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Analytical approximations for the dispersion of electromagnetic modes in slabs of biaxial crystals

Gonzalo Álvarez-Pérez ,1,2 Kirill V. Voronin ,3 Valentyn S. Volkov,3

Pablo Alonso-González ,1,2,* and Alexey Y. Nikitin 4,5,3,†

1Department of Physics, University of Oviedo, Oviedo 33006, Spain
2Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC–Universidad de Oviedo), El Entrego 33940, Spain

3Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
4Donostia International Physics Center (DIPC), Donostia-San Sebastán 20018, Spain

5IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain

(Received 13 September 2019; revised manuscript received 13 November 2019; published 5 December 2019)

Anisotropic crystals have recently attracted considerable attention because of their ability to support polaritons
with a variety of unique properties, such as hyperbolic dispersion, negative phase velocity, or extreme
confinement. Particularly, the biaxial crystal α-MoO3 has been demonstrated to support phonon polaritons, light
coupled to lattice vibrations, with in-plane anisotropic propagation and unusually long lifetime. However, the
lack of theoretical studies on electromagnetic modes in biaxial crystal slabs impedes a complete interpretation
of the experimental data, as well as an efficient design of nanostructures supporting such highly anisotropic
polaritons. Here, we derive the dispersion relation of electromagnetic modes in biaxial slabs surrounded
by semi-infinite isotropic dielectric half-spaces with arbitrary dielectric permittivities. Apart from a general
dispersion relation, we provide very simple analytical expressions in typical experiments in nano-optics: the
limits of short polaritonic wavelength and/or very thin slabs. The results of our study will allow for an in-depth
analysis of anisotropic polaritons in novel biaxial van der Waals materials.
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I. INTRODUCTION

Anisotropic media have been a subject of fundamental
and applied research in optics for several centuries since the
earliest Bartholinus’ studies. Particularly, birefringence, re-
sponsible for the double refraction inside anisotropic crystals,
is widely used nowadays in daily-life applications requiring
polarization filtering as, for instance, sun glasses, liquid-
crystal displays, or scanning laser polarimetry (for monitoring
glaucoma) [1]. In recent decades, the scientific interest to
anisotropic optical phenomena has dramatically increased due
to the design and fabrication of novel artificial materials
(metamaterials) with a tailored optical response. Striking ex-
amples of the latter are photonic and plasmonic crystals [2–4]
and metasurfaces [5,6], showing spectacular phenomena such
as negative refraction [7], slow light [8], and superlensing
[9,10], among others. Apart from these anisotropic artificial
materials, a few years ago the concept of “atomic-scale”
engineering with naturally anisotropic van der Waals (vdW)
materials [11] was suggested, adding more scientific interest
to this field. Currently, presenting one of the main strategies
in low-dimensional optoelectronics, this concept has induced
an intensive study of highly confined anisotropic polaritons
supported by vdW slabs and heterostructures [12,13]. The
possibility of visualizing these polaritons in thin slabs of
vdW crystals with the use of near-field microscopy [14–18]
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stimulates more and more experimental and theoretical studies
in this direction.

From a theoretical point of view, in bulk uniaxial crystals
(such as h-BN, SiC, or layered metamaterials), characterized
by two refractive indices, electromagnetic eigenmodes present
ordinary and extraordinary waves. In many cases, the propa-
gation of light along the boundaries of uniaxial crystals and
inside the slabs can be straightforwardly analyzed analytically
[14,19,20]. In stark contrast, biaxial crystals (such as α-MoO3

or V2O5) are characterized by three refractive indices and both
electromagnetic eigenmodes are extraordinary. As a result,
the understanding and analytical treatment of electromagnetic
phenomena in biaxial media is significantly more complex
than in the uniaxial case. In this context, a very recent study
has reported on a rigorous analytical solution for the disper-
sion of surface waves on the boundaries of biaxial crystals
[21]; however, up to now, studies on the electromagnetic
modes in biaxial slabs have been mainly the subject of a
numerical analysis [22–24] or some particular configurations,
such as grounded crystal slabs with mode fixed propagation
directions [25].

In this work, organized in a tutorial style, we present a de-
tailed derivation of the dispersion relation of electromagnetic
modes in a biaxial slab of a finite thickness (with arbitrary
dielectric tensor), surrounded by two semi-infinite isotropic
media with arbitrary dielectric permittivities. We assume that
one of the principal crystal axes is perpendicular to the faces
of the slab, while the mode propagates along the crystal slab
at an arbitrary angle with respect to the other principal axes,
which lays in a plane parallel to the faces of the slab. We
show that our general dispersion relation successfully reduces
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FIG. 1. Schematics of the biaxial slab. One of the main crystal
axes [0,0,1] is perpendicular to the faces of the slab and coincides
with the z axis, while the axes [1,0,0] and [0,1,0] belong to a plane
parallel to the faces of the slab and are directed along the coordinate
axes x and y, respectively. The mode propagates at an arbitrary angle
ϕ with respect to the x axis.

to the known limiting cases, such as the case of a uniaxial
slab or a semi-infinite crystal, among others. We manage to
reduce the general dispersion relation to simple analytical
expressions for short wavelength of the modes and small slab
thicknesses, which are currently of great interest for the study
of anisotropic polaritons in vdW slabs. To demonstrate the
validity of our analytical approximations, we compare them
to full-wave simulations, finding an excellent agreement.

II. INFINITE BIAXIAL CRYSTAL

Let us consider an infinite, nonmagnetic biaxial medium
with dielectric permittivity tensor ε̂. The coordinate system
{x, y, z} is chosen is such a way that ε̂ is diagonal [see
Fig. 1(a)], so that

ε̂ =
⎛
⎝εx 0 0

0 εy 0
0 0 εz

⎞
⎠. (1)

To accurately decompose the electromagnetic fields in the
biaxial medium, we need to define appropriate basis vectors.
To that end, we follow a standard procedure, as for example
in Ref. [21]. Namely, we represent the electric and magnetic
fields in the biaxial medium in the form of plane waves:

E = E0e eikr−iωt , H = H0h eikr−iωt , (2)

where e and h are unknown dimensionless field basis vectors,
E0 and H0 are arbitrary field amplitude coefficients, ω is the
angular frequency, k is the wave vector, and r is the radius
vector.

From Maxwell’s equations (∇ × E = − 1
c

∂H
∂t and ∇ ×

H = 1
c

∂D
∂t ), and substituting the magnetic field H, we obtain

a vectorial equation for the electric fields E:

ω2

c2
ε̂E = ∇(∇E) − �E. (3)

Substituting E from Eq. (2) into Eq. (3), we obtain a linear
homogeneous system of equations for the three components
of the unknown basis vector e:

M e =
⎛
⎝ �x qxqy ±iqxqz

qxqy �y ±iqyqz

±iqxqz ±iqyqz �z

⎞
⎠

⎛
⎝ex

ey

ez

⎞
⎠ = 0, (4)

where k0 = ω/c is the free-space wave vector, qx,y = kx,y/k0

are the in-plane components of the normalized wave vector,
and qz is the out-of-plane component of the normalized wave
vector, so that kz = ±iqzk0. The + (−) sign must be taken for
the wave propagating along (opposite to) the z axis, while �i

are defined as

�x = εx − q2
y + q2

z ,

�y = εy − q2
x + q2

z , (5)

�z = εz − q2
x − q2

y .

Our choice of the dependence of the basis vectors upon the co-
ordinates (the propagation along z is treated differently from
the propagation along x and y) is dictated by the geometry
of the problem (see Fig. 1), consistently with the standard
waveguide theory.

The system (4) has nontrivial solutions only when
det(M) = 0, that gives the well-known Fresnel’s equation for
biaxial media [26,27]

q2
z

[
q2

z εz + εz(εx + εy) − q2
x (εx + εz ) − q2

y (εy + εz )
]

+ (
εz − q2

x − q2
y

)(
εxεy − q2

xεx − q2
yεy

) = 0. (6)

It is the quadratic equation in terms of the squared z compo-
nent of the wave vector, qz. Its solutions qez and qoz read as

q2
o,ez = 1

2

{
εx + εz

εz
q2

x + εy + εz

εz
q2

y − (εx + εy)

}
± 1

2

√
D,

(7)

with D being the discriminant

D =
(

εx − εy + εz − εx

εz
q2

x − εz − εy

εz
q2

y

)2

+ 4
(εz − εx )(εz − εy)

ε2
z

q2
x q2

y . (8)

In Eq. (7), the signs “+” and “−” correspond to the labels
“o” and “e”, respectively. Substituting Eq. (7) into the system
(4), we find all three components of the two eigenvectors e.
Since the system (4) is homogeneous, one of the components
of the eigenvectors must be fixed. Without loss of generality,
fixing the y component to ey = qx for the root o and to ey = qy

for the root e, we find

eo = 1

q

⎛
⎝−qy(1 − �1�z )

qx

∓iqxqyqoz�1

⎞
⎠, ee = 1

q

⎛
⎜⎝qx

�2−q2
y

�e
x

qy
�2

∓iqez

⎞
⎟⎠, (9)
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where the factor 1/q (q being the normalized in-plane wave

vector q2 = k2
x +k2

y

k2
0

) stands for the normalization, and

�1 = �o
x − q2

x

�z�o
x + q2

x q2
oz

, �2 = �e
x�

e
y − q2

x q2
y

�e
x − q2

x

. (10)

From Eq. (6) we can easily find the asymptotes of the isofre-
quency curves for large qx,y. Tending both qx and qy to infinity,
and setting qz = 0, we find

qx

qy
=

√
−εy

εx
. (11)

In thin vdW slabs these asymptotes yield the direction of the
propagation of the polaritonic “rays,” excited by localized
sources [15–17]. In the particular case of a uniaxial crystal
(with the axis C pointing parallel to the z axis, C ‖ Oz),
εx = εy = ε⊥ and εz = ε‖, the derived basis vectors (9) can
be straightforwardly transformed to the basis vectors for the
ordinary and extraordinary waves. Taking into account that the
z components of the wave vectors (7) are reduced to the well-
known expressions for the ordinary and extraordinary waves

q2
oz = q2 − ε⊥, q2

ez = ε⊥
ε‖

q2 − ε⊥, (12)

we find that �1 = 0, �2 = ε⊥ + q2
ez and obtain the basis

vectors

eo = 1

q

⎛
⎝−qy

qx

0

⎞
⎠, ee = 1

q

⎛
⎜⎝

qx

qy

ε⊥+q2
ez

∓iqez

⎞
⎟⎠. (13)

In case of an isotropic medium, ε⊥ = ε‖ = ε, the z
components of the wave vectors degenerate q2

oz = q2
ez =

q2
z = q2 − ε and the basis vectors (9) reduce to the ones for

the s- and p-polarized waves (eo → es and ee → ep):

es = 1

q

⎛
⎝−qy

qx

0

⎞
⎠, ep = 1

q

⎛
⎜⎝

qx

qy

q2

∓iqz

⎞
⎟⎠. (14)

III. BIAXIAL SLAB OF A FINITE THICKNESS

Here, we derive the dispersion relation for polaritons in
a biaxial slab of thickness d and permittivity ε̂, occupying
the region 0 > z > −d between two dielectric half-spaces
with permittivities ε1 (region “1,” z > 0) and ε3 (region “3,”
z < −d).

A. General form of the dispersion relation

Let us first represent the electric fields above (z > 0) and
below (z < −d) the slab, in the isotropic media “1” and “3,”
respectively. In these regions we can take the fields in the form
of the s- and p-polarized plane waves. For compactness, from
now on, we will use Dirac notation, in which the s- and p-
polarization basis vectors read as

|s1,3〉± = 1

q

⎛
⎝−qy

qx

0

⎞
⎠eikxx+ikyy, |p1,3〉± = 1

q

⎛
⎝ qx

qy
q2

∓iq1,3z

⎞
⎠eikxx+ikyy,

(15)

where q1,3z =
√

q2
x + q2

y − ε1,3 > 0 is the out-of-plane com-
ponent of the normalized wave vector. In the definition of the
p-polarization basis vector, |p1,3〉±, the + (−) sign should
be taken for the wave propagating along (opposite to) the z
axis, while in case of the s polarization, |s1,3〉+ and |s1,3〉− are
degenerated. For convenience, we also introduce the in-plane
subvectors of the vectors given by Eq. (15):

|s〉 = 1

q

(−qy

qx

)
eikxx+ikyy, |p〉 = 1

q

(
qx

qy

)
eikxx+ikyy. (16)

The fields of the mode propagating along the slab in the upper
and lower media can be compactly written as the sum of the
s- and p-polarized plane waves:

E1 = E1(x, y, z) =
∑

β=s,p

a1
β |β1〉+eikzz,

E3 = E3(x, y, z) =
∑

β=s,p

a3
β |β3〉−e−ikzz, (17)

with unknown amplitudes a1,3
β .

In contrast, the electric fields inside the biaxial slab (0 >

z > −d) should be represented with the help of the basis
vectors found in Sec. II as

E2 = E2(x, y, z) =
∑
γ=o,e

a2↓
γ |γ 〉+eikγ zz + a2↑

γ |γ 〉−e−ikγ zz, (18)

where |γ 〉± denotes |o〉± and |e〉±, being the polarization basis
vector in the biaxial slab

|o〉± = 1

q

⎛
⎝−qy(1 − �1�z )

qx

∓iqxqyqoz�1

⎞
⎠eikxx+ikyy,

|e〉± = 1

q

⎛
⎜⎝qx

�2−q2
y

�e
x

qy
�2

∓iqez

⎞
⎟⎠eikxx+ikyy. (19)

The factors a2↑
γ and a2↓

γ represent the unknown amplitudes
of the plane waves traveling along and opposite to the z
axis, respectively. Analogously to isotropic regions, we can
introduce the in-plane subvectors |o〉 and |e〉 of the vectors
|o〉±, |e〉±, respectively. These subvectors can be compactly
written as

|o〉 = |s〉 + qyc1

q
|ux〉, |e〉 = |p〉 + qxc2

q
|ux〉, (20)

where |ux〉 = (1, 0)T , and

c1 = �1�z, c2 =
(

�2 − q2
y

�e
x

− 1

)
. (21)

To find the magnetic fields, we use Maxwell’s equation
∇ × E = − 1

c
∂H
∂t . In case of a plane wave it simplifies to

H = qi × E, (22)

where qi is the normalized wave vector of a corresponding
plane wave. Then, we can apply the boundary conditions,
which imply the continuity of the in-plane components of both
electric and magnetic fields on the faces of the film (at z = 0
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and at −d):

E1t (z = 0) = E2t (z = 0), H1t (z = 0) = H2t (z = 0),

E2t (z = −d ) = E3t (z = −d ), H2t (z = −d ) = H3t (z = −d ), (23)

where the subscript “t” in Eqs. (23) stands for the in-plane subvectors. According to Eq. (22), the in-plane subvectors of the
magnetic field can be written as Ht = ez × qi × E.

Using the field representations (17) and (19), we can rewrite the boundary condition at z = 0 in Eqs. (23) in a more explicit
way: ∑

β=s,p

a1
β |β〉 =

∑
γ=e,o

a2↓
γ |γ 〉 + a2↑

γ |γ 〉, (24)

ez × q1+ ×
∑

β=s,p

a1
β |β1〉+ = ez ×

∑
γ=e,o

(
a2↓

γ qγ+ × |γ 〉+ + a2↑
γ qγ− × |γ 〉−

)
, (25)

where q1,3± = (qx, qy,±iq1,3z )T and qγ± = (qx, qy,±iqγ z )T . To simplify Eq. (25), let us introduce auxiliary three-dimensional
vectors |β1,3〉′± and |γ 〉′±:

|β1,3〉′± = −ez × q1,3± × |β1,3〉±, |γ 〉′± = −ez × qγ± × |γ 〉±, (26)

where β = s, p and γ = o, e. Calculating the vector products in Eq. (26), we obtain the following explicit relations for the
in-plane two-dimensional subvectors |s1,3〉′ and |p1,3〉′:

|s1,3〉′ = −Y 1,3
s |s〉, |p1,3〉′ = −Y 1,3

p |p〉, (27)

being Y 1,3
β the admittances for the s- and p-polarized waves:

Y 1
s = iq1z, Y 1

p = ε1

iq1z
, Y 3

s = −iq3z, Y 3
p = − ε3

iq3z
. (28)

Since according to Eq. (26), the z component of the three-dimensional vectors |γ 〉′± is 0, we keep the same notation for their
two-dimensional in-plane subvectors |o〉′± and |e〉′±, which read explicitly as

|o〉′± = ±iqoz[|s〉 + qy�1|a〉], |e〉′± = �2

±iqez
|p〉 ± iqez|b〉, (29)

with auxiliary vectors

|a〉 = 1

q

(
�z + q2

x
qxqy

)
, |b〉 = 1

q

(
qx(c2 + 1)

qy

)
. (30)

As a result, using definition (26) and Eqs. (27), we obtain a simplified form of Eq. (25):∑
β=s,p

a1
βY 1

β |β〉 =
∑
γ=o,e

(
a2↓

γ |γ 〉′+ + a2↑
γ |γ 〉′−

)
. (31)

If we multiply (24) and (31) by 〈β| [here, only the exponential of the bra-vector should be complex conjugated, for example,
〈s| = (−qy qx )e−ikxx−ikyy] and taking into account that 〈β|β ′〉 = δβ,β ′ , we get the following system of equations corresponding
to the boundary condition at the interface z = 0:∑

γ=o,e

(
a2↓

γ 〈β|γ 〉 + a2↑
γ 〈β|γ 〉) − a1

β = 0,
∑
γ=o,e

(
a2↓

γ 〈β|γ 〉′+ + a2↑
γ 〈β|γ 〉′−

) − a1
βY 1

β = 0. (32)

Analogously, for the interface z = −d , with the help of the auxiliary vectors |γ 〉′± we find

∑
γ=o,e

(
a2↓

γ 〈β|γ 〉eqγ zk0d + a2↑
γ 〈β|γ 〉e−qγ zk0d

) − a3
β = 0,

∑
γ=o,e

(
a2↓

γ 〈β|γ 〉′+eqγ zk0d + a2↑
γ 〈β|γ 〉′−e−qγ zk0d

) − a3
βY 3

β = 0. (33)

235408-4



ANALYTICAL APPROXIMATIONS FOR THE DISPERSION … PHYSICAL REVIEW B 100, 235408 (2019)

Equations (32) and (33) form a system of eight linear equations with eight unknowns. By defining ξγ↓ = eqγ zk0d and ξγ↑ =
e−qγ zk0d with γ = o, e (for the waves propagating along and opposite to z axis, respectively), we have⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 〈s|o〉 〈s|o〉 〈s|e〉 〈s|e〉 0 0
0 −1 〈p|o〉 〈p|o〉 〈p|e〉 〈p|e〉 0 0

−Y 1
s 0 〈s|o〉′+ 〈s|o〉′− 〈s|e〉′+ 〈s|e〉′− 0 0

0 −Y 1
p 〈p|o〉′+ 〈p|o〉′− 〈p|e〉′+ 〈p|e〉′− 0 0

0 0 〈s|o〉ξ o↓ 〈s|o〉ξ o↑ 〈s|e〉ξ e↓ 〈s|e〉ξ e↑ −1 0
0 0 〈p|o〉ξ o↓ 〈p|o〉ξ o↑ 〈p|e〉ξ e↓ 〈p|e〉ξ e↑ 0 −1
0 0 〈s|o〉′+ξ o↓ 〈s|o〉′−ξ o↑ 〈s|e〉′+ξ e↓ 〈s|e〉′−ξ e↑ −Y 3

s 0
0 0 〈p|o〉′+ξ o↓ 〈p|o〉′−ξ o↑ 〈p|e〉′+ξ e↓ 〈p|e〉′−ξ e↑ 0 −Y 3

p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
s

a1
p

a2↓
o

a2↑
o

a2↓
e

a2↑
e

a3
s

a3
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (34)

Using the explicit expressions for the vectors |s〉 and |p〉, |o〉 and |e〉, and |o〉′±, |e〉′±, given by Eqs. (16), (20), and (29),
respectively, the scalar products in Eq. (34) can be explicitly calculated as

〈s|o〉 = η1,

〈p|o〉 = η2,

〈s|e〉 = η3,

〈p|e〉 = η4,

〈s|o〉′± = ±iqozη1,

〈p|o〉′± = ±iqozη2
εz

�z
,

〈s|e〉′± = ±iqezη3,

〈p|e〉′± = �2

±iqez
± iqezη4,

(35)

where η1 = 1 − c1q2
y

q2 , η2 = qxqy�1

q2 (�z + q2
x + q2

y ), η3 = −qxqyc2

q2 , and η4 = 1 + q2
x c2

q2 .
The homogeneous system (34) has nontrivial solutions only when its determinant equals to zero. The zeros of the determinant

yield the dispersion relation for the modes in the biaxial slab. In general, the dispersion relation can be analyzed numerically,
but in the limit of a small slab thickness k0d � 1, as well as in the short-wavelength limit (large values of q), it can be written in
a compact analytical form, as will be shown below, in Secs. V and VI, respectively. Before considering these interesting limits,
we will ensure that our dispersion relation analytically reproduces some known examples.

B. Uniaxial slab

Consider a uniaxial crystal with the axis C pointing along the z axis, C ‖ Oz, so that εx = εy = ε⊥ and εz = ε‖. In this case
�1 = 0 and �2 = q2

ez + ε⊥, yielding c1 = c2 = 0, η2 = η3 = 0, and η1 = η4 = 1. Then, the scalar products given by Eq. (35)
greatly simplify:

〈s|o〉 = 〈p|e〉 = 1,

〈p|o〉 = 〈s|e〉 = 〈p|o〉′± = 〈s|e〉′± = 0,
(36)

〈s|o〉′± = ±iqoz,

〈p|e〉′± = �2

±iqez
± iqez = ε⊥

±iqez
.

Consequently, the system of equations (34) reduces to⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 1 1 0 0 0 0
−q1z 0 qoz −qoz 0 0 0 0

0 −1 ξ o↓ ξ o↑ 0 0 0 0
0 q3z qozξ

o↓ −qozξ
o↑ 0 0 0 0

0 0 0 0 −1 0 1 1

0 0 0 0 − ε1
qz1

0 �2
qez

−�2
qez

0 0 0 0 0 −1 ξ e↓ ξ e↑

0 0 0 0 0 ε3
q3z

�2
qez

ξ e↓ −�2
qez

ξ e↑

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
s

a3
s

a2↓
o

a2↑
o

a1
p

a3
p

a2↓
e

a2↑
e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (37)
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Vanishing of the determinant of the matrix in Eq. (37) results
in two separate equations, yielding (after some straightfor-
ward algebra) the dispersion of the ordinary and extraordinary
modes:

ordinary: tanh(qozk0d ) = −qoz(q1z + q3z )

q1zq3z + q2
oz

, (38)

extraordinary: tanh(qezk0d ) = −qezε⊥(q1zε3 + q3zε1)

q1zq3zε
2
⊥ + q2

ezε1ε3
.

(39)

C. Isotropic slab

The dispersion of the modes in an isotropic slab can be
easily derived from the dispersion of the modes in the uniaxial
slab, by setting ε⊥ = ε‖ = ε2. By doing so, the z components
of the wave vectors qoz, qez degenerate to q2

2z = q2 − ε2 and
Eqs. (38) and (39) transform into the well-known expressions
for electromagnetic TE and TM modes in a conventional slab
waveguide, respectively:

TE: tanh(q2zk0d ) = −q2z(q1z + q3z )

q1zq3z + q2
2z

, (40)

TM: tanh(q2zk0d ) = −q2zε2(q1zε3 + q3zε1)

q1zq3zε
2
2 + q2

2zε1ε3
. (41)

IV. VERY THICK SLABS: SURFACE MODES AT THE
BIAXIAL CRYSTAL BOUNDARIES

Let us consider now another extreme case, assuming that
the thickness of the slab tends to infinity, d → ∞. Then,
our dispersion relation should split into two independent
dispersion relations describing surface modes at the interfaces
between the biaxial crystal and two isotropic media with
dielectric permittivities ε1 and ε3. To obtain these dispersion
relations in a simple analytical form, we multiply the third and
fifth columns of the determinant of the system (34) by ξ o↑ and
ξ e↑, respectively. Then, tending d → ∞ in the determinant,
and assuming that both qoz and qez have a nonvanishing real
part, we see that all the matrix elements proportional to ξ o,e↑
(third and fifth elements in the four first rows and fourth and
sixth ones in the four last rows) vanish. As a result, the 8 × 8
determinant becomes a product of the two determinants 4 × 4,
each of them describing the surface modes at the 1-2 (z = 0)
and 2-3 (z = −d) interfaces. Without loss of generality, let us
consider only one of these determinants 4 × 4, corresponding
to the interface 1-2. Zeroing the determinant, we have∣∣∣∣∣∣∣∣

−1 0 〈s|o〉 〈s|e〉
0 −1 〈p|o〉 〈p|e〉

−Y 1
s 0 〈s|o′〉− 〈s|e′〉−

0 −Y 1
p 〈p|o′〉− 〈p|e′〉−

∣∣∣∣∣∣∣∣
= 0. (42)

Then, using the Gauss method, we can reduce the dimen-
sion of the matrix to 2 × 2, as∣∣∣∣Y 1

s 〈s|o〉 − 〈s|o′〉− Y 1
s 〈s|e〉 − 〈s|e′〉−

Y 1
p 〈p|o〉 − 〈p|o′〉− Y 1

p 〈p|e〉 − 〈p|e′〉−
∣∣∣∣ = 0. (43)

To write the dispersion relation in a compact form, we express
εz from Frensel’s equation for biaxial slabs (6) as a function

of qoz:

εz = εxεyq2 + (
q2

oz − q2
)(

εxq2
x + εyq2

y

)
q2

oz

(
εx + εy + q2

oz − q2
) + εxεy − εxq2

x − εyq2
y

. (44)

Then, using the identities q2 = ε1 + q2
1z and q2 = q2

x + q2
y , we

substitute εz from Eq. (44) into the expressions for Y 1
s,p in

Eq. (28) and scalar products given by Eq. (35), appearing in
the elements of the matrix in Eq. (43). After some algebraic
operations, Eq. (43) reproduces the dispersion relation for
surface waves on boundaries of biaxial crystals, derived in
Ref. [21]:

(q1z + qoz )(q1z + qez )
(
εxεy − εxq2

x − εyq2
y − ε1qozqez

)
− qozqez(ε1 − εx )(ε1 − εy) = 0. (45)

A. Uniaxial crystal with the axis perpendicular to the interface

Consider a uniaxial crystal with the axis C along the z axis,
thus directed perpendicularly to the interface of the crystal.
Defining, as before, εx = εy = ε⊥ and εz = ε‖, and taking into
account that, according to Eq. (12), ε⊥ = q2 − q2

oz, Eq. (45)
simplifies as

qoz(q1z + qoz )(q1z + qez )(ε⊥qoz + ε1qez )

+ qozqez(q1z + qoz )2(q1z − qoz )2 = 0. (46)

Since Re(qoz ) > 0 and Re(q1z ) > 0, and therefore
qoz(qz + qoz ) �= 0, we can divide Eq. (46) by qoz(qz + qoz ).
Then, it transforms to

qezε1(qoz + qez ) + q1zε⊥(qoz + qez ) = 0. (47)

Assuming that qez + qoz �= 0, we obtain the dispersion relation
for surface waves on a boundary of a uniaxial crystal:

qez

ε⊥
+ q1z

ε1
= 0, (48)

where q1z =
√

q2 − ε1 and qez =
√

ε⊥
ε‖

q2 − ε⊥. Deriving q

from this equation, the dispersion relation takes the well-
known form (see e.g. Ref. [28])

q =
√

ε1ε‖
ε1 − ε⊥

ε2
1 − ε‖ε⊥

. (49)

In the isotropic case ε‖ = ε⊥ = ε, Eq. (48) simplifies to the
dispersion relation for surface waves at the interface between
two isotropic media:

q =
√

ε1ε

ε1 + ε
. (50)

B. Uniaxial case with in-plane crystal axis

Consider a uniaxial crystal with the C axis along the y
axis, thus lying in the plane of the interface of the crystal.
Redefining here εx = εz = ε⊥ and εy = ε‖, Eq. (7) for qo,ez

transforms to [similar to Eq. (12)]

q2
oz = q2 − ε⊥, ε⊥q2

ez = ε⊥q2
x − ε‖q2

y − ε⊥ε‖. (51)

Substituting the expression for qez from Eq. (51) into Eq. (45)
and dividing it by qez, we get the famous dispersion relation
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FIG. 2. Schematics of the ultrathin crystal slab.

for Dyakonov surface waves [19]:

(q1z + qoz )(q1z + qez )(ε1qoz + ε⊥qez )

+ qoz(ε1 − ε⊥)(ε1 − ε‖) = 0. (52)

V. ULTRATHIN SLAB LIMIT

Recently, polaritons in ultrathin slabs and monolayers (for
instance, plasmon polaritons in a monolayer graphene [29] or
hyperbolic phonon polaritons in thin slabs of polar dielectrics,
such as h-BN [30]) have attracted particularly high attention.
Therefore, the limit of a vanishing slab thickness d → 0 is
of a great practical interest. Let us illustrate how our general
dispersion relation, given by the determinat of the system
(34), can be simplified for ultrathin slabs. Analogously to
the methodology used for isotropic slabs [31], we can ap-
proximate the slab of a finite thickness by a two-dimensional
(2D) conductive sheet, with the effective conductivity σ̂ given
by σ̂ = ωd ε̂

4π i (see Fig. 2). To that end, let us assume that all
the components of the tensor ε̂ are large, i.e., |εi| � 1 (i =
x, y, z).

Then, retaining in Eq. (7) the first nonvanishing terms de-
pending upon qx and qy in the expressions for the normalized
z components of the wave vectors qo,ez, Eq. (7) can be greatly
simplified:

q2
o,ez = 1

2

{
−(εx + εy) + εx + εz

εz
q2

x + εy + εz

εz
q2

y

}

± 1

2

{
εx − εy + εz − εx

εz
q2

x − εz − εy

εz
q2

y

}
, (53)

where + and − should be taken for the labels o and e,
respectively. Equations (53) then further simplify to

q2
oz = −εy + q2

x + εy

εz
q2

y ,

q2
ez = −εx + q2

y + εx

εz
q2

x . (54)

Using Eq. (54), we find c1 = − εz

q2
y

and c2 = −1, so that the

scalar products (35) can be written as

〈s|o〉 = q2
x

q2
,

〈p|o〉 = qxqy

q2
,

〈s|e〉 = εz
εx − εy

εx − εz

qy

qxq2
,

〈p|e〉 = −εz
εx − εy

εx − εz

1

q2
,

(55)〈s|o〉′± = ±iqoz〈s|o〉,
〈p|o〉′± = ±iqoz〈p|o〉,
〈s|e〉′± = ±iqez〈s|e〉,
〈p|e〉′± = ±iqez〈p|e〉.

Additionally, assuming the small thickness of the slab, we
can simplify the elements of the matrix in Eq. (34) by expand-
ing the exponentials ξγ into the Taylor series in k0d and re-
taining the first nonvanishing terms. We have ξγ↓ = eqγ zk0d =
1 + qγ zk0d and ξγ↑ = e−qγ zk0d = 1 − qγ zk0d . To simplify the
determinant of the system (34), we sum up its third and fifth
columns with the fourth and sixth columns, respectively, and
then subtract the fourth and sixth columns (both multiplied by
the factor 1

2 ), from the third and fifth columns, respectively.
Then using row operations, we eliminate two first and two last
columns in the obtained determinant by the Gauss method: we
multiply first (second) row to Y 1

s (Y 1
p ) and subtract it from the

third (fourth) row and analogously for fifth (sixth) and seventh
(eighth) rows. As a result, we get the following equation:

∣∣∣∣∣∣∣∣
i〈s|o〉 −Y 1

s 〈s|o〉 i〈s|e〉 −Y 1
s 〈s|e〉

i〈p|o〉 −Y 1
p 〈p|o〉 i〈p|e〉 −Y 1

p 〈p|e〉
−Y 3

s k0d〈s|o〉 (
2αy + Y 1

s − Y 3
s

)〈s|o〉 −Y 3
s k0d〈s|e〉 (

2αx + Y 1
s − Y 3

s

)〈s|e〉
−Y 3

p k0d〈p|o〉 (
2αy + Y 1

p − Y 3
p

)〈p|o〉 −Y 3
p k0d〈p|e〉 (

2αx + Y 1
p − Y 3

p

)〈p|e〉

∣∣∣∣∣∣∣∣
= 0, (56)

where αx,y = 2πσx,y

c = k0dεx,y

2i are the normalized 2D effective conductivity components. Using the smallness of k0d , on the one
hand, and the assumed large values of the components of the tensor ε̂, on the other hand, the determinant (56) can be further
significantly simplified. Namely, a more detailed analysis (which we omit here) shows that the elements proportional to k0d
(the first and third elements of the third and fourth rows) yield the contribution of a higher order of smallness and thus can be
neglected. As a result, the determinant (56) factorizes into a product of the two determinants of the submatrices 2 × 2:

∣∣∣∣〈s|o〉 〈s|e〉
〈p|o〉 〈p|e〉

∣∣∣∣
∣∣∣∣
(
2αy + Y 1

s − Y 3
s

)
qx

(
2αx + Y 1

s − Y 3
s

)
qy(

2αy + Y 1
p − Y 3

p

)
qy −(

2αx + Y 1
p − Y 3

p

)
qx

∣∣∣∣ = 0. (57)
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(a) (b)

FIG. 3. Comparison of the dispersion relation given by Eq. (58) and by full-wave numerical simulations (COMSOL MULTIPHYSICS). In both
panels, ε1 = ε3 = 1. Permittivity tensor components: (a) εx = −2, εy = 2, εz = 2. (b) εx = −7, εy = −3, εz = 2.

Taking into account that the first determinant in Eq. (57) gives − εz

q2
εx−εy

εx−εz
�= 0, the dispersion relation is given by the vanishing of

the the second determinant:{
αxq2

y + αyq2
x + q2

x + q2
y

2
(iq1z + iq3z )

}{
αxq2

x + αyq2
y + q2

x + q2
y

2

(
ε1

iq1z
+ ε3

iq3z

)}
= q2

x q2
y (αx − αy)2. (58)

This dispersion relation, written for biaxial slabs of small
but nonzero thickness (the effective conductivities αx,y are
thickness dependent), has been used for the analysis of hy-
perbolic phonon polaritons in thin slabs of α-MoO3 [16].
Nevertheless, to our knowledge, it has not been consistently
derived for a nonvanishing slab thickness up to now. For 2D
anisotropic sheets (of zero thickness) Eq. (58) is exact and had
been reported in Refs. [32,33]. As expected, the asymptotes of
the dispersion relation (58) (qx,y → ∞) coincide with the ones
following from the Fresnel equations [compare with Eq. (11)]:

qx

qy
=

√
−αy

αx
=

√
−εy

εx
. (59)

In case of an isotropic 2D sheet αx = αy = α and Eq. (58)
splits into two independent equations describing the disper-
sion of the TE and TM modes [34] propagating along the
sheet:

TE : q1z + q3z − 2iα = 0,

TM :
ε1

q1z
+ ε3

q3z
+ 2iα = 0. (60)

To demonstrate the validity of the simplified dispersion
relation (58), we compare in Fig. 3 the refractive indices of
a mode found from (58) (solid curves) to those found from
full-wave simulations (points). Figures 3(a) and 3(b) represent
the result for two different illustrative set of parameters: in
Fig. 3(a) only one of the in-plane dielectric permittivities
is negative, εx < 0 (while εy, εz > 0), and in Fig. 3(b) both
in-plane permittivities are negative, εx, εy < 0 (while εz > 0).
Both in Figs. 3(a) and 3(b) the propagation of the mode at
different angles ϕ (see Fig. 2) is considered. As expected, the

agreement between the analytical approximation and rigor-
ous numeric simulations improves for smaller values of k0d ,
although in Fig. 3(b) the agreement is good in the whole
shown range of k0d . Impressively, the agreement between the
analytical and numerical results is in general excellent for all
the shown propagation directions, even though neither k0d is
very small nor the values of εx, εy, and εz are very large, as it
was initially assumed for the derivation of (58).

VI. LIMIT OF A LARGE REFRACTIVE
INDEX OF THE MODES

The general dispersion relation given by the zeroing of
the determinant in Eq. (34) can be also greatly simplified
under the assumption of large refractive indices of the modes
|q| � 1. Such simplification is similar to the one made for
the dispersion of the modes in uniaxial crystal slabs [14].
For large q the expressions for the z components of the wave
vectors inside the slab can be approximated as

q2
oz = q2 − εxεzq2

y + εyεzq2
x − εxεyq2

εzq2 − εxq2
x − εyq2

y

, q2
ez = εx

εz
q2

x + εy

εz
q2

y ,

(61)

where we have retained the second-order (the highest-order)
term in q both in q2

ez and q2
oz, as well as the zeroth-order term

in the expression for q2
oz, to avoid uncertainty in �1 (since

�o
x = q2

x and �z = q2
oz = q2, we have �1 = 0

0 ). Substituting
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the Eqs. (61) into Eqs. (10) and (21), we have

�1 = 1

q2
oz

εx − εy

εz − εx
, �2 = q2

ez,

c1 = εx − εy

εx − εz
, c2 = εy − εx

q2
ez − q2

oz

,

(62)

where we have neglected all small amendments in the ex-
pressions for each constant. Then, we obtain the simplified
expressions for the scalar products (35):

〈s|o〉 = εz

εx − εz

q2
ez − q2

oz

q2
oz

,

〈p|o〉 = qxqy

q2
oz

εx − εy

εx − εz
,

〈s|e〉 = qxqy

q2
oz

εx − εy

q2
ez − q2

oz

,

〈p|e〉 = 1,

〈s|o′〉± = ±iqoz〈s|o〉,

〈p|o′〉± = ±iεz
qxqy

q3
oz

εx − εy

εz − εx
,

〈s|e′〉± = ±iqez〈s|e〉,
〈p|e′〉± = ∓iqez

εz

q2
oz

. (63)

To simplify the matrix (34) and to eliminate the two first
and two last columns, we use the same column and row
operations as in Sec. V and obtain the following equation
(containing the 4 × 4 matrix):

∣∣∣∣∣∣∣∣∣

〈s|o′〉+ −Y 1
s 〈s|o〉 〈s|e′〉+ −Y 1

s 〈s|e〉
〈p|o′〉+ −Y 1

p 〈p|o〉 〈p|e′〉+ −Y 1
p 〈p|e〉

〈s|o′〉+Co − Y 3
s 〈s|o〉So 〈s|o′〉+So − Y 3

s 〈s|o〉Co 〈s|e′〉+Ce − Y 3
s 〈s|e〉Se 〈s|e′〉+Se − Y 3

s 〈s|e〉Ce

〈p|o′〉+Co − Y 3
p 〈p|o〉So 〈p|o′〉+So − Y 3

p 〈p|o〉Co 〈p|e′〉+Ce − Y 3
p 〈p|e〉Se 〈p|e′〉+Se − Y 3

p 〈p|e〉Ce

∣∣∣∣∣∣∣∣∣
= 0, (64)

where, for compactness, we have introduced abbreviated no-
tations for the hyperbolic functions:

Co,e = cosh(qo,ezk0d ), So,e = sinh(qo,ezk0d ). (65)

Let us notice that the matrix elements containing either 〈s|o′〉+
or Y 1,3

s 〈s|o〉 are of order ∼q, while the other matrix elements
are of order ∼ 1

q , thus being much smaller in magnitude.
Consequently, we can neglect the third and fourth elements of
the first and third rows (the contribution of these elements to
the determinant is of the second and fourth order of smallness
in 1

q ). As a result, the determinant in Eq. (64) factorizes into a
product of two determinants of the submatrices 2 × 2, so that
Eq. (64) splits into the two following equations:∣∣∣∣ 〈s|o′〉+ −Y 1

s 〈s|o〉
〈s|o′〉+Co − Y 3

s 〈s|o〉So 〈s|o′〉+So − Y 3
s 〈s|o〉Co

∣∣∣∣ = 0,

∣∣∣∣ 〈p|e′〉+ −Y 1
p 〈p|e〉

〈p|e′〉+Ce − Y 3
p 〈p|e〉Se 〈p|e′〉+Se − Y 3

p 〈p|e〉Ce

∣∣∣∣ = 0. (66)

Simplifying all the admittances as Y 1
p = ε1

q1z
≈ ε1

q ≈ ε1
qoz

,

Y 3
p = − ε3

q3z
≈ − ε3

q ≈ − ε3
qoz

, and Y 1
s ≈ −Y 3

s ≈ iq ≈ iqoz, we
can easily calculate both determinants (66). Vanishing of
the first determinant does not give any physically reasonable
solutions since

−2ε2
z

(
q2

ez − q2
oz

)2
eqozk0d

(εx − εz )2q2
oz

�= 0. (67)

Therefore, the dispersion relation follows from the vanishing
of the second determinant in Eq. (66):

tanh(qezk0d ) = − (ε1 + ε3)εzqozqez

ε1ε3q2
oz + ε2

z q2
ez

. (68)

To write Eq. (68) in a convenient form, let us define

ρ = i

√
εzq2

εxq2
x + εyq2

y

= i

√
εz

εxcos2ϕ + εysin2ϕ
, (69)

where ϕ is the angle between the x axis and the in-plane
component of wave vector. Then, using Eq. (61) (neglecting
here the second term in q2

oz), Eq. (68) can be written as

tan

(
qk0d

ρ

)
=

ρ ε1+ε3
εz

1 − ρ2ε1ε3

ε2
z

. (70)

Taking into account that arctan( x+y
1−xy ) = arctan(x) +

arctan(y), we get a simple expression for the normalized
in-plane wave vector q in the biaxial slab in the
short-wavelength limit q � 1:

q = ρ

k0d

[
arctan

(
ε1ρ

εz

)
+ arctan

(
ε3ρ

εz

)
+ π l

]
,

l = 0, 1, 2 . . . . (71)

We can verify that Eq. (71) transforms into the dispersion
of modes in a uniaxial slab (with the axis C along the z
axis), setting εx = εy = ε⊥ and εz = ε‖. Then, defining ψ =
−ρ = −i

√
ε‖
ε⊥

, and taking into account that ε1,3ρ

ε‖
= ε1,3

ψε⊥
, we

reproduce the dispersion relation, used for the analysis of
hyperbolic phonon polaritons in h-BN crystal slabs [14]:

q = − ψ

k0d

[
arctan

(
ε1

ψε⊥

)
+ arctan

(
ε3

ψε⊥

)
+ π l

]
,

l = 0, 1, 2 . . . . (72)

The same results can be straightforwardly derived from the ex-
act Eq. (39), in the limit of large q. Equation (71) also reduces
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FIG. 4. Comparison between the isofrequency curves of the modes in a biaxial crystal slab. The isofrequency curves found according
to Eq. (71) are plotted by the discontinuous black curves (l = 0) and continuous red curves (l = 1), while those found from the full-wave
simulations are plotted by the black and red dots, respectively. In all panels λ = 1 μm, d = 100 nm, and ε1 = ε3 = 1. Permittivity tensor
components: (a) εx = −0.1, εy = −1, εz = 2. (b) εx = −0.1, εy = −1, εz = −2. (c) εx = −2, εy = 2, εz = 2. (d) εx = −2, εy = 2, εz = −2.

to Eq. (72) when the propagation of the mode coincides either
with the x axis (in this case we should set εx = ε⊥ and εz = ε‖)
or with the y axis (in this case we should set εy = ε⊥ and εz =
ε‖). In the two latter particular cases, anisotropic polaritons in
α-MoO3 slabs were studied via Eq. (72) in Ref. [18].

To verify the validity of our analytical approximation, we
compare the isofrequency curves obtained from Eq. (71) with
those obtained from full-wave electromagnetic simulations.
As an example, we take the slab thickness d = 100 nm and the
free-space wavelength λ = 1 μm. We consider the following
four different combinations of the (purely real) permittivity
tensor components:

(a) εx < 0, εy < 0, εz > 0,

(b) εx < 0, εy < 0, εz < 0,
(73)

(c) εx < 0, εy > 0, εz > 0,

(d) εx < 0, εy > 0, εz < 0.

Figure 4 shows the isofrequency curves extracted from
both Eq. (71) (red and black curves) and full-wave numeric
simulations (dots). For the parametric sets (a), (c), (d) corre-
sponding to the volume modes, the isofrequency curves for
the two lowest modes are shown: l = 0 (black discontinuous

curve and black dots) and l = 1 (red continuous curve and
red dots). In contrast, for the set of parameters (b), the mode
exponentially decays inside and outside the slab (so that it
has a surface wave character) and therefore only the solution
with l = 0 makes sense. In all panels of Fig. 4 we see an
excellent agreement between the numeric simulations and
analytical approximations for large q (q � 10) and even very
reasonable agreement for q comparable to 1. This agreement,
particularly for the case of small and moderate values of q,
unambiguously evidences that Eq. (71) can be used in a wide
space of parameters for the characterization of diverse modes
in both natural and artificial biaxial crystal slabs.

VII. CONCLUSIONS

To summarize, we have presented an analytical derivation
of the electromagnetic modes that can be guided along biaxial
crystal slabs. We have provided simple expressions for the
dispersion of the modes in the limit of an ultrathin slab and
for the case of large k-vectors of the modes. Both limits are
currently of great importance for studying highly confined
anisotropic polaritons in vdW biaxial crystal slabs and, par-
ticularly, for the interpretation of the state-of-the-art near-field
experiments.
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