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Alternative derivation of Mie theory with electromagnetic potentials for diffuse particles
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Mie’s theory of light scattering on spherical particles is being increasingly used in nanophotonics, and these
demanding applications have laid bare some shortcomings of Mie theory in its standard formulation. One
problem that deserves special attention is the electron spill-out in small metallic nanoparticles, which invalidates
the assumption of an abrupt interface. Here we present an alternative derivation of Mie theory without this
assumption. To avoid the usual electromagnetic boundary conditions suitable for a hard-wall interface, we set up
equations for the electromagnetic potentials instead of the electric and magnetic field. We show that in the limit
of a hard-wall interface, the results of the standard Mie theory are recovered. Additionally, a numerical solution
scheme is proposed for the equations for the vector potential and the scalar potential. Analysis of the optical
cross sections of soft-interface nanospheres shows that the absorption increases and occurs at lower frequencies
as compared to hard-walled nanospheres. This effect is rather dramatic in large spheres with large spill-out, due
to the disappearance of high-frequency resonance peaks.
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I. INTRODUCTION

In this paper we rederive Mie theory [1] for the scattering
of light by a spherical particle in an alternative way. The
reader may very well wonder what the use is of yet another
derivation of Mie theory, given that there are already very
good and thorough presentations in standard textbooks such
as that of Stratton [2], Kerker [3], or more recently Kreibig
and Vollmer [4], and Bohren and Huffmann [5]. The answer
to that question is that we provide a derivation based on the
scalar potential φ and the vector potential A, rather than the
electric and magnetic fields E and B, or other potentials such
as the Hertz-Debye potentials [3]. This approach allows for a
straightforward extension to smeared out interfaces between
materials, allowing us to reproduce the results from Wyatt’s
extension for inhomogeneous nanospheres [6,7]. The deriva-
tion directly considers the electronic response to an external
electric field rather than assuming a dielectric response func-
tion for the medium, which is in line with other treatments
of the problem that use a nonlocal response [8–11]. Addi-
tionally, since we can associate the scalar potential with the
longitudinal fields and the vector potential with the transversal
fields, this rederivation can provide an insight into Ruppin’s
extension for plasma spheres [12–14]. Finally, a numerical
solution of the equations that follow from our derivation
allows for an efficient calculation of the optical cross sections
taking spill-out into account.

In standard Mie theory, only transverse electromagnetic
waves with a divergence-free electric field are considered.
However, in a metal the (longitudinal) plasma oscillations
couple to the radiation field, and the longitudinal modes of
the field need to be taken into account. For bulk metal, the
plasma frequency is much higher than the optical frequencies
and a description based only on transverse fields is ade-
quate. However, for small particles, the surface plasma modes

become important and affect the optical properties. This was
first shown by Melnyk and Harrison [15], and Mie theory
was subsequently extended to include longitudinal fields by
Ruppin [12–14].

Additionally, Mie assumed the boundary between the in-
side of the spherical particle and the outside to be infinitely
sharp, in order to implement the usual electromagnetic bound-
ary conditions that link regions with different uniform bulk
dielectric response. However, there are plenty of cases where
this assumption is inapplicable [16]. A first example appears
when light-absorbing nanoparticles are used as heaters [17]:
due to the gradient in temperature, the surrounding material
will be characterized by a smoothly varying, nonuniform
dielectric response. When the variation of the dielectric func-
tion occurs on a length scale comparable to the wavelength,
it is no longer possible to treat this system as an “onion”
of successive shells with constant permittivity in each shell
[18], and standard (multilayer) Mie theory breaks down [19].
Additionally, in these applications it is often important to
maximize the absorption of the nanoparticles, which is done
by adjusting parameters such as size and shape. The “smooth-
ness” of the nanoparticle also influences absorption, and could
possibly be adjusted to increase absorption as well. A second
example where standard Mie theory fails can be found in
nanoplasmonics: for very small metallic spheres the electron
spill-out effect causes the charge density to vary gradually
through the interface, and this leads to a shift in the plasma
resonance frequencies [8]. This effect has been captured thus
far only with a hydrodynamic theory for the electron fluid,
which gives the locations of the resonances but not their width.
Up until now, the variation in the dielectric function has only
been investigated for length scales comparable to the electron
spill-out length, an unnecessary restriction that needs to be
lifted when looking at applications where the smoothness
can be arbitrarily adjusted. It is noteworthy that scattering of
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microwave radiation off of a metamaterial [20–22] provides
an interesting platform for this artificial spill-out. Since the
properties of a metamaterial can be chosen locally [23], one
could make a spherical particle that has a radially varying
dielectric function and relative permeability, essentially mim-
icking the effect of a smooth electron density that can be
arbitrarily chosen. The feasibility of such an experiment is
demonstrated by [24], where the microwave scattering from a
hard-walled metamaterial sphere is experimentally measured.

The focus of this paper lies on the extension of Mie theory
to smooth interfaces. The paper is structured as follows. In
Sec. II we derive our theory for light scattering of spherically
symmetric systems that allows us to take into account any
local linear dielectric response that varies smoothly in the
radial direction. In the limit of abrupt interfaces, this theory
recovers the standard Mie theory, as shown in Sec. III. A
numerical scheme to find the scalar and vector potentials of a
soft-walled nanosphere is introduced in Sec. IV. This scheme
is used to investigate the influence of boundary softening on
the optical cross sections in Sec. V. Finally, we discuss and
summarize the results in Sec VI.

II. SCATTERING OF LIGHT ON “SOFT”
SPHERICAL INTERFACES

A. Overview of the calculational scheme

In the presence of a material, the scalar and vector po-
tentials are split into induced and external fields, φ = φind +
φext, and A = Aind+Aext. The external field will represent
the incoming light that scatters on the spherical particle. The
scheme of the calculation is as follows: the total fields φ, A
will induce charges ρ ind and currents J ind in the material, as
dictated by the response theory for the material. These in
turn give rise to the induced fields φind, Aind as dictated by
the Maxwell equations, and these induced fields are fed back
into the total fields φ, A. This calculation scheme leads to
self-consistent equations for the induced fields, and solving
these equations solves the scattering problem.

In this scheme we take into account a smoothly varying
density of charge carriers through a “local approximation.”
Given the response of a uniform system of (free or bound)
charge carriers at a bulk density n0, we find the response
of a system with smoothly varying density profile n(r) =
n0 f (r) by scaling the bulk response with f (r), the ratio of
local density to bulk density of charge carriers. This local
approximation for the charge carriers is valid as long as the
density variations of the charge carriers occur on a length scale
δ much larger than the inverse Fermi wave number kF δ � 1.
For metallic particles, kF is of the order of inverse angstrom,
so that density variations on the length scale of optical or even
UV wavelengths easily satisfy the requirement for the local
approximation.

B. Self-consistent equation for the induced fields

We describe the charge carriers in the metal by a continuum
model, and indicate the displacement of the charge carriers
at position r and time t by a “strain” field u(r, t ). The total
charge displacement at r is then n(r)u(r, t ). The induced

charge density and charge current density are described by the
following equations:

ρ ind(r, t ) = −∇ · [n(r)u(r, t )], (1)

Jind(r, t ) = n(r)u̇(r, t ). (2)

Moreover, we restrict our discussion to (1) monochromatic
light (of a given frequency ω) and (2) local linear response
theories. The former assumption provides the various fields
with a time dependence proportional to e−iωt . The latter
assumption allows us to link the charge displacement to the
total electric field through

n0u(r, ω) = ε0χ (ω)E(r, ω), (3)

with ε0 the vacuum permittivity (we work in SI units). The
prefactor n0 ensures that χ can be interpreted as the bulk sus-
ceptibility corresponding to the chosen response theory. More
general nonlocal response theories are possible [9,11,25] if we
relax the local approximation described earlier; however, here
we consider local response for simplicity.

The commonly used Drude model for the susceptibility fits
in the above response formula (3). Indeed, it can be derived
from the equation of motion for the charge carriers:

m
∂2u(r, t )

∂t2
+ m

τ

∂u(r, t )

∂t
= −eE(r, t ), (4)

where the second term is the phenomenological friction term,
which defines the Drude relaxation time τ . Here we neglected
the magnetic contribution to the Lorentz force, which is a
second order term. Using the time dependence e−iωt , we get
u(r, ω) ∼ E(r, ω), which is in the form of (3). The suscepti-
bility can be readily extracted:

χ (ω) = −
n0e2

mε0

ω2 + i ω
τ

:= − ω2
pl

ω2 + i ω
τ

, (5)

where ωpl is the plasma frequency. For the remainder of this
section, we will use a general response function χ (ω), but for
all results the Drude model will be used.

Combining formulas (2) and (3), we obtain the local in-
duced current Jind(r, ω), which is equal to the induced current
for the bulk rescaled by the factor f (r) = n(r)/n0:

Jind(r, ω) = −iωε0 f (r)χ (ω)E(r, ω). (6)

The above equation describes the current induced by
the displacement of charges, so that this description does
not include mechanisms for transverse response. Indeed, the
transverse or divergence-free component of the current is
not linked to charge motion, as is clear from the continuity
equation.

The electromagnetic potentials are introduced with the
following definition:

E(r, ω) = −∇φ(r, ω) + iωA(r, ω). (7)

Here we will use the Coulomb (or “transverse”) gauge

∇ · A(r, ω) = 0. (8)

From here on, we will stop writing the ω dependence of all
functions explicitly.
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Substituting (7) into (6), and using the continuity equation

iωρ ind(r) = ∇ · Jind(r), (9)

the following expressions for the induced charge density and
charge current density are obtained:

ρ ind(r) = ε0∇ · {χ f (r)[∇φ(r) − iωA(r)]}, (10)

Jind(r) = iωε0χ f (r)[∇φ(r) − iωA(r)]. (11)

The induced charges and currents give rise to the induced
scalar and vector potential according to the Maxwell equa-
tions (in SI units):

�φind(r) = −ρ ind(r)

ε0
, (12)(

� + ω2

c2

)
Aind(r) = −μ0Jind(r) − i

ω

c2
∇φind(r). (13)

Here c is the speed of light in vacuum and μ0 is the vacuum
permeability. Substituting (10) and (11) into these equations,
we get

�φind(r) = −∇ · {χ f (r)[∇φ(r) − iωA(r)]}, (14)(
� + ω2

c2

)
Aind(r) = − i

ω

c2
χ f (r)[∇φ(r) − iωA(r)]

− i
ω

c2
∇φind(r). (15)

In these equations the total scalar and vector poten-
tials contain the induced potentials via φ = φind + φext and
A = Aind + Aext. Note that whenever boundaries or inhomo-
geneities are present, ∇ f (r) �= 0 and the right-hand side of
Eq. (14) is nonzero. In this case the equations are coupled.
This ensures that even for a purely transverse external pertur-
bation (φext = 0), the system can respond with both longitu-
dinal and transverse induced fields. Hence, only in the case of
a uniform, infinite system [i.e., ∇ f (r) = 0 everywhere] will
a transverse perturbation lead to a purely transverse response.
For a hard-walled nanosphere [i.e., f (r) = �(R − |r|) with �

the Heaviside function] the coupling occurs through the values
at the interface |r| = R, as discussed in Sec. III.

C. Equations for the spherical vector harmonic components

For the remainder of the article we will turn our attention
to spherically symmetric scatterers, such as nanospheres. This
means the density profile varies only in the radial direction,
so we write f (r) from now on. Exploiting the spherical
symmetry of the scatterer allows us to simplify Eqs. (14)
and (15), using an expansion in spherical harmonics. Rather
than using the L, M, N vector spherical harmonics defined in
Stratton [2], we use the Y,�,� vector spherical harmonics
introduced by Barrera et al. [26]:

Y
,m(θ, ϕ) = Y
,m(θ, ϕ)er, (16)

�
,m(θ, ϕ) = r∇Y
,m(θ, ϕ), (17)

�
,m(θ, ϕ) = r × ∇Y
,m(θ, ϕ), (18)

where r is the position vector, and Y
,m(θ, ϕ) is the spherical
harmonic function. Some properties of this basis are listed in
Table I. In this work we choose the convention

Y
,−m(θ, ϕ) = (−1)mY ∗

,m(θ, ϕ) (19)

to define negative m spherical harmonics. This means the
Condon-Schortley phase factor appears in the modified Leg-
endre polynomials,

Pm

 (x) = (−1)m(1 − x2)m/2 dmP
(x)

dxm
, where m � 0. (20)

The triplet of vectors Y,�,� forms an orthogonal basis
at any position r, such that Y
,m is directed along the radial
direction. Any vector field can be decomposed in this basis,
and we can write the potentials as

A(r) =
∞∑


=0


∑
m=−


[
AY


,m(r)Y
,m(θ, ϕ) + A�

,m(r)�
,m(θ, ϕ)

+ A�

,m(r)�
,m(θ, ϕ)

]
, (21)

φ(r) =
∞∑


=0


∑
m=−


φ
,m(r)Y
m(θ, ϕ). (22)

If we define the two following differential operators:

L̂�
l [ f (r)] = ∂2 f

∂r2
+ 2

r

∂ f

∂r
− 
(
 + 1)

r2
f (r), (23)

L̂Y
l [ f (r)] = ∂2 f

∂r2
+ 4

r

∂ f

∂r
− (
 − 1)(
 + 2)

r2
f (r), (24)

then using the properties of Table I, Eqs. (14) and (15) result
in the following equations for the components of the scalar
potential:

[1 + χ f (r)]L̂�
l

[
φind


,m(r)
] + χ

∂ f

∂r

∂φind

,m

∂r

= iωχ
∂ f

∂r

[
Aind,Y


,m (r) + Aext,Y

,m (r)

]
, (25)

for the Y components of the vector potential:

L̂Y
l

[
Aind,Y


,m (r)
] + ω2

c2
[1 + χ f (r)]Aind,Y


,m (r)

= −ω2

c2
χ f (r)Aext,Y


,m (r) − i
ω

c2
[1 + χ f (r)]

∂φind

,m

∂r
, (26)

and for the � components of the vector potential:

L̂�
l

[
Aind,�


,m (r)
] + ω2

c2
[1 + χ f (r)]Aind,�


,m (r)

= −ω2

c2
χ f (r)Aext,�


,m (r). (27)

The � component is directly linked to the Y component
through

A�

,m(r) = 1

r
(
 + 1)

∂

∂r

[
r2AY


,m(r)
]
, (28)

as to satisfy the Coulomb gauge (8).
Given the external perturbation and a radial density profile

function f (r) for the charge carriers (free or bound), the
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TABLE I. An overview of the properties of the vector spherical harmonic basis Y, �, � used in this work.
Here F = F (r) represents a scalar function of the radial distance, and

∫ · · · d� represents integration over the
angular coordinates, with d� = sin θdθdϕ.

Properties of vector spherical harmonics Y, �, �

Y
,−m = (−1)mY∗

,m Y
,m · �
,m = 0

�
,−m = (−1)m�∗

,m Y
,m · �
,m = 0

�
,−m = (−1)m�∗

,m �
,m · �
,m = 0∫

Y
,m · Y∗

′,m′ d� = δ
,
′δm,m′

∫
Y
,m · �∗


′,m′ d� = 0∫
�
,m · �∗


′,m′ d� = 
(
 + 1)δ
,
′δm,m′
∫

Y
,m · �∗

′,m′ d� = 0∫

�
,m · �∗

′,m′ d� = 
(
 + 1)δ
,
′δm,m′

∫
�
,m · �∗


′,m′ d� = 0

∇(FY
,m ) = dF
dr Y
,m + F

r �
,m �(FY
,m ) = ( 1
r2

d
dr (r2 d

dr F ) − 
(
+1)
r2 F )Y
,m

∇ · (FY
,m ) = 1
r2

d
dr (r2F )Y
,m ∇ × (FY
,m ) = − 1

r F�
,m

∇ · (F�
,m ) = − 
(
+1)
r FY
,m ∇ × (F�
,m ) = 1

r
d
dr (rF )�
,m

∇ · (F�
,m ) = 0. ∇ × (F�
,m ) = − 
(
+1)
r FY
,m − 1

r
d
dr (rF )�
,m

solution of the set of Eqs. (25)–(28) provides the induced
fields Aind and φind. Equations (25)–(28) and their numerical
implementation, as outlined below, are the key results of the
current paper. Since the external perturbation is an electro-
magnetic wave, φext = 0 and φ = φind. From here on, we drop
the superscript “ind.” For a general density profile f (r), these
equations have to be solved numerically. Note that in Eq. (25)
for the scalar potential, the vector potential does not drop
out when the density gradient is different from zero: a term
(∇ f ) · A remains, in contrast to other treatments of Mie for
diffuse surfaces [6,7]. Also when the interface is abrupt, the
value of the vector potential at the interface will influence the
equation for the scalar potential.

For the external field, we will use a plane wave, coming in
from the negative z axis, and polarized such that the electric
field lies along the x axis:

Aext = A0eikzex. (29)

When decomposed in vector spherical harmonics [27], the
components become

Aext,Y

,m (r) = α
,m

j
(kr)

kr
, (30)

Aext,�

,m (r) = β
,m j
(kr), (31)

Aext,�

,m (r) = α
,m


(
 + 1)

[
j
(kr)

kr
+ j′
(kr)

]
, (32)

where we have defined the following two coefficients:

α
,m := i
+1A0(δm,1 − δm,−1)
√

π
(
 + 1)(2
 + 1), (33)

β
,m := −i
+1A0(δm,1 + δm,−1)

√
π

2
 + 1


(
 + 1)
. (34)

In these expressions, j
(x) is the spherical Bessel function of
the first kind and of order 
, and j′
(x) is its derivative with
respect to the argument x. Furthermore, k = ω/c with c the
speed of light in vacuum.

III. MIE THEORY AS THE HARD-WALL LIMIT

A. Solution for the scalar potential

From here on, we focus on a simple Drude-type response,
i.e.,

χ (ω) = − ω2
pl

ω(ω + i/τ )
. (35)

In the limiting case of an abrupt interface at r = R, the profile
function can be represented by a step function at r = R, yield-
ing f (r) = �(R − r). Equation (25) for the scalar potential
becomes

[1 + �(R − r)χ ]

(
∂2

∂r2
+ 2

r

∂

∂r
− 
(
 + 1)

r2

)
φ
,m(r)

= ∂�(R − r)

∂r

(
iωχAY


,m(r) − χ
∂φ
,m

∂r

)
. (36)

This differential equation can be solved with the method of the
variation of coefficients, both inside and outside the radius R.
The derivative of the step function is then removed by partial
integration. The result is

φ
,m(r) =
[

r


R

�(R − r) + R
+1

r
+1
�(r − R)

]
iωχRAY


,m(R)

2
 + 1 + 
χ
.

(37)
In our formalism, it is the change in density at the surface that
leads to a longitudinal response (a scalar potential) when the
system is subjected to a purely transverse perturbation. The
induced charge can accumulate on the edge of the nanoparti-
cle, giving rise to a scalar potential. In the result (37), the total
vector potential appears, so the result is not complete without
a calculation of the induced vector potential from Eq. (26).

B. Solution for the Y component of the vector potential

For both of the vector potential equations, the problem
reduces to finding the eigenfunctions of the differential op-
erators L̂Y

l and L̂�
l , since both inside and outside the sphere

f (r) can be considered constant. The eigenfunctions of L̂Y
l are
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cylinder functions divided by their argument, as well as two
Euler-type solutions:

L̂Y



[C
(ax)

ax

]
= −a2 C
(ax)

ax
, (38)

L̂Y

 [rl+1] = 0, (39)

L̂Y



[
1

rl+2

]
= 0, (40)

where C
(x) stands for any of the following: the spherical
Bessel function j
(x), the spherical Neumann function y
(x),
the spherical Hankel functions of the first kind h
(x), and that
of the second kind h(2)


 (x). These will constitute solutions of
the homogeneous equation for Aind,Y


,m (r). Inside the sphere, we
exclude the divergent part y
(x) and retain j
(x). Outside the
sphere, we exclude incoming spherical waves h(2)


 outside the
sphere, and keep h
(x). The particular solution can be found
by noting that the external Y field (30) is an eigenfunction of
L̂Y

l . Using the solution (37) for the scalar potential in Eq. (26),
it is straightforward to show that the solutions inside and
outside the sphere are given by

Aind,Y

,m (r < R) =C<

j
(κr)

κr
− Aext,Y


,m (r)

+ 
χ

2
 + 1 + 
χ
AY


,m(R)
r
−1

R
−1
, (41)

Aind,Y

,m (r > R) = C>

h
(kr)

kr
− (
 + 1)χ

2
 + 1 + 
χ
AY


,m(R)
R
+2

r
+2
,

(42)

where we defined κ2 = k2(1 + χ ), and C> and C< are inte-
gration constants. These are found by demanding continuity
of Aind,Y


,m (r) and of its first derivative at the interface r = R.
Solving the resulting 2 × 2 system of equations, we find

C< = −α
m
iκ

kξ
(kR)ψ ′

(κR) − κψ
(κR)ξ ′


(kR)
(43)

and

C> = −α
m
κψ
(κR)ψ ′


(kR) − kψ
(kR)ψ ′

(κR)

κψ
(κR)ξ ′

(kR) − kξ
(kR)ψ ′


(κR)
, (44)

where we expressed the solutions in terms of Ricatti-Bessel
functions ψ
(x) = x j
(x) and ξ
(x) = xh
(x). These coeffi-
cients are identical to those of Mie theory, confirming the
correspondence between our theory and Mie theory.

C. Solution for the � component of the vector potential

Finally, we turn to the equation for the � component of the
vector potential. The operator L̂�

l has the cylinder functions as
eigenfunctions:

L̂�

 [C
(ax)] = −a2C
(ax). (45)

Therefore, in a very similar fashion to the Y component, we
straightforwardly find the following solutions:

Aind,�

,m (r < R) = B< j
(κr) − β
m j
(kr), (46)

Aind,�

,m (r > R) = B>h
(kr), (47)

where the integration constants are B< and B>. These are
found as in the previous case by requiring continuity of
Aind,�


,m (r) and its first derivative at the boundary r = R. We
obtain

B< = −β
m
iκ

κξ
(kR)ψ ′

(κR) − kψ
(κR)ξ ′


(kR)
(48)

and

B> = −β
m
k j
(κR) j′
(kR) − κ j
(kR) j′
(κR)

k j
(κR)h′

(kR) − κh
(kR) j′
(κR)

. (49)

The results (48) and (49) correspond to the results of standard
Mie theory for the “magnetic” � mode. Finally, it is possible
to calculate the optical cross sections using only the coeffi-
cients B> and C>, using a formula that is identical to the one
used in Mie theory.

D. Near-field solution

The resulting electric field given by Eq. (7) close to the
metal sphere is shown in Fig. 1. The near field is exactly the
same as that obtained from Mie theory. This is a necessary
consistency check, since we do not impose the usual electro-
magnetic boundary conditions. Rather, we use the limit of a
continuous profile function f (r). Physically, it is not obvious
that these two methods give the same result, especially since
the infinitely sharp density variation in the step function vio-
lates the local approximation we used to derive our equations.
However, it can be proven that the usual electromagnetic
boundary conditions follow from Eqs. (7), (14), and (15) in
general, assuming the potentials themselves are continuous.
This explains the success of both methods.

IV. NUMERICAL SOLUTION OF THE FIELD EQUATIONS

A. Finite difference method

In order to obtain results for a general density profile
f (r), Eqs. (25)–(28) have to be solved numerically. This is
most easily done by discretization of the equations on an
inhomogeneous grid r j with N grid points. Let F (r) be any of
the functions φ
,m(r), Aind,Y


,m (r), Aind,�

,m (r), Aind,�


,m (r), and call
F (r j ) := F j , then the derivatives of F (r) are discretized as
follows:

∂F
∂r

∣∣∣∣
r j

≈ r j − r j−1

r j+1 − r j−1

(F j+1 − F j

r j+1 − r j

)

+ r j+1 − r j

r j+1 − r j−1

(F j − F j−1

r j − r j−1

)
, (50)

∂2F
∂r2

∣∣∣∣
r j

≈ 2

r j+1 − r j−1

(F j+1 − F j

r j+1 − r j
− F j − F j−1

r j − r j−1

)
. (51)

We can use these formulas in (25)–(28) to obtain linear sys-
tems of equations, which can be solved numerically assuming
appropriate boundary conditions are known. Equations (25)
and (26) for φ
,m and Aind,Y


,m are coupled, so they will form

one system of 2N linear equations. Equation (27) for Aind,�

,m is

uncoupled from the other equations and will therefore become
a system of N linear equations. Finally, Eq. (28) combined
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FIG. 1. The electric field nearby a gold sphere is plotted in several planes. The incoming wave arrives from the −z direction and is polarized
along the x direction. Units are given in R = 150 nm (the radius of the sphere). The calculations are performed with λ = 500 nm (ω = 2.48 eV)
and κ = (0.662 + 4.393i) × 107 m−1.

with (50) allows for direct calculation of Aind,�

,m , assuming the

solution for Aind,Y

,m has already been found.

As an example, consider the following model density pro-
file [6,10]:

f (r) = c0

exp
( 2(r−R)

δ

) + 1
, (52)

where the normalization constant c0 is introduced to keep the
total number of electrons fixed. It satisfies

c−1
0 = 3

R3

∫ +∞

0

r2

exp
( 2(r−R)

δ

) + 1
dr. (53)

This profile represents a spherically symmetric particle with
radius R, but with a smooth electron density at its interface
rather than an abrupt transition. The parameter δ represents
the typical length over which the electron density varies. We
will refer to it as the “spill-out length.” As one might expect,
the limit δ → 0 represents an abrupt interface, meaning the

results will reduce to the standard results of Mie theory. In
principle, one needs f ′(0) = 0 to have a continuous density
profile in 3D: we choose δ � R to approximately satisfy this
condition.

A problem that was encountered when solving the equa-
tions numerically is that the coupled equations for φ
,m and
Aind,Y


,m numerically behave badly in regions where f ′(r) is large
in absolute value. This makes the equations hard to solve in
the limit δ → 0. To solve this problem, more grid points have
to be added to ensure the grid spacing is at least an order
of magnitude smaller than δ, which makes the computational
time much longer and the results unreliable. Fortunately, a
faster and more accurate method was found.

If f ′(r) ≈ 0, Eqs. (25) and (26) decouple and analytical
solutions to Eqs. (25)–(28) are known. Therefore, we do not
need to discretize our equations in regions where f ′(r) ≈ 0,
simplifying the problem greatly. In our case, f ′(r) ≈ 0 as
r → 0 or r → +∞. Therefore, our grid only needs to extend
from [rmin, rmax], where rmin and rmax are chosen to ensure
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that outside [rmin, rmax], | f ′(r)| is sufficiently small. Equations
(25)–(28) are then solved similarly to the method outlined in
Sec. III to obtain

φ
,m(r < rmin) = cφ<(kr)
, (54)

Aind,Y

,m (r < rmin) = C<

j
(κr)

κr
− Aext,Y


,m (r) + l

i
φ<(kr)
−1,

(55)

Aind,�

,m (r < rmin) = B< j
(κr) − Aext,�


,m (r), (56)

φ
,m(r > rmax) = cφ>(kr)−(
+1), (57)

Aind,Y

,m (r > rmax) = C>

h
(kr)

kr
− l + 1

i
φ>(kr)−(l+2), (58)

Aind,�

,m (r > rmax) = B>h
(kr). (59)

In these equations, φ<, C<, B<, φ>, C>, and B> are integration
constants that all have the same units as the vector potential.
In general, they are not given by formulas (43) and (44),
and (48) and (49). Instead, they can be found by adding the
constraints that the numerical solutions for φ
,m(r), Aind,Y


,m (r),

and Aind,�

,m (r) and their derivatives are continuous at r = rmin

and r = rmax. Note that, in contrast to standard Mie results,
φ′


,m(r) is continuous because we use a continuous density
profile function.

We combine these boundary conditions with the equations
from the discretization of Eqs. (25)–(27) on a grid covering
[rmin, rmax]. This gives a system of 2N + 4 linear equations for
the variables φ
,m,1, . . . , φ
,m,N , Aind,Y


,m,1, . . . , Aind,Y

,m,N , φ<, φ>,

C<, and C>, and a system of N + 2 linear equations for the
variables Aind,�


,m,1, . . . , Aind,�

,m,N , B<, and B>. It is now possible to

solve these equations numerically to obtain φ
,m(r), Aind,Y

,m (r),

and Aind,�

,m (r). To obtain the full solution for the vector poten-

tial, one may use Eq. (28) to find Aind,�

,m (r) as well. In order to

calculate the optical cross sections, however, one only needs
to calculate C> and B> for every value for 
.

It is important to choose a finer grid in places where any
of the potentials have high derivatives. It was found that the
components of A are well behaved and do not vary rapidly
as a function of r. However, from Eq. (25) it can be derived
that the derivatives of φ
m become very high if |1 + χ f (r)|
becomes small: this essentially corresponds to a longitudinal
mode, since locally we have that ε(r, ω) ≈ 0. The minimum of
|1 + χ f (r)| behaves almost like a singularity. We expect this
to happen for metals, where χ typically has a large negative
real part and a small imaginary part. Therefore, extra grid
points need to be added in the regions where |1 + χ f (r)| is
small.

B. Comparison to other methods

To test the validity of our numerical scheme, we compare
our results to those found by Ruppin [7] using a different
method based on a paper by Wyatt [6]. The results are typ-
ically represented by the optical cross sections. Ruppin uses

the following (unnormalized) density profile:

f (r) =
⎧⎨
⎩

1 if r < R − δ,
R−r+δ

2δ
if R − δ < r < R + δ,

0 if r > R + δ.

(60)

We calculated the extinction cross section of a potassium
nanoparticle with the above density profile; the results are
shown in Fig. 2, together with the Mie results and the spectra
calculated by Ruppin [7]. It is clear that the results from
the beyond-Mie theories match quantitatively, confirming the
validity of our method.

Figure 2(c) shows convergence of our results when cal-
culated with a different number of grid points N . It shows
that our results are well converged for N � 2000. For the
remainder of this article, we will therefore calculate our
results using N ∼ 2500.

Finally, we note that other methods are available to obtain
the scattering coefficients B> and C> through solution of
Eqs. (25)–(28). For example, it is possible to write down
analytical expressions similar to (43) and (44), and (48) and
(49), but depending on two unknown functions G
 and W


[6]. These functions satisfy ordinary differential equations,
which can be derived from Eqs. (25)–(28) and can be solved
using a Runge-Kutta method. Another possible method is to
approximate the electron density profile f (r) by a piecewise
constant function. The analytical solution in all of the regions
with a constant f (r) is known, as a function of six unknown
integration constants: it is obtained with a method similar to
that of Sec. III. By imposing the electromagnetic boundary
conditions it is possible to set up a transfer matrix method
for these integration constants, allowing us to calculate B>

and C> in the usual way. Both of these methods need to take
the “singularity” of the local longitudinal mode (discussed
in Sec. IV A) into account. When implemented correctly,
these methods may be more efficient in calculating optical
cross sections. Here we chose the finite difference method
to obtain the full solution for the electromagnetic potentials.
In contrast, the two methods described above only focus on
the asymptotic scattered field. In addition to this, we expect
the finite difference method to be easier to generalize to the
problem of nonlocal response [8–11].

V. BOUNDARY SOFTENING ENHANCES ABSORPTION

In the previous section a method was outlined to find
the coefficients B> and C> numerically in case of a soft-
interface sphere. In this section we use this method to study
how the various cross sections are affected by the smooth-
ing of the charge density at the edge of the nanosphere.
These cross sections are calculated with the same formulas
as those of Mie theory, since our resulting far field has the
same functional form as that of a hard-walled nanosphere.

Figure 3 shows the total, scattering, and absorption cross
sections of a R = 15 nm nanosphere for different values
of the spill-out length δ. In all cases the peaks widen and
undergo a redshift as δ increases. Additionally, the amplitudes
of the peaks change. For the extinction and scattering cross
sections, all peaks lower in amplitude until they disappear as δ

increases. For the absorption, the change is more complicated:
peaks associated with higher 
 values tend to decrease in
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FIG. 2. Comparison of the extinction cross-section spectra from the present study and those from [7], for a potassium nanosphere with:
(a) R = 5 nm, δ = 0.1 nm; (b) R = 50 nm, δ = 0.2 nm. Standard Drude response with ωpl = 4.28 eV and 1/τ = 0.02ωpl was used. The results
show a quantitative match and reveal the difference with the Mie result (δ → 0). (Right) (c) Convergence with respect to the amount of grid
points, for the same material values as (a) and ω = 2.43 eV.

amplitude and disappear, while peaks with lower 
 values first
increase in amplitude, reach a maximum, and then decrease
again.

The insets show the cross sections integrated over the
frequency, relative to the result from Mie theory:

Qi
(int)(δ) :=

∫ [
Qi(δ, ω) − Qi

(Mie)(ω)
]
dω∫

Qi
(Mie)(ω)dω

. (61)
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FIG. 3. (a) Total, (b) scattering, and (c) absorption cross-section
spectra of a gold nanosphere with R = 15 nm and various spill-out
lengths. Standard Drude response with ωpl = 8.55 eV and 1/τ =
0.0184 eV was used. For δ = 0.001 nm the results are essentially
the same as for a hard-walled sphere: several peaks associated with a
value of the angular momentum 
. The insets show the cross sections
integrated over all frequencies shown in the plot, relative to the
integrated cross section from Mie theory (see text).

These integrated cross sections are dimensionless and are only
a function of δ. Therefore, they are useful for the interpretation
of a continuous change in the spill-out length. It is noteworthy
that the integrated scattering cross section decreases quite
steeply, while the integrated absorption cross section increases
by about the same amount. This leads to the remarkable fact
that the integrated total cross section is nearly unchanged by
boundary softening.

In order to get a further understanding of what an artifi-
cially large continuous change in δ does to the absorption,
a contour plot of the absorption cross section of a large
nanosphere as a function of the frequency and the spill-out
length was made and shown in Fig. 4. This figure clearly
shows that the overall absorption increases as the boundary is
smoothened, while at the same time redshifting the frequency
range where absorption is strongest. This is favorable in
applications where the absorption cross section needs to be
maximized: once nanospheres with a chosen spill-out length
can be manufactured, one can adjust this parameter to increase
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FIG. 4. Contour plot of the absorption cross section of a gold
nanosphere with R = 150 nm. Standard Drude response with ωpl =
8.55 eV and 1/τ = 0.0184 eV was used. Every horizontal line of this
plot is an absorption spectrum for a certain value of δ. The dashed
lines indicate the location of the peaks of the absorption spectra.
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absorption. For higher values of the spill-out length, the
absorption mainly takes place for lower frequencies; this is
not only due to the fact that every peak redshifts, but mostly
because the low-frequency peaks increase in amplitude while
the high-frequency peaks decrease in amplitude. This also
implies that the absorption spectra for high values of δ are
in essence different than the Mie spectra: while the absorption
of a hard-walled sphere is dominated by sharp high-frequency
peaks, the peaks in the absorption spectrum of a sphere with a
smooth boundary are wide and occur at lower frequencies.

VI. CONCLUSIONS

Mie theory and its extensions are commonly derived using
Maxwell’s equations for the electric and magnetic fields. Here
we provide an alternative derivation, based on the vector
potential and the scalar potential. The interest in rederiving
old results in a new manner lies in that this can open the
way for new applications or different generalizations. The
derivation considers the free electrons explicitly rather than
assuming a response function, which facilitates the compari-
son with other nonlocal response theories. In the differential
equations (25)–(28) for the scalar and vector potential, the
transition between the metal and the medium is described
by a density profile function f (r), so that these equations
do not require imposing the usual hard-wall electromagnetic
boundary conditions. Thus, the equations can be applied also
to soft or diffuse interfaces where the density varies radially
on a scale comparable to the wavelength. The idea of using the
Y,�,� vector spherical harmonics to study scattering from
spheres with a smooth surface can be applied to a handful

of problems. These problems include the more complicated
hydrodynamic Drude model for nanoplasmonics [8–11], scat-
tering from nanospheres made of metamaterials [28,29], and
quantum wave scattering [30–32].

When we do replace the profile function by a step function,
the results from Mie theory appear. Analytic results for the
hard-wall case have been found, and a numerical scheme has
been proposed to solve the equations for a nanosphere with
a smooth boundary. The main effect of the smoothing of the
boundary is that the overall absorption cross section increases,
while the resonant modes of the sphere occur at lower fre-
quencies. For large nanospheres with large smoothing, this
effect is drastically enhanced by the disappearance of the
sharp, high-frequency resonant modes. Artificially increasing
the absorptance of nanoparticles is important in many appli-
cations such as thermotherapy [33–35]. Our results provide
a way to enhance the absorption in nanoparticles through
depth-dependent doping or by using many-shell particles to
create the optimal charge density profile in the particle.
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