q2

− P(iq) (
√

κ2 + q2 − q)

]
, (A27)

while for z < 0

W (z) = ez
√

κ2+q2

[
4πe2√
κ2 + q2

− P(−i
√

κ2 + q2)

× (
√

κ2 + q2 − q)
]
. (A28)

If we take

P = 2πe2

(
√

κ2 + q2 − q)
√

κ2 + q2
(A29)

as constant, which does not depend on k, then we finally
obtain the formula (32).

APPENDIX B: CALCULATION OF FUNCTION g(r)
IN THE CASE OF SCREENING BY BULK ELECTRONS

To determine the screening length, we have to calculate
integral (34) for large r. After integrating over angle, we
obtain

g(r) = e2

2π

∫ ∞

0

qdq√
κ2 + q2

∫ 2π

0
dϕ eiqr cos ϕ

= e2
∫ ∞

0

J0(qr) qdq√
κ2 + q2

. (B1)

Integral (B1) can be calculated exactly [56],

g(r) = e2

r

√
πκr

2
[I−1/2(κr) − L−1/2(κr)], (B2)

where Iν (z) and Lν (z) are the modified Bessel and Struve
functions, respectively.

For z 	 1, one can use the asymptotics [57] L−1/2(z) =
I1/2(z) + 0(z−3/2). Then, we get

g(r) � e2

r

√
πκr

2
[I−1/2(κr) − I1/2(κr)]. (B3)

These modified Bessel functions can be presented by elemen-
tary functions [57]

I−1/2(z) =
√

2z

π

cosh z

z
, I1/2(z) =

√
2z

π

sinh z

z
. (B4)
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Substituting (B4) to (B3), we obtain

g(r) = e2 e−κr

r
, κr 	 1. (B5)

Thus, the behavior of function g(r) at large distances corre-
sponds to the screened Coulomb interaction determined by the
screening length κ−1.
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