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Charge and spin textures of Ising quantum Hall ferromagnet domain walls
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We investigate the charge and spin structures associated with arbitrary smooth polarization textures in Ising
(integer) quantum Hall ferromagnets. We consider the case where the two polarizations (denoted “pseudospin”
up and down) correspond to states with opposite physical spin and different Landau level indices, n ↑ and m ↓.
We derive analytic expressions for the charge and spin densities, as functions of the underlying pseudospin
texture, and use these results to investigate different types of linear domain walls, both analytically and
numerically. We find that any smooth domain wall between two oppositely polarized domains carries a universal
quantized charge dipole density proportional to the difference of Landau level indices, n − m. Additionally,
nonuniformities in the domain wall may give rise to excess net charge localized at the domain wall. Interestingly,
the physical spin density associated with the domain wall generally exhibits a much more complex multipolar
structure than that of the pseudospin texture. These results should for example help to elucidate the mechanisms
underlying nuclear electric resonance and nuclear polarization oscillations in Ising quantum Hall systems.
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The quantum Hall effect provides a rich setting for explor-
ing the physics of strongly correlated quantum many-body
systems. In addition to the topological transitions between
distinct quantum Hall phases that occur between Hall con-
ductance plateaus, interesting new symmetry breaking tran-
sitions may occur within a given plateau when additional
degeneracies are present, e.g., due to spin, valley, layer, or
orbital “pseudospin” degrees of freedom [1]. The appearance
of a quantized Hall plateau at filling factor ν = 1 provides the
simplest example of such “quantum Hall ferromagnetism,” as
electron-electron interactions play a crucial role in opening
a gap in the half-filled (spin-degenerate) lowest Landau level
(LL) [2]. While the exchange interaction responsible for ν=1
quantum Hall ferromagnetism respects full SU (2) spin rota-
tion symmetry, systems with pseudospin degeneracies may
exhibit phase transitions with either reduced (e.g., Ising/easy-
axis or XY/easy-plane [3–7]) or enhanced (e.g., SU (n) with
n > 2 [8–17]) symmetries, depending on the physical nature
and multiplicity of the degeneracies.

In this work we study Ising-like (easy-axis) quantum Hall
ferromagnets with a twofold pseudospin degree of freedom.
Near the phase transition (as a function of the parameters
that control the nominal pseudospin degeneracy), such sys-
tems may exhibit complex domain patterns and dynamics
[5,18–28]. Prominently, domains between spin-polarized and
unpolarized variants of the fractional quantum Hall state at
ν = 2/3 have been shown to give rise to a variety of intriguing
dynamical phenomena including self-oscillations [23,29,30]
and nuclear electric resonance [22,26,31,32], and have even
been proposed as a platform for realizing parafermions in
hybrid structures involving superconductors [33].

Below we characterize the charge and (physical) spin
textures that naturally accompany domain walls in Ising-type

quantum Hall ferromagnets in the integer quantum Hall effect
regime. We focus on the subspace composed of two energy-
degenerate Landau levels (LLs) of opposite spin, where the
LL corresponding to spin-up (↑) has the LL index n and
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FIG. 1. Anatomy of a domain wall in an Ising quantum Hall
ferromagnet. (a) Schematic energy spectrum. When the Zeeman
energy EZ is approximately equal to the cyclotron energy h̄ωc, the
first LL with spin-up, denoted 1 ↑, and the zeroth LL with spin-down,
denoted 0 ↓, are nearly degenerate. When this (highlighted) two-LL
subspace is half filled, interactions favor full polarization in the
spin-LL basis. (b) A dipole forms in the charge density (black line)
at a domain wall between 0 ↓ and 1 ↑ regions due to the overlaps
of the different Landau level wave functions (blue and red) from the
two regions where they meet at the domain wall. (c) Schematic of
a linear domain wall along the y direction, separating regions fully
polarized in 0 ↓ (blue, arrows pointing down) and in 1 ↑ (red, arrows
pointing up).
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the one corresponding to spin-down (↓) has the LL index
m [see Fig. 1(a), where the case n = 1, m = 0 is illustrated]
[34]. Such a nearly degenerate level configuration can be
achieved by tuning the cyclotron and spin-splitting scales
independently, using the fact that the cyclotron energy h̄ωc

depends only on the perpendicular component of the external
magnetic field, B⊥, while the Zeeman energy EZ depends
on the total magnetic field, Btot [35]. The resulting twofold
mixed orbital-spin degree of freedom (n ↑ and m ↓) that
distinguishes states in the degenerate subspace forms the
pseudospin for our system. Note that the field value where
nominal degeneracy is achieved between the pseudospin-up
states (n ↑) and pseudospin-down states (m ↓) is determined
not only by the competition between the cyclotron and Zee-
man energies, but also includes a contribution from intra-LL
interaction energy (which may differ for LLs n and m).

When the degenerate subspace outlined above is half filled,
electron-electron interactions lead to a ferromagnetic pseu-
dospin ordering: either the pseudospin-up (LL n with spin
up) or pseudospin-down (LL m with spin down) manifold is
fully filled, while ordering does not occur in any coherent
superposition of the two. This easy-axis Ising ferromagnetic
character results from two factors [36]: First, due to the
exchange energy, states with maximum total physical spin (as
opposed to pseudospin) are naturally energetically preferred.
Second, due to the different orbital wave functions for states
in LLs n and m, interorbital interactions favor full orbital
polarization. Near the transition point between the fully po-
larized pseudospin-up and pseudospin-down phases, domain
walls between spatial regions with opposite polarization can
arise due to inhomogeneities of the sample, of the magnetic or
Overhauser (hyperfine) fields, or any other local effect which
favors one spin polarization over the other [20,33,37–42].

We analyze the case of a simple linear domain wall, and
find via direct analytical and numerical calculation that the LL
orbital structure associated with the pseudospin [see Fig. 1(b)]
generically induces a local electric dipole moment transverse
to the domain wall. The dipole moment per unit length along
the domain wall, i.e., the dipole density, includes a universal,
quantized, part, that depends only on the difference of LL
indices, n − m, and arises for any smooth pseudospin texture
that interpolates between pure pseudospin-up and pseudospin-
down regions. The existence of this quantized contribution
to the dipole density can also be traced to the difference in
Hall viscosities associated with the two phases [43,44]. We
additionally find a nonuniversal contribution to the electric
charge density that results from “twisting” of the pseudospin
along the domain wall [20].

In addition to the local charge density, we also characterize
the physical spin texture within the domain wall. Character-
izing the spin texture is crucial for elucidating the coupling
between domain wall degrees of freedom and nuclear spins
in the host lattice [23,30,45,46], in particular for example
in nuclear electric resonance experiments [22,26,47]. Due
to the different orbital wave functions within LLs n and
m, we find that the in-plane components of the total elec-
tron spin polarization generally vanish. Locally, a nonvan-
ishing in-plane spin density may appear within the domain
wall, exhibiting a multipolar structure across the domain
wall.

The structure of the paper is as follows. In Sec. I we ex-
plicitly define pseudospin density operators for systems with
arbitrary LL indices, and use these operators to analytically
derive expressions for the local deviations of charge and spin
densities in the long-wavelength limit of a smooth domain
wall profile. Then in Sec. II we numerically investigate the
charge and spin textures for generic domain wall profiles for
the case n = 1, m = 0, as depicted in Fig. 1. Finally, in Sec. III
we provide a further discussion of our results.

I. DEFINITIONS AND ANALYTICAL RESULTS

In this section we formalize the definitions of pseudospin
and pseudospin density, and we derive analytical relations be-
tween pseudospin texture and local charge and spin densities
that are valid in the limit of smooth polarization textures.

A. Definition of pseudospin density

We consider a system in which all spin-up LLs with
index less than n and spin-down LLs with index less than m
are fully occupied, while all spin-up (spin-down) LLs with
indices greater than n (m) are completely empty. Without
loss of generality we take n > m. Under the assumption that
fully occupied and completely empty LLs are inert, we focus
solely on the manifold composed of the LLs n ↑ and m ↓
[highlighted in Fig. 1(a) for the case n = 1, m = 0], which we
assume to be half filled.

For concreteness we study the system on a strip lying in the
xy plane, where −∞ < x < ∞ and 0 < y < Ly. Appropriate
to this geometry, we will use the Landau gauge, assuming pe-
riodic boundary conditions in the y direction for convenience.
We thus use the explicit single-particle basis states

〈r|n, k〉 = e−iky√
Ly2nn!�

√
π

Hn

(
x − k�2

�

)
e− (x−k�2 )2

2�2 , (1)

labeled by the LL index n and the quantum number k corre-
sponding to the canonical momentum in the y direction. Here
� = √

h̄/eB⊥ is the magnetic length and Hn(x) denotes the nth
Hermite polynomial.

In first quantization, for a single particle, j, we define the
pseudospin τ j within the {n ↑, m ↓} LL subspace via

τ 0
j =

∑
k

(|n, k〉〈n, k| 0
0 |m, k〉〈m, k|

)
, (2)

τ x
j =

∑
k

(
0 |n, k〉〈m, k|

|m, k〉〈n, k| 0

)
, (3)

τ
y
j =

∑
k

(
0 −i|n, k〉〈m, k|

i|m, k〉〈n, k| 0

)
, (4)

τ z
j =

∑
k

(|n, k〉〈n, k| 0
0 −|m, k〉〈m, k|

)
, (5)

where |α, k〉 (with the particle index j suppressed) denotes a
state in LL α = {n, m}, and the 2 × 2 matrices act in physical
spin space {↑,↓}. The τ j operators fulfill the usual spin Lie
algebra, and can serve as generators of global rotations in
pseudospin space.
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To enable the mathematical creation and characterization
of inhomogeneous pseudospin textures, we upgrade the global
(single-particle) pseudospin operators in Eqs. (2)–(5) to local
(many-body) pseudospin density operators:

τ η(r) =
∑

j

1

2

[
δ(r̂ j − r)τ η

j + τ
η
j δ(r̂ j − r)

]
, (6)

where the sum is over all particles (labeled by j), r̂ j is
the position operator for electron j, and η = 0, x, y, z. The
symmetrization of the product with the delta function ensures
that the operator is Hermitian. We note that the operator
δ(r̂ j − r) in Eq. (6) can take electron j out of the {n ↑, m ↓}
subspace. Since we are interested in creating states restricted
to this low-energy subspace, we thus work instead with the
projected pseudospin density

τ(r) = P τ(r)P, P =
⊗

j

τ 0
j , (7)

where we used that τ 0
j corresponds to the projector into

the {n ↑, m ↓} manifold of interest for electron j; see the
definition in Eq. (2).

We emphasize an important difference between pseu-
dospin and physical spin, which we illustrate by consid-
ering a general single-particle state in the {n ↑, m ↓} sub-
space, |ψ〉 = ∑

k (an
k |n, k〉 ⊗ | ↑〉 + am

k |m, k〉 ⊗ | ↓〉), where∑
k (|an

k |2 + |am
k |2) = 1. Due to the orthogonality of the LL

states with n 
= m, only the z component of the physical spin
operator may have a nonvanishing total expectation value.
From the definitions above, it is straightforward to see that the
z components of the pseudospin and of the physical spin in
fact have identical expectation values. The situation with the
in-plane (x and y) components is more subtle. The in-plane
components of the physical spin can only have nonvanishing
local expectation values of the corresponding spin densities.
On the other hand, all the components of the pseudospin can
have nonvanishing global and local expectation values.

B. Pseudospin textures and charge density

Here we investigate how the charge density in the system
is influenced by inhomogeneities in the pseudospin density
(as in a domain wall). To calculate the change in charge
density, we follow a generalized version of the procedure
of Ref. [48], where the special case of n = m = 0 was con-
sidered. In that work, the authors considered deformations
around a uniformly polarized state in which all electron spins
point in the positive z direction. They constructed a unitary
rotation operator that produces deformations on top of this
state, and found the resulting excess charge density for small
deformations by expanding the deformation operator up to
second order in the deformation amplitude. Using SU (2) sym-
metry they inferred the full spin-charge relation (to leading
order in gradients of the polarization vector) and showed that
the global excess charge carried by the spin deformation is
quantized in units of the filling factor.

A major difference between the case considered by Moon
et al. in Ref. [48] and ours is that, in our problem, SU (2)
symmetry is broken down to U (1) due to the Ising-like
nature of the interactions. Therefore, (i) we do not expect

the pseudospin-charge relation to exhibit full SU (2) symme-
try, and (ii) we cannot simply consider small deformations
around a single initial state (say, with all spins pointing to
+z), and then infer how the local charge density is affected
for deformations around all other directions of pseudospin
polarization.

Instead we will consider a homogeneous initial state
|�0〉 where all pseudospins are polarized along n0 =
(sin θ cos φ, sin θ sin φ, cos θ ), where θ and φ are the po-
lar and azimuthal angles of the polarization direction, re-
spectively. We take the many-body state |�0〉 to be a
Slater-determinant wave function over all particles, exactly
filling one particle per k mode, with the single-particle
state for each k being |ψk〉 = cos(θ/2)|n, k〉 ⊗ | ↑〉 + eiφ

sin(θ/2)|m, k〉 ⊗ | ↓〉.
We proceed by applying a small position-dependent pseu-

dospin rotation to deform the initial homogeneous state, using
the pseudospin rotation operator

UR = e−iO, with O =
∫

dr 1
2 �(r) · τ(r), (8)

where �(r) defines the axis and angle over which the pseu-
dospin is rotated from its initial orientation. We note here that
only in the long-wavelength limit of smooth �(r) (on the scale
of �) can the local pseudospin density at point r be obtained
precisely by rotating the initial pseudospin through an angle
�(r) about the axis parallel to �(r) [49]. (Here and throughout
we use boldface to denote vectors and normal fonts to denote
their magnitudes.) We will employ this long-wavelength limit
in our analytic calculations.

We now turn to calculating the change in the expectation
value of the projected charge density ρ(r) ≡ τ 0(r) induced
after applying the rotation UR (for convenience we will use
h̄ = e = 1 throughout):

〈δρq〉 = 〈�0|eiOρqe−iO|�0〉 − 〈�0|ρq|�0〉, (9)

where ρq is the Fourier transform of ρ(r); see Appendix A.
Assuming the limit of small rotation angles, ||O|| � 1, we
expand UR to second order in O to obtain

〈δρq〉 ≈ i〈�0|[O, ρq]|�0〉 − 1
2 〈�0|[O, [O, ρq]]|�0〉. (10)

To begin, we consider the first-order term in Eq. (10).
Using the Fourier representation of O, as defined in Eq. (8),
we find for the first-order correction

〈
δρ (1)

q

〉 = iπLy

∑
η=x,y,z

∑
p

�η
p〈�0|

[
τ

η
−p, ρq

]|�0〉. (11)

Here, �
η
p and τ

η
−p are the Fourier transforms of �η(r) and

τ η(r), respectively. Using the explicit forms of the commuta-
tors [τ η

−p, ρq] in the long-wavelength limit q� � 1 we find

〈δρ (1)
q 〉 = n − m

8π
|q|2 sin θ

[
cos φ �y

q − sin φ �x
q

]
, (12)

up to corrections that are smaller by a factor of the order
O[(q�)2]. We note that this (first-order) change in charge
density vanishes for n = m, which is in accordance with the
results of Ref. [48]. Fourier-transforming the charge density
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back to real space, we find

〈δρ (1)(r)〉 = n − m

8π
∇2

r sin θ
[

sin φ �x(r) − cos φ �y(r)
]
.

(13)

We elucidate the structure of this expression by considering
the normalized vector field n(r) = R[�(r)] · n0, where R[u]
is the three-dimensional rotation operator that implements a
rotation through the angle u around the axis u/u. By definition
(in the long-wavelength limit), n(r) then points along the
local pseudospin polarization everywhere: n(r) ‖ 〈τ(r)〉. By
considering the explicit form of R[�(r)], see Eq. (B6), we find
that Eq. (13) coincides with the expression

〈δρ (1)(r)〉 = n − m

8π
∇2

r nz(r), (14)

up to first order in �.
The procedure above can be continued for the second-

order term in Eq. (10). The algebra (not shown here) is
long and unilluminating, but in the end reveals two separate
contributions: (i) we precisely obtain a contribution that adds
to Eq. (13) in a way that the resulting total correction is
equivalent to Eq. (14) up to second order in �, and (ii) we
recover a fully SU (2)-symmetric “Pontryagin index density,”
identical to the one found in Ref. [48] for the case n = m.
Thus, written explicitly, we obtain up to second order in
pseudospin gradients

〈δρ(r)〉 = n − m

8π
∇2

r nz + εαβ

8π
n · [∂αn × ∂βn], (15)

where the antisymmetric tensor εαβ has components εxy =
−εyx = 1 and is zero otherwise, and we suppress the position
arguments of n for brevity. Note that the second term in this
expression does not depend on the LL indices of the states
involved.

From a symmetry point of view, it is perhaps surprising that
we recover the fully SU (2)-symmetric from of the Pontryagin
index density, given that the system has only U (1) symmetry.
In particular, based on symmetry alone, a contribution of the
form δρ (2) ∼ εαβ nz ẑ · [∂αn × ∂βn] could in principle appear
with a different prefactor from the other terms.

Equation (15) was derived by considering small rotations
away from an initial polarization along the specific direction
set by n0 [see text above Eq. (8)]. In the limit of smooth
textures considered here, where q� � 1 is always satisfied,
we can expect Eq. (15) to hold globally as well (essentially by
locally resetting n0 at each r).

C. Quantized contribution to the dipole density at a domain wall

Now we consider a simple linear domain wall parallel to
the y direction, separating domains of opposite pseudospin po-
larization; i.e., we assume that n = −ẑ at x → −∞ and n =
+ẑ at x → +∞ [see the sketch in Fig. 1(c)]. We furthermore
specify the domain wall to be created by a uniaxial rotation,
�(r) = f (x) ζ̂, where ζ̂ can be any in-plane direction. In this
case, the second term in Eq. (15) vanishes everywhere.

To find the total charge associated with the domain wall,
we then integrate Eq. (15) over all r. Assuming only that the
pseudospin polarization is uniform in the asymptotic regions,
i.e., ∇rnz(r) = 0 for x → ±∞, we find straightforwardly

that the total charge associated with the domain wall van-
ishes. Note that this result is insensitive to the details of the
profile of f (x).

The dipole moment density μ, defined as the dipole mo-
ment in the x direction per unit length along the y direction, is
obtained by integrating 〈δρ(r)〉 in Eq. (15) along x, weighted
by the value of the x coordinate. For a uniaxial rotation, and in
the long-wavelength limit, integration by parts gives directly

μ =
∫ ∞

−∞
dx x〈δρ(r)〉 = − 1

4π
(n − m). (16)

Hence we find that the dipole moment per unit length in a
linear domain wall created by uniaxial rotations is quantized
and universal: it depends only on the difference of the indices
of the LLs involved, and does not depend on the precise form
of the domain wall set by f (x).

On a qualitative level, the appearance of an electric dipole
at a domain wall between integer quantum Hall states with
different LL indices can be intuitively understood by consid-
ering the overlaps between neighboring LL wave functions
[see Fig. 1(b)]. At the domain wall, the wave functions
corresponding to spin-up (LL n) have a larger spread than
the wave functions corresponding to spin-down (LL m). As a
consequence, charge density “leaks” from the spin-up region
into the spin-down region, resulting in a build-up of excess
charge density on one side of the domain wall and a deficit on
the other [50].

We note that the result of Eq. (16) is consistent with the
previously known result that the electric dipole moment per
unit length induced at the boundary of two quantum Hall
fluids is directly proportional to the difference in their Hall
viscosities [43,44,51].

D. Pseudospin textures and spin density

Following a procedure similar to that outlined in Sec. I B,
we also calculate the physical spin density associated with
a smooth pseudospin texture. The (many-body) spin density
operators read

sη(r) =
∑

j

δ(r̂ j − r)
1

2
σ

η
j , (17)

where the {ση
j } are the usual Pauli matrices for η = x, y, z. No

symmetrization is needed here since the spin operators and
the particle density operator commute [cf. Eq. (6)]. Projecting
to the subspace {n ↑, m ↓} using the operator P defined in
Eq. (7), we obtain the projected spin density:

s(r) = P s(r)P . (18)

Starting from the same initial state |�0〉 with a homoge-
neous pseudospin polarization as used above, see text before
Eq. (8), we again apply a small position-dependent rotation as
defined in (8). Up to first order in O, the Fourier-transformed
change in spin density follows from〈

δsη
q

〉 ≈ i〈�0|
[
O, sη

q

]|�0〉. (19)

A tedious but straightforward calculation then allows us to
derive explicit results. Since the z components of the projected
spin and pseudospin density operators are identical (up to
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a factor 1
2 ), 〈sz

r〉 simply follows the pseudospin polarization
texture. For the simplest case of n = 1 and m = 0, we find for
the in-plane spin densities

〈
δsx

q

〉 = i
√

2

8π�

{
cos θ

[
qx�

y
q − qy�

x
q

]
+ sin θ

[
cos φ qy − sin φ qx

]
�z

q

}
, (20)

〈
δsy

q

〉 = i
√

2

8π�

{ − cos θ
[
qx�

x
q + qy�

y
q

]
+ sin θ

[
cos φ qx + sin φ qy

]
�z

q

}
, (21)

again valid in the limit of long wavelengths, q� � 1, and
accurate up to relative corrections of order O[(q�)2].

We find expressions similar to Eqs. (20) and (21) for the
case of general n and m; Fourier-transforming them back to
position space, while using that the gradients of �(r) are
assumed to be small, we can simplify the final result to

〈δs+(r)〉 = 1

4π�2

√
n!/m!

(n − m)!
(−∂̃−)n−mn+(r), (22)

where we introduced the notation s+(r) = sx(r) + isy(r),
n+(r) = nx(r) + iny(r), and ∂̃− = �√

2
(∂x − i∂y). Again, these

expressions are accurate up to relative corrections of the order
O[(q�)2]; i.e., they assume the texture n(r) to be smooth on
the scale of �.

From Eq. (22) we see that domain walls in general also can
give rise to nontrivial structure in the in-plane spin densities.
For the case of n = 1 and m = 0 it is easy to show that
a simple domain wall, such as one created by a uniaxial
rotation (cf. Sec. I C), in general comes with an in-plane spin
polarization with a dipole-like structure close to the domain
wall. Naively, one might have expected the spin density to
simply follow the pseudospin texture (which typically does
not have a dipolar structure), since the pseudospin up and
down states also carry physical up and down spins, respec-
tively. However, the in-plane spin density is locally sensitive
to the relative phases between single-particle wave functions
ψ0,k (r) = 〈r|0, k〉 and ψ1,k (r) = 〈r|1, k〉 associated with down
and up spins, respectively. As apparent in Eq. (1), each
function ψ1,k (r) is odd in x (with respect to a k-dependent
symmetry axis), while ψ0,k (r) is even in x about the same
symmetry axis. Therefore the overlap ψ∗

0,k (x)ψ1,k (x) is odd in
x, and hence the in-plane spin component takes opposite signs
on opposite sides of the symmetry axis. The main contribution
to the in-plane spin density, coming from the center of the
domain wall where the pseudospin up and down components
have equal weight, is thus antisymmetric. This results in a net
dipole-like structure for the in-plane component of the spin
density. We note that the appearance of a simple dipole in the
spin density is not a generic feature, but specific for the case
n = 1 and m = 0; other n and m result in different, possibly
more complex textures [see Eq. (22)].

II. NUMERICAL RESULTS

To further elucidate our analytical results, we now present
numerical calculations of the charge and spin densities around
different domain wall structures. For simplicity we will focus

on the case with n = 1 and m = 0, but we have checked that
our results are also valid for other values of n and m.

A. Uniform domain wall

We start by creating a simple homogeneous domain wall,
resembling in form the one obtained (by energy minimiza-
tion via self-consistently solving the Hartree-Fock equa-
tions) in Ref. [20]. We emphasize here that our aim is
to expose generic connections between associated charge
and spin densities and specific structural properties of do-
main walls; therefore we do not explicitly perform en-
ergy minimization. We thus first create a fully pseudospin-
up polarized N-particle Slater-determinant wave function,
with one electron in each k mode. Specifically, we fill all
states |1, k〉 ⊗ | ↑〉 with k = 2π l/Ly, where l is an inte-
ger in the range −(N − 1)/2 � l � (N − 1)/2 (using odd
N). We then apply the rotation operator as defined in
Eq. (8) to all single-particle states, where we use the ro-
tation function �(r) = f (x) ŷ, where f (x)=π

2 [tanh(b x)−1];
see Appendix B 1 for details. This choice describes a domain
at x � 0 where the system is pseudospin-polarized along the
−z direction and a domain at x � 0 where the pseudospin
is polarized in the +z direction. Around x = 0 there will
be a domain wall of width ∼1/b that is uniform in the y
direction. The many-particle wave function resulting from this
rotation operation can then be used to numerically calculate
expectation values of all components of the (pseudo)spin and
charge densities.

In Fig. 2 we present results where we used N = 601,
Ly = 50 �, and b = 0.075/�. Figure 2(a) shows the resulting
domain wall structure; the color corresponds to the numeri-
cally calculated z component of the pseudospin density 〈τ z(r)〉
and the pink arrows schematically indicate the direction of the
vector 〈τ(r)〉. In Fig. 2(b), the black dots (right axis) present
the numerically calculated change in charge density 〈δρ(r)〉 =
〈ρ(r)〉 − ρ0 along y = 25 �, where ρ0 = 1/(2π�2) is the back-
ground charge density. The gray line shows for comparison
〈δρ(r)〉 as given by Eq. (15) using n(r) = R[�(r)]ẑ, which
agrees well with our numerical results. We note that for
this simple uniaxial rotation the contribution from the sec-
ond term in Eq. (15) is zero. The red dots and line (left
axis) show 〈τ z(r)〉 along y = 25 �, both extracted from the
numerical data (dots) and calculated using 〈τ(r)〉 = ρ0n(r) =
ρ0R[�(r)]ẑ (line). We see that the charge density indeed ex-
hibits a dipole structure close to the domain wall, as predicted
in Sec. I C. The dipole density calculated from these numerical
results is μ = −0.07942, which is very close to the predicted
value of −1/4π .

In Fig. 2(c) we plot the in-plane component of the pseu-
dospin density 〈τ x(r)〉 (orange, left axis) and physical spin
density 〈sx(r)〉 (blue, right axis) along y = 25 �. The y compo-
nents of both densities are zero everywhere. The dots present
the numerically calculated values and the lines the analytical
results, where 〈τ x(r)〉 was calculated as explained above and
〈sx(r)〉 using Eq. (22). Again we see good agreement between
the analytic expressions and numerical results, and we confirm
our prediction that the in-plane spin density associated with a
simple domain wall also exhibits a dipole structure (qualita-
tively different from the in-plane pseudospin texture).
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FIG. 2. (a) Numerically calculated pseudospin density 〈τ z(r)〉
after applying a rotation defined by �(r) = π

2 [tanh(b x) − 1] ŷ with
b = 0.075/�. We further used N = 601, Ly = 50 �. The pink arrows
indicate the local direction of the vector 〈τ(r)〉. (b), (c) Dots: Line
cuts at y = 25� of numerically calculated values of (b) the z compo-
nent of the pseudospin density (red, left axis) and change in charge
density (black, right axis) and (c) the x component of the pseudospin
(orange, left axis) and physical spin (blue, right axis) densities.
Lines: Same densities calculated analytically, using 〈τ(r)〉 = ρ0n(r),
where n(r) = R[�(r)]ẑ and ρ0 is the background charge density, and
〈sx,y(r)〉 and 〈δρ(r)〉 as given by Eqs. (22) and (15). All densities are
plotted in units of ρ0.

B. Nonuniform domain wall

For further interest, we now create a more complex domain
wall structure in which the axis of pseudospin rotation twists
as a function of y. In this case, the second term in Eq. (15) is
expected to result in extra net charge on top of the dipole,
while the spin density components will also display more
complex patterns.

We use a rotation operator that results in a domain structure
similar to the one before, but instead of implementing a uni-
axial pseudospin rotation along ŷ, we employ a y-dependent
“twisting” rotation axis (sin[2πy/Ly], cos[2πy/Ly], 0); see
Appendix B 2 for the details. The resulting pseudospin texture
is shown in Fig. 3(a). We plot the calculated z component of
the pseudospin density in color scale, and use pink arrows to
indicate the local direction of 〈τ(r)〉; the calculated in-plane
components 〈τ x,y(r)〉 are shown in the two leftmost panels of
Fig. 3(c). The operation UR that we applied indeed results in a
domain wall with an in-plane twist.

In Fig. 3(b) we show the calculated change in charge den-
sity 〈δρ(r)〉 = 〈ρ(r)〉 − ρ0, and in the two rightmost panels in

Fig. 3(c) present the in-plane spin densities. We see that both
〈δρ(r)〉 and 〈sx,y(r)〉 no longer have a clear dipole structure
around the domain wall (as in the case of a uniaxial rotation
studied above), but rather show a net charge and (y-dependent)
spin density localized at the domain wall. Equation (15)
predicts an extra (integrated) charge of 1 to localize at the
domain wall for the “2π twist” we created; numerically we
find an excess charge of 0.996, which agrees well with the ex-
pectation. More generally, we note that a 2nπ twist, where the
rotation axis is (sin[2nπy/Ly], cos[2nπy/Ly], 0), will result in
an extra charge of n electrons bound at the domain wall [20].

To compare the numerical results again with our analytic
expressions, in Fig. 3(d) we show both line cuts of Figs. 3(a)
and 3(b) at y = 25 � (dots) and the analytically calculated
〈τ z(r)〉 (red, left axis) and 〈δρ(r)〉 (black, right axis) along
the same line. Figures 3(e)–3(g) show line cuts of the in-plane
spin densities 〈sx(r)〉 (green) and 〈sy(r)〉 (blue), along y = 25 �

(e), y = 5 � (f), and x = 0 (g); these lines are indicated with
red dotted lines in Fig. 3(c). We again see that all calculated
quantities show good agreement between the numerical re-
sults and our analytic expressions. Based on Eq. (15), the
charge density still has a dipole-like contribution that is of the
same magnitude as in the untwisted domain wall. This con-
tribution, however, is dominated by the second term in (15),
the Pontryagin index density, that results in the localization of
excess charges at the domain wall. The in-plane spin densities
also no longer show a dipole structure, but rather exhibit a
localization of excess in-plane spin close to the domain wall,
similar to the charge density.

III. CONCLUSION AND DISCUSSION

We have thus characterized, both analytically and numer-
ically, the charge and spin textures that arise from smooth
domain walls in Ising quantum Hall ferromagnets, where
the two polarizations (denoted “pseudospin” up and down)
correspond to states with opposite physical spin and different
Landau level index, n ↑ and m ↓. For convenience we worked
in the Landau gauge throughout, but similar considerations
can be applied in other gauges (such as the symmetric gauge)
to study domain walls with other geometries such as domain
wall loops.

The charge and spin textures that we studied may have
important implications for the energetics and dynamics of
domain walls in Ising quantum Hall systems. For example,
the nonzero charge that is associated with domain walls with
a nontrivial internal pseudospin structure (such as the one
investigated in Sec. II B) makes the energy of the domain
wall strongly dependent on its electrostatic environment. This
suggests that there are ways to control domain walls and their
internal structure by electrical means, e.g., via electrostatic
gating. The charge dipole that accompanies all (even neutral)
domain walls will also interact with external electrostatic
potentials and could thus also play a role in the interaction
between domains as well as in the energetics of single domain
walls. We expect our results to be of particular relevance
for the phenomenon of “nuclear electric resonance,” where
radio frequency modulations of electrostatic gates are used to
induce nuclear spin resonance via the nuclear spins’ coupling
to electron spins in such domain walls [26,47]. In this context,
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FIG. 3. (a) Numerically calculated pseudospin density 〈τ z
r〉 after applying the same rotation as in Fig. 2, but now with a y-dependent rotation

axis (sin[2πy/Ly], cos[2πy/Ly], 0). The pink arrows show the in-plane pseudospin “twist” that is created. (b), (c) Numerically calculated
change in (b) charge density compared to the background density and (c) expectation values of the in-plane components of pseudospin and
physical spin density. (d)–(g) Dots: Line cuts of numerically calculated values of expectation values shown in (a)–(c). Lines: Analytic results,
using the same expressions as before. (d) z component of pseudospin density (red, left axis) and change in charge density (black, right axis).
(e)–(g) In-plane physical spin densities (green for 〈sx〉, blue for 〈sy〉), along (e) y = 25 �, (f) y = 5 �, and (g) x = 0; these coordinates are
indicated with the red dotted lines in (c). All densities are again plotted in units of the background charge density, ρ0.

both the electrostatics of the domain walls and their (physical)
spin structures are expected to play important roles.

Throughout this work, we focused on the integer quantum
Hall effect regime. Ising-type domain walls in the fractional
quantum Hall effect regime have also been the subject of
intense experimental interest. Extending our results to the
fractional quantum Hall regime and applying them to mod-
eling of nuclear electric resonance are interesting directions
for future work.
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APPENDIX A: EXPLICIT FORM OF PROJECTED
OPERATORS AND SOME USEFUL IDENTITIES

Here we give the explicit forms of the many-particle wave
function and the projected operators that we defined in the
main text. We construct the homogeneously polarized initial
state using the single-particle states

|ψk〉 =
(

cos(θ/2)|n, k〉
eiφ sin(θ/2)|m, k〉

)
, (A1)

where the explicit forms of the LL wave functions |n, k〉 are
given in Eq. (1), assuming the Landau gauge. Each single-
particle state is thus constructed with a pseudospin polariza-
tion along direction (θ, φ) of the Bloch sphere.
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Using these single-particle states, we write the homoge-
neous many-body state as a Slater determinant,

|�0〉 = 1√
N!

det
{∣∣ψ ( j)

k

〉}
, (A2)

where the index j = 1, . . . , N labels the N particles and k =
2π l/Ly, where l is an integer in the range −(N − 1)/2 � l �
(N − 1)/2 (using odd N). The many-particle rotation operator
UR defined in Eq. (8) is formally a tensor product of single-
particle rotation operators, UR = u(1)

R ⊗ u(2)
R ⊗ · · · ⊗ u(N )

R . The
expectation value of a many-body operator A = ∑

j a( j)

reduces to

〈A〉 = 〈�0|U †
R AUR|�0〉 =

∑
k

〈ψk|u†
R a uR|ψk〉. (A3)

Using the convention for the Fourier transform

f (r) =
∑

py

∫ ∞

−∞
d px fp e−ip·r, (A4)

fp = 1

2πLy

∫ Ly

0
dy

∫ ∞

−∞
dx f (r)eip·r, (A5)

we straightforwardly find the Fourier-transformed projected
pseudospin density operators:

τ̄ x
q = 1

2

1

2πLy

∑
k

(
wn,n

k,q + wm,m
k,q

)( 0 |n, k〉〈m, k + qy|
|m, k〉〈n, k + qy| 0

)
, (A6)

τ̄ y
q = 1

2

1

2πLy

∑
k

(
wn,n

k,q + wm,m
k,q

)( 0 −i|n, k〉〈m, k + qy|
i|m, k〉〈n, k + qy| 0

)
, (A7)

τ̄ z
q = 1

2πLy

∑
k

(
wn,n

k,q |n, k〉〈n, k + qy| 0
0 −wm,m

k,q |m, k〉〈m, k + qy|
)

, (A8)

where wn,m
k,q stands for a Fourier-transformed overlap of LL wave functions ψn,k (r) and ψm,k+qy (r) [see Eq. (1)]:

wn,m
k,q ≡

∫ Ly

0
dy

∫ ∞

−∞
dx ψn,k (r)∗ψm,k+qy (r)eiq·r. (A9)

Similarly we find explicit expressions for the projected physical spin density operators,

σ x
q = 1

2πLy

∑
k

(
0 wn,m

k,q |n, k〉〈m, k + qy|
wm,n

k,q |m, k〉〈n, k + qy| 0

)
, (A10)

σ y
q = 1

2πLy

∑
k

(
0 −iwn,m

k,q |n, k〉〈m, k + qy|
iwm,n

k,q |m, k〉〈n, k + qy| 0

)
, (A11)

σ z
q = 1

2πLy

∑
k

(
wn,n

k,q |n, k〉〈n, k + qy| 0
0 −wm,m

k,q |m, k〉〈m, k + qy|
)

= τ̄ z
q , (A12)

and the projected charge density operator,

ρq = τ̄ 0
q = 1

2πLy

∑
k

(
wn,n

k,q |n, k〉〈n, k + qy| 0
0 wm,m

k,q |m, k〉〈m, k + qy|
)

. (A13)

APPENDIX B: CREATING A PSEUDOSPIN TEXTURE

Using the definitions of the Fourier transforms presented in
Appendix A, we express the operator O in Eq. (8) as

O = 2πLy

∑
η=x,y,z

∑
qy

∫ ∞

−∞
dqx

1

2
�η

qτ
η
−q, (B1)

where

�η
q = 1

2πLy

∫ Ly

0
dy

∫ ∞

−∞
dx �η(r) eiq·r. (B2)

1. Homogeneous domain wall

For the case of the uniform domain wall as considered in
the main text, we used �(r) = (0, f (x), 0) ≡ �y(x)ŷ. Then

the explicit form of O follows as

O = 1

4

∑
k

∫ ∞

−∞
dx f (x)[|φn,k (x)|2 + |φm,k (x)|2]

×
(

0 −i|n, k〉〈m, k|
i|m, k〉〈n, k| 0

)
, (B3)

where

φn,k (x) = 1√
2nn!�

√
π

Hn

(
x − k�2

�

)
e− (x−k�2 )2

2�2 (B4)

is the x-dependent part of the wave function ψn,k (r).
Owing to the fact that �y(x) is only a function of
x, the operator O is diagonal in wave number k. In
this simple case (see below for a counterexample), the

235406-8



CHARGE AND SPIN TEXTURES OF ISING QUANTUM … PHYSICAL REVIEW B 100, 235406 (2019)

function f (x) coincides with the actual rotation function that produces the resulting pseudospin structure, i.e., the vector field

n(r) = R[ f (x)ŷ] (0, 0, 1)T (B5)

is parallel to the resulting 〈τ(r)〉 everywhere. The three-dimensional rotation operator R[u] is defined to produce a rotation over
an angle φ = |u| around the axis ŝ = u/u, and reads explicitly as

R[u] =
⎛
⎝ cos φ + (ŝx )2(1 − cos φ) ŝx ŝy(1 − cos φ) − ŝz sin φ ŝx ŝz(1 − cos φ) + ŝy sin φ

ŝyŝx(1 − cos φ) + ŝz sin φ cos φ + (ŝy)2(1 − cos φ) ŝyŝz(1 − cos φ) − ŝx sin φ

ŝzŝx(1 − cos φ) − ŝy sin φ ŝzŝy(1 − cos φ) + ŝx sin φ cos φ + (ŝz )2(1 − cos φ)

⎞
⎠. (B6)

2. Domain wall with a twist

In Sec. II B we studied twisted pseudospin textures, where the in-plane components of the pseudospin density wind p times
along the domain wall (focusing on the case p = 1 for demonstration). We aim to create a texture described by the rotation
function f (x)(sin[2π py/Ly], cos[2π py/Ly], 0). Starting from a uniform state, we apply the pseudospin rotation in Eq. (8) of the
main text, with O(p) given by

O(p) = 1

4

∑
k

(
0 −i

(
f̃ n
k,p + f̃ m

k,p

)|n, k〉〈m, k + 2π p/Ly|
i
(

f̃ n
k,−p + f̃ m

k,−p

)|m, k〉〈n, k − 2π p/Ly| 0

)
. (B7)

Importantly, O(p) is not diagonal in k space, and its norm is slightly suppressed due to the nonunit overlap between shifted
orbitals φn,k (x) and φn,k+2π p/Ly (x). To achieve the desired rotation, we therefore employ the renormalized weight factors f̃ n

k,p in
Eq. (B7):

f̃ n
k,p =

∫ ∞
−∞ dx f (x)[φn,k (x)]∗φn,k+2π p/Ly (x)∫ ∞

−∞ dx [φn,k (x)]∗φn,k+2π p/Ly (x)
. (B8)
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