
PHYSICAL REVIEW B 100, 235302 (2019)

Second-order topological phases protected by chiral symmetry

Ryo Okugawa,1 Shin Hayashi ,2,3 and Takeshi Nakanishi 2

1WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Sendai 980-8577, Japan
2Mathematics for Advanced Materials-OIL, AIST, 2-1-1 Katahira, Aoba 980-8577 Sendai, Japan

3JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

(Received 1 July 2019; revised manuscript received 11 November 2019; published 4 December 2019)

We study second-order topological insulators and semimetals characterized by chiral symmetry. We investi-
gate topological phase transitions of a model for construction of the two-dimensional second-order topological
insulators protected only by chiral symmetry. By the theory of the phase transitions, we propose a second-order
topological semimetal and insulators with flat hinge bands in chiral-symmetric three-dimensional systems.
The three-dimensional second-order topological phases can be obtained from the stacked two-dimensional
second-order topological insulators with chiral symmetry. Moreover, we show that broken chiral symmetry in the
three-dimensional second-order topological phase allows a second-order topological insulator with chiral hinge
states. We also demonstrate the second-order topological phases by using a lattice model.
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I. INTRODUCTION

Higher-order topological insulators have recently drawn
research interest as new topological crystalline phases [1–38].
Unlike conventional first-order topological insulators, two-
dimensional (2D) second-order topological insulators (SO-
TIs) have topologically protected corner states, and three-
dimensional (3D) SOTIs have topological gapless modes
on the hinges. In some crystalline SOTIs, the topological
corner and hinge states can arise only from the nontrivial
bulk topology, when the lattice termination is compatible
with the crystal symmetries. The crystalline insulators with
the nontrivial second-order topology, which are independent
of the lattice termination, are called intrinsic second-order
topological phases [6–8].

Intriguingly, stacking 2D SOTIs enables the coexistence
of topological gapless surface and hinge states while the
bulk gap is open. The 3D SOTI can be realized by two
anticommuting mirror symmetries [39]. Furthermore, the idea
of the crystalline SOTIs has been extended to semimetallic
phases, which are called second-order topological semimet-
als (SOTSMs) [14–16,20,24,39–41]. SOTSMs have not only
topological hinge states but also topological gapless nodes
in the bulk. The topological hinge states appear between the
gapless points projected onto the hinges.

On the other hand, crystal symmetry is not necessarily
required in order to realize SOTIs [6–8,42–51]. In this case,
the topological classification of the d-dimensional second-
order topological phases is the same as that of the (d −
1)-dimensional first-order topological phases in the Altland-
Zirnbauer classes [6–8,50,51]. The classification is based on
K theory [6–8,50,51], which means that the nontrivial phases
are not fragile. Physically, the corner and hinge states are
understandable as domain wall modes between topologically
trivial and nontrivial boundaries [6–8,52]. Thus, the SOTIs in
the 3D class A and the 2D class AIII are characterized by

Z invariants, which depend on the crystal termination. Such
nontrivial phases are named extrinsic SOTIs [6–8], whose
topology of the corner (hinge) states is determined by both the
bulk and the edges (surfaces). The SOTI phases are realizable
even if we arbitrarily terminate the lattice [6–8,50,51,53].
The topological modes are stable as long as the bulk and the
boundary bands are gapped.

However, we need to calculate a complicated boundary
Hamiltonian to study extrinsic second-order topology in gen-
eral. The phase diagram to search for the SOTI is difficult
to explore analytically without employing crystal symmetry.
Thus, it is useful to give a systematic way to construct
extrinsic SOTIs and the explicit topological invariant for
the phase diagram. Moreover, topological gapless nodes are
characterized by a change of topological invariants for lower-
dimensional insulators in momentum space. Therefore, we
can produce new 3D second-order topological phases from
the phase diagram for the 2D SOTIs.

In this work, we show various second-order topological
phases realized by chiral symmetry. We discuss a simple
method to construct the chiral-symmetric second-order topo-
logical phases. To do so, we develop the previous method
[50,51] for the 2D SOTI protected only by chiral symmetry
in view of the topological phase transition. From our theory,
we also show different 3D second-order topological phases
due to chiral symmetry, and one of them is an unconventional
topological phase which has a single gapless point on the 2D
surface in addition to the topological hinge states. Further-
more, it is found that the 3D SOTI with surface gapless points
can become a 3D SOTI with chiral hinge states by broken
chiral symmetry.

This paper is organized as follows. In Sec. II, we show the
method for the construction of the second-order topological
phases due to chiral symmetry. We demonstrate the topologi-
cal phases by a lattice model constructed from our method in
Sec. III. Our conclusion is summarized in Sec. IV.
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II. SECOND-ORDER TOPOLOGICAL PHASES
CHARACTERIZED BY CHIRAL SYMMETRY

In this section, we study SOTIs and a SOTSM charac-
terized by chiral symmetry in terms of the bulk and edge
gap closings for the topological phase transitions. We give
a simple Hamiltonian to create the 2D SOTIs only by chiral
symmetry and extend it to 3D systems by considering the
translation symmetry.

A. Corner states and topological invariant

First of all, we review construction of 2D SOTIs in class
AIII according to Ref. [50]. We apply the method to 3D
systems with chiral symmetry later. We consider the following
bulk Hamiltonian:

H (k) = Hx(kx ) ⊗ �y + 1x ⊗ Hy(ky), (1)

where Hi(ki ) (i = x, y) are two Hermitian matrices with chiral
symmetry represented as �i. Here, �2

i = 1i, and 1i is the iden-
tity matrix with the same size as Hi(ki ). Because {Hi,�i} = 0
is satisfied, the Hamiltonian in Eq. (1) has chiral symmetry
� = �x ⊗ �y. In this paper, we focus on gap closing at zero
energy because chiral symmetry is present. We impose an
open boundary condition (OBC) with a right-angled corner
[54]. When the model is gapped at zero energy, it can be
characterized by a Z topological invariant given by [50,51]

ν2D = wxwy, (2)

where wi=x,y are conventional winding numbers for Hi(ki ).
The expression of the winding number is given in Ap-
pendix A. The winding numbers distinguish whether the
one-dimensional (1D) bulk Hamiltonians Hi(ki ) are in the
first-order topological phase by chiral symmetry [55–58]. As
discussed in the next section, ν2D is unchanged as long as
the model is gapped at zero energy in the bulk and on the
edges. The system with the nonzero ν2D is a 2D SOTI with
zero-energy corner states.

Indeed, the nonzero ν2D indicates the existence of the cor-
ner states when the edges break the translation symmetries in
the x and the y directions. We consider a semi-infinite system
with one corner for Eq. (1). Because kx and ky are separate in
Eq. (1), the real-space Hamiltonian can be described by two
real-space Hamiltonians of Hx(kx ) and Hy(ky). We denote the
Hamiltonians of Hi(ki ) as HOBC

i . The Hamiltonian under the
corner boundary condition (CBC) can be represented as [54]

HCBC = HOBC
x ⊗ �OBC

y + 1OBC
x ⊗ HOBC

y . (3)

Here, �OBC
y and 1OBC

x are representations of the chiral symme-
try and the identity matrix in the terminated system, respec-
tively. To see topological corner states, we assume that the
bulk and the edges are gapped at zero energy. If both Hx(kx )
and Hy(ky) are topologically nontrivial, i.e., ν2D �= 0, we can
see the corner states with the zero energy as follows. Let φzero

i
be one of the topological zero-energy eigenvectors of HOBC

i
at one zero-dimensional edge from the nonzero wi. Then,
we can find a zero-energy state given by φzero

x ⊗ φzero
y for

HCBC in Eq. (3). By assumption, the zero-energy state should
be a corner state. Generally, we can obtain |ν2D| = |wxwy|
topological corner states because HOBC

i=x,y have |wi| zero-energy

modes. Thus, zero-energy corner states appear when ν2D is
nonzero.

B. Topological phase transitions and gap closing

To grasp the 2D SOTI, we revisit the topological phase
transitions in view of the gap closing. We clarify how the
topological phases for H (k) change when we continuously
deform Hi(ki ). In other words, we can see how the band gap
necessarily closes in the bulk or the edges when ν2D changes.

We assume that the system is in a trivial phase with ν2D =
0 to elucidate the topological phase transitions. Hx(kx ) and
Hy(ky) need to close the band gap to change ν2D = wxwy. To
begin with, we discuss the bulk gap given by Eq. (1). Because
{Hy,�y} = 0, the bulk Hamiltonian satisfies

H (k)2 = Hx(kx )2 ⊗ 1y + 1x ⊗ Hy(ky)2. (4)

Therefore, if and only if Hx(kx ) and Hy(ky) take zero-valued
eigenvalues at the same time, the bulk bands close the gap.
This gap closing can change both wx and wy and thus ν2D.

By contrast, ν2D can change even if Hx(kx ) and Hy(ky)
do not take zero-valued eigenvalues simultaneously. We con-
sider a trivial phase with (wx,wy) = (1, 0). From the above
discussion, when the system enters a nontrivial phase with
(wx,wy) = (1, 1) from the trivial phase, the bulk Hamiltonian
H (k) does not close the band gap. Then, we investigate an
edge normal to the x direction. Namely, we see a semi-infinite
system with the edge along the y direction. Because we retain
periodicity in the y direction, the Hamiltonian under the edge
boundary condition (EBC) can be described as

HEBC
x (ky) = HOBC

x ⊗ �y + 1OBC
x ⊗ Hy(ky). (5)

Although HEBC
x (ky) satisfies a condition similar to Eq. (4),

we note that Hy(ky) determines gap closing on the edge
because Hx(kx ) has nonzero wx. HOBC

x has the topologi-
cal zero mode φzero

x now, and Hy(ky) has Bloch eigenstates
ψny (ky) with the eigenvalues Eny (ky). Therefore, an eigenvec-
tor of HEBC

x (ky) can be obtained from φzero
x ⊗ ψny (ky) because

it satisfies

HEBC
x (ky)

[
φzero

x ⊗ ψny (ky)
] = Eny (ky)

[
φzero

x ⊗ ψny (ky)
]
. (6)

Hy(ky) can effectively describe the edge states near zero
energy thanks to the nontrivial topology of Hx(kx ). Hence,
the gap closes on the edge when Hy(ky) takes zero-valued
eigenvalues.

We also analyze a topological phase transition from the
phase with (wx,wy) = (0, 1) to the phase with (1,1). In this
case, we show that gap closing happens on the edge normal to
the y direction. The Hamiltonian with the edge boundary is

HEBC
y (kx ) = Hx(kx ) ⊗ �OBC

y + 1x ⊗ HOBC
y . (7)

Similarly, we can obtain an eigenstate of HEBC
y (kx ) from

ψnx (kx ) ⊗ φzero
y due to the nonzero wy. ψnx (kx ) is a Bloch func-

tion of Hx(kx ). We can choose φzero
y to satisfy �OBC

y φzero
y =

±φzero
y because this state is a zero-energy mode of HOBC

y .
Therefore, the gap closes on the edge through the eigenvalues
of Hx(kx ).
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FIG. 1. (a)–(c) Schematic drawings of gapless points in the 3D
second-order topological phases. The dots are the gapless points.
The red lines indicate the topological hinge states. (a) The bulk gap
closings give rise to the gapless points. (b) and (c) The gapless points
appear from the surface gap closings, while the bulk is insulating.
The surface gap closes when ν2D(kz ) changes. (d) Schematic drawing
of hinge band evolution for the topological phase transition to the 3D
SOTI induced by broken chiral symmetry.

C. Construction of 3D SOTSMs and SOTIs

Hereafter, we generalize the theory about the 2D SOTI
to 3D systems with chiral symmetry by adding translation
symmetry in the z direction. Since the wave vector kz is added
to Eq. (1) in the 3D systems, the bulk Hamiltonian is given by

H (k) = Hx(kx, kz ) ⊗ �y + 1x ⊗ Hy(ky, kz ). (8)

Thus, we can regard kz as a new parameter leading to the
topological phase transition characterized by ν2D(kz ). The
topological phase transition can occur in momentum space,
in which gap-closing points can emerge due to the chiral
symmetry for the 3D system. Therefore, the phase has the
topological gap-closing points and hinge states at zero energy.
As a result, we can realize a 3D second-order topological
phase by stacking the 2D SOTIs.

The positions of the gapless points depend on how
Hx(kx, kz ) and Hy(ky, kz ) give rise to the topological phase
transitions. Because ν2D(kz ) is periodic for kz, point nodes
always appear in pairs. If Hx and Hy change the winding
numbers wx and wy simultaneously, a SOTSM phase emerges
in the bulk, as shown in Fig. 1(a). The system shows zero-
energy hinge states between the nodes projected onto the
hinges because of the nonzero ν2D(kz ). For example, the
gapless node appears when (wx,wy) changes from (0,0) to
(1,1) in the 3D momentum space.

By contrast, the system can have gapless points on the
surfaces. While the bulk is insulating, the surface gapless
points coexist with topological hinge states. There are two
types of topological phase transitions by the change in kz,
which results in analogs of surface topological semimetals.
We consider the first type where gapless points appear on
the same surface. In this type, either wx or wy changes in
momentum space while the other one is fixed to a nonzero
value, for instance [Fig. 1(b)].

In the second type, we can obtain gapless points on the dif-
ferent surfaces. The point nodes can be found when wx and wy

change in momentum space. We note that this surface gapless
structure is unique to the 3D systems because 2D bulk topo-
logical semimetals necessarily have topological point nodes
in pairs in momentum space [58–62]. As an example, each
surface can have a single gapless point if (wx,wy) changes as
(0, 1) → (0, 0) → (1, 0) → (1, 1) → (0, 1), as illustrated in
Fig. 1(c). In both types, topological hinge states appear at the
zero energy between the gapless points.

Next, we break chiral symmetry in the 3D SOTI with the
gapless points on the surfaces. The gap opens at the point
nodes because the symmetry protection is absent. Hence, we
can discuss a surface Chern insulator due to massive Dirac
cones [44,45,48,63]. In the specific case, we can easily diag-
nose the existence of the gapless hinge states (see Appendix
B). Typically, if the pairs become gapped by broken chiral
symmetry, they can contribute to the surface Chern numbers.
The chiral hinge states appear between the gapped surfaces
on the trivial bulk. Consequently, the system can show the 3D
SOTI phase with chiral symmetry breaking [Fig. 1(d)].

III. MODEL

We study a lattice model to demonstrate the second-order
topological phases realized by chiral symmetry and confirm
our theory in the previous section. The 2D lattice model is
constructed from the Su-Schrieffer-Heeger (SSH) model [64],
which can be transformed to the Benalcazar-Bernevig-Hughes
model [1,2].

A. The 2D SOTI model

We construct second-order topological phases and the
Hamiltonian using the general method from Eq. (1). We study
a 2D tight-binding model described as

H =
∑

R

[tx(c†
RCcRA − c†

RDcRB + H.c.)

+ ty(c†
RBcRA + c†

RDcRC + H.c.)

+ t ′
x(c†

R+x̂AcRC − c†
R+x̂BcRD + H.c.)

+ t ′
y(c†

R+ŷAcRB + c†
R+ŷCcRD + H.c.)], (9)

where x̂ and ŷ are the unit vectors in the x and y directions,
respectively. tx, t ′

x, ty, and t ′
y are real hopping parameters [see

Fig. 2(a)]. We set the lattice constants to unity. The Hamilto-
nian in momentum space is

H (k) =[(tx + t ′
x cos kx )τx + t ′

x sin kxτy] ⊗ σz

+ τ0 ⊗ [(ty + t ′
y cos ky)σx + t ′

y sin kyσy], (10)

where σx,y,z and τx,y,z are Pauli matrices acting on the sub-
lattices and σ0 and τ0 are the identity matrices. The energy
eigenvalues are

E (k) = ±
√∑

i=x,y

[(ti + t ′
i cos ki )2 + (t ′

i sin ki )2]. (11)
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FIG. 2. (a) Schematic drawing of the 2D model for the 2D SOTI.
The unit cell consists of four sublattices. (b) Phase diagram of the 2D
model. The yellow shaded region represents the topological phase.
When (wx,wy ) gives the nonzero ν2D, the gap closing occurs. The
dots on the phase boundary represent the bulk gap closings.

This model actually consists of the two SSH models repre-
sented by

H j=x,y(k j ) =
(

0 t j + t ′
je

−ik j

t j + t ′
je

ik j 0

)
, (12)

and the chiral symmetry is given by

�x,y =
(

1 0
0 −1

)
. (13)

Thus, this 2D model has chiral symmetry � = τz ⊗ σz.
The topological invariant ν2D can be calculated from the

winding numbers w j for H j (k j ). They are given by

w j =
{

1 |t j/t ′
j | < 1,

0 |t j/t ′
j | > 1.

(14)

Hence, we can obtain the phase diagram for the 2D model
from Eq. (2) [Fig. 2(b)]. When the corner boundary condition
is imposed and ν2D = 1, the zero mode appears. In Appendix
C, we show the analytic eigenvector localized at the corner in
this model.

We note that our model in Eq. (10) is topologically equiv-
alent to the Benalcazar-Bernevig-Hughes model, which can
have topological corner modes protected by two anticommut-
ing mirror symmetries [1,2]. Alternatively, we can reinter-
pret the zero-energy corner modes as a manifestation of the
extrinsic second-order topology under the corner boundary
condition in class AIII [51]. Therefore, the corner modes can
remain stable topologically even after the mirror symmetries
are broken. We investigate the stability by breaking the crystal
symmetries in Appendix D.

B. Stacked SOTI model

We stack the 2D SOTI model to demonstrate 3D second-
order topological phases. While we preserve the chiral sym-
metry, we introduce terms depending on kz. The dependence
on kz is determined by how the 2D SOTIs are stacked in the z
direction.

First, we add two terms, 2χ1 cos kzτx ⊗ σz and
2χ2 cos kzτ0 ⊗ σx, to the Hamiltonian in Eq. (10). These
terms effectively alter the hopping terms tx and ty to

tx + 2χ1 cos kz and ty + 2χ2 cos kz, respectively. Hence,
the topological phase transition can happen in momentum
space. When tx + 2χ1 cos kz = ±t ′

x (|ty/t ′
y| � 1) and/or

ty + 2χ2 cos kz = ±t ′
y (|tx/t ′

x| � 1) can be satisfied, the kz

planes have gapless points.
Suppose that tx = ty, t ′

x = t ′
y, and χ1 = χ2. In the pa-

rameter region, we can obtain a SOTSM with the bulk
gapless points. If the parameters change as the red ar-
row in Fig. 3(a), two fourfold-degenerate points appear at
(kx, ky, kz ) = (π, π,± arccos t ′

x−tx
2χ1

) in the bulk. The topolog-
ical hinge states also exist between the projected point nodes,
as shown in Fig. 3(b).

Next, we set χ2 = 0 to see a SOTI with gapless points
on the surfaces. Since ty is fixed, only wx can change in
momentum space. Therefore, we can realize gapless points
on the surface perpendicular to the y direction. For example,
we change tx as the green arrow in the diagram. wx and ν2D

change when tx + 2χ1 cos kz = t ′
x. Figure 3(c) shows the two

surface nodes at (kx, kz ) = (π,± arccos t ′
x−tx
2χ1

) and the zero-
energy hinge states between the two points projected to the
hinges.

Second, we add the new terms (2η cos kz + δtx )τx ⊗ σz

and (2η sin kz + δty)τ0 ⊗ σx, instead of the previous two
terms. The hopping tx (ty) is effectively regarded as tx +
δtx + 2η cos kz (ty + δty + 2η sin kz ). If t ′

x = t ′
y, the modified

hoppings form the circle in the diagram, as depicted in
Fig. 3(a). Thus, the gap closing can occur on the different
surfaces when the circle encloses a phase transition point
accompanied by bulk gap closing. We assume that the circle
encloses the point tx/t ′

x = ty/t ′
y = 1 and that η/t ′

x > 0. Then,

the point nodes appear at (kx, kz ) = (π,− arccos t ′
x−tx−δtx

2η
)

and (ky, kz ) = (π, π − arcsin
t ′
y−ty−δty

2η
) on the surfaces normal

to the y and the x directions, respectively [Fig. 3(d)]. The
anomalous distribution of the point nodes is allowed because
the gap closings both in the bulk and on the surfaces change
the hinge topology, similar to a mirror-symmetric topological
quadrupolar semimetal [39]. To annihilate the surface point
nodes, the gap should close in the bulk.

We emphasize that our Hamiltonian does not need any
crystal symmetries to realize the second-order topological
phases. The 2D chiral-symmetric model can also be char-
acterized by the two mirror symmetries for quantization of
the nested Wilson loop [1,2,39]. However, even if the mirror
symmetries are broken, the hinge flat-band states can survive
as long as the chiral symmetry exists. We can, indeed, see the
protection of the chiral symmetry by breaking the mirror sym-
metries. For example, we introduce the term 2tw1 cos kzτy ⊗
σz + 2tw2 cos kzτ0 ⊗ σy for the case in Fig. 3(c). If tw1,2 � t ′

x,y,
the topological zero modes are stable because ν2D does not
change [Fig. 4(a)].

C. SOTIs with broken chiral symmetry

Finally, we break chiral symmetry to produce a 3D SOTI
from the 3D SOTI with the surface gapless points. The system
belongs to class A. By using our model, we here show that the
SOTI can be realized easily from the surface gapless points in
Fig. 3(c). We add the perturbation 2tm sin kzτz ⊗ σz in order to
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FIG. 3. (a) Trajectories of the hopping parameters in the phase diagram. We put t ′
x = t ′

y = 1 in the numerical calculations. The red (green)
arrow indicates the case where tx = ty = 1.0 and χ1 = χ2 = 0.25 for (b) [tx = 1.0, ty = 0.4, χ1 = 0.25, and χ2 = 0 for (c)]. The blue circle
represents the change in the hopping parameters with tx = ty = 0.5, δtx = δty = 0.3, and η = 0.2 for (d). (b)–(d) The top panels show gap-
closing points from the topological phase transitions, and the bottom panels show the hinge bands in a regular square column with the 15 × 15
unit cells. In (b), the bulk bands are calculated along the line (kx, ky ) = (π, π ). The bulk has the point nodes at kz = π/2 and 3π/2 on the line.
The top panel in (c) shows bands for the surfaces normal to the y direction. The surface bands have nodal points at (kx, kz ) = (π, π/2) and
(π, 3π/2). In (d), the blue and the green bands represent electronic structures for the surfaces normal to the y and the x directions, respectively.
The gapless point in the blue (green) bands is located at (kx, kz ) = (π, 5π/3) [(ky, kz ) = (π, 5π/6)].

obtain the SOTI without chiral symmetry. Figure 4(b) shows
the gapless hinge states which originate from the zero-energy
states.

To understand the topological phase transition, we inves-
tigate the surface normal to the y direction from the discus-
sion in Sec. II B. Because Hy is topologically nontrivial, we
can obtain the surface effective Hamiltonian near the zero
energy by expanding Hxz = (tx + t ′

x cos kx + 2χ1 cos kz )τx +
t ′
x sin kxτy + 2tm sin kzτz (see also Appendix B). The effective

Hamiltonian describes the surface Dirac points with the mass
induced by the broken chiral symmetry.

We can calculate the surface Chern number from the sur-
face Hamiltonian. The effective Hamiltonian near the gapless
points k± ≡ (π,± arccos t ′

x−tx
2χ1

) is given by

H±
eff (q) = −(2χ1 sin k±

z )qzτx − t ′
xqxτy + 2tm sin k±

z τz, (15)

kz
2ππ0

E

-1

1

0

0.5

-0.5

kz
2ππ0

(a) (b)broken mirror symmetries broken chiral symmetry

FIG. 4. The hinge bands for the case of Fig. 3(c) with broken
symmetries. (a) The zero-energy hinge states survive without the
mirror symmetries after the perturbation with tw1 = tw2 = 0.1 is
added. (b) The gapless chiral hinge states emerge by the perturbation
with tm = 0.1.

where q = (qx, qz ) is the wave vector measured from k±.
By the perturbation term, the Dirac cones at k± obtain the
mass gap described as 2tm sin k±

z τz. Because sin k+
z > 0 and

χ1/t ′
x > 0 in the calculation, the surface has a Chern number

of −sgn(tm). As a result, the system becomes the SOTI phase,
which is consistent with the discussion in Appendix B.

IV. CONCLUSION AND DISCUSSION

In the present paper, we have shown that various chiral-
symmetric second-order topological insulators and semimet-
als are realizable. We have suggested the method to con-
struct the second-order topological phases protected by chiral
symmetry. The theory reveals that there are several types of
chiral-symmetric second-order topological phases in three-
dimensional systems and that the topological phases can be
obtained from stacked two-dimensional second-order topo-
logical insulators with chiral symmetry. The zero-energy
hinge states are stable topologically by chiral symmetry.
Particularly, we have discovered the second-order topological
insulator, which has not only hinge bands but also a single
gapless point on the surface thanks to chiral symmetry. In
general, this surface gapless point is not allowed in the two-
dimensional bulk because both the bulk and surfaces need to
contribute topologically. We have also shown that broken chi-
ral symmetry can yield the second-order topological insulator
from the surface gapless points in chiral-symmetric second-
order topological insulators. Our method tells us how to give
extrinsic second-order topology easily in classes A and AIII.

Importantly, if any Hamiltonian with chiral symmetry can
be continuously deformed to Eq. (1) or (8) without the bulk
and surface gap closings, we can distinguish whether the
system has nontrivial second-order topology because the band
topology is unchanged [50,51]. Namely, our theory is useful
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even though the Hamiltonian does not take the form in Eq. (1)
or (8). Thus, our model is available for photonic and phononic
crystals and electric circuits [26–30] because their structures
are flexibly controllable. Theoretically, corner modes in class
BDI are suggested in photonic systems composed of waveg-
uides and of coupled ring resonators with negative hopping
amplitudes [47]. We also expect that our second-order topo-
logical phases can be constructed in waveguide arrays and
that the corner modes are detectable through measurement
of the outgoing intensity distribution of light injected into
a waveguide. Moreover, electric circuits have the possibility
of experimental realization of the second-order topological
phases protected by chiral symmetry because capacitors and
inductors can provide band structures of the circuit Laplacian
[26,65,66]. The nontrivial second-order topological modes in
the electric circuits are measurable by the impedance response
since the zero modes contribute to large resonances at the
boundaries such as corners. Therefore, our model is feasible
in systems with the easily controllable structures.

Additionally, topological stability of gapless nodes is char-
acterized locally by the change of a topological invariant in
momentum space [58–60]. Therefore, the nodal structures
in our paper are allowed in other classes with chiral sym-
metry. Actually, second-order topological phases have been
predicted in superconductors [6–8,10,67–78]. Some of the
topological superconductors are understandable in view of
extrinsic second-order topology [77,78]. Recently, robust Ma-
jorana hinge states were studied in a second-order topological
superconductor as long as the particle-hole symmetry was
preserved [78]. Thus, the extrinsic second-order topological
nodal phases protected by chiral symmetry are expected to
appear in superconductors with time-reversal symmetry.
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APPENDIX A: EXPRESSION OF THE WINDING NUMBER

To describe the topological invariant ν2D in a self-contained
way, we explicitly write the winding number w for the 1D
Hamiltonian with chiral symmetry. To do so, we introduce the
following Q matrix:

Q(k) = 1 − 2
∑
En<0

|ψn(k)〉 〈ψn(k)| , (A1)

where the sum is taken over the eigenstates |ψn(k)〉 below zero
energy. In the basis where the chiral symmetry is diagonal, the
Q matrix can be rewritten as

Q(k) =
(

0 q(k)
q†(k) 0

)
. (A2)

By using the off-diagonal component q(k), the winding num-
ber is defined as [56–58]

w = i

2π

∫ 2π

0
dkTr[q−1∂kq]. (A3)

The winding number w corresponds to the number
of topological edge states in the 1D chiral-symmetric
system.

APPENDIX B: MODEL FOR CHIRAL HINGE STATES

In this Appendix, we give a 3D Hamiltonian which shows
chiral hinge states without the protection of any symmetries.
The Hamiltonian is beneficial to obtain the 3D extrinsic SOTI
in class A. We consider the following bulk Hamiltonian [50]:

HA(k) = Hxz(kx, kz ) ⊗ �y + 1x ⊗ Hy(ky). (B1)

Here, Hxz(kx, kz ) is a Hermitian matrix without symmetry,
and 1x has the same size as Hxz(kx, kz ). Hy(ky) is the chiral-
symmetric Hamiltonian explained in Sec. II. We assume that
the bulk and the surface gaps are open at zero energy. Because
Eqs. (B1) and (1) have the same structure, we discuss the
topological hinge states in a manner similar to Sec. II by
regarding Hxz(kx, kz ) as a 2D bulk Hamiltonian. Therefore,
we define a Chern number Chxz for Hxz(kx, kz ), which gives
the 1D chiral edge states ψchiral. The Chern number Chxz is
defined for the bulk bands below zero energy since the origin
of the energy can be shifted.

To see chiral hinge states in the 3D SOTI, we investigate
the semi-infinite Hamiltonian with one hinge:

HHBC
A (kz ) = HOBC

xz (kz ) ⊗ �OBC
y + 1OBC

x ⊗ HOBC
y . (B2)

We maintain the translation symmetry in the z direction. In the
same way as in Sec. II, we can obtain topological hinge states
ψchiral(kz ) ⊗ φzero

y with the gapless dispersion if Chxz and wy

are nonzero. Thus, we can introduce a Z topological invariant
I = Chxzwy, which characterizes the number of gapless hinge
states [50]. Realistically, Hy can depend on kz. However,
since kz can be interpreted as a parameter in Hy(ky), gapless
hinge states can be detected if the model can be adiabatically
deformed to Eq. (B1).

In comparison with our model in Sec. III C, Hxz is
given by Hxz = (tx + t ′

x cos kx + 2χ1 cos kz )τx + t ′
x sin kxτy +

2tm sin kzτz. The massive Dirac cones on the surface give
the nonzero Chern number Chxz = −sgn(tm). As a result, we
obtain the chiral hinge states from the SOTI with the broken
chiral symmetry.

On the other hand, the phase transition from a SOTSM
to a SOTI with chiral hinge states was also suggested in 3D
systems with parity symmetry [14,40]. The SOTSM hosts
nodal lines topologically protected by parity-time symmetry
in pairs, giving nearly flat hinge bands between the nodal
lines. Time-reversal symmetry breaking in the SOTSM re-
alizes the 3D SOTI, and the nearly flat hinge states be-
come the chiral hinge states in the SOTI. The chiral hinge
states are intrinsically Z2 protected by the parity symmetry
[7,9,10,14,40]. By contrast, our topological phase transition
stems from broken chiral symmetry, and the induced chiral
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FIG. 5. Energy eigenvalues of the 2D SOTI model in a regular
square with the 15 × 15 unit cells. The insets show zero-energy
eigenvalues of the corner modes. We put t ′

x = 0.9, t ′
y = 1, tx = 0.1,

and ty = 0.2 for the calculations. (a) shows the corner modes without
the perturbation. (b) shows the topological stability of the corner
modes in the presence of the perturbation with tpx = 0.2, tpy = 0.1,
and tp = 0.05.

hinge states are characterized by the extrinsic second-order
topology.

APPENDIX C: ZERO-ENERGY STATES OF
THE MODELS

For the model in Eq. (9), we can analytically compute
the topological zero-energy eigenstate. Thus, we can see how
the zero-energy modes are localized. The eigenstate can be
obtained from zero modes of the SSH model. Thus, we focus
on the SSH model corresponding to H j=x,y in Eq. (10), which
is topologically nontrivial if |t j/t ′

j | < 1. Let us label positions
of the unit cell as (nx, ny) (nx,y � 0) in the 2D semi-infinite
real space with one corner [see also Fig. 2(a)]. Since we
can separately calculate the two SSH models in our model,
we denote components of the eigenvector to represent the
n j th unit cell with the two sublattices as φn j

= (φn j ,1, φn j ,2)t

(n j � 0). The boundary condition is given by φ−1,2 = 0.
The components of the zero mode satisfy

t ′
jφ

zero
(n j−1),2 + t jφ

zero
n j ,2 = 0,

t jφ
zero
n j ,1 + t ′

jφ
zero
(n j+1),1 = 0. (C1)

We can find the solution which decays as nj becomes larger
when |t j/t ′

j | < 1. From Eqs. (C1), the solution is

φzero
n j

∝
(

− t j

t ′
j

)n j
(

1
0

)
. (C2)

Thus, the zero-energy state φzero for Eq. (9) can be obtained
from

φzero
nx,ny

∝
(

− tx
t ′
x

)nx
(

− ty
t ′
y

)ny
(

1
0

)
⊗

(
1
0

)
. (C3)

Hence, the zero-energy mode is exponentially localized at the
corner.

We can also describe zero-energy states of the 3D second-
order topological phases in Sec. III C. We give the hopping
parameters kz dependence and write them as t j + f j (kz ). The
3D model hosts the topological flat band if |[tx + fx(kz )]/t ′

x| <

1 and |[ty + fy(kz )]/t ′
y| < 1. Since the system is periodic in

the z direction, we can consider the zero modes by fixing kz

and replacing t j with t j + f j (kz ) in Eq. (C3). As a result, we
can see that the zero modes are localized at the hinge. When
|[tx + fx(kz )]/t ′

x| = 1 and/or |[ty + fy(kz )]/t ′
y| = 1, the hinge

flat band merges into the correspondent gapless points.

APPENDIX D: TOPOLOGICAL STABILITY OF THE
CORNER MODES WITHOUT PROTECTION

OF CRYSTAL SYMMETRIES

Our 2D SOTI Hamiltonian in Eq. (4) does not need pro-
tection of crystal symmetries thanks to the chiral symmetry.
Here, we show the topological stability of the corner modes
by breaking crystal symmetries in the model in Eq. (9).
This also describes the robustness of hinge states in the 3D
chiral-symmetric second-order nontrivial phases, although the
translation symmetry is necessary for the kz dependence. Be-
cause the hinge states are characterized locally in momentum
space by ν2D(kz ), we can understand them as corner modes in
the 2D chiral-symmetric SOTI parametrized by kz. Therefore,
we focus on the corner modes in the 2D SOTIs.

The chiral-symmetric model has twofold-rotational
symmetry and two mirror symmetries with respect to the x
and y axes if tx �= ty and t ′

x �= t ′
y in addition to time-reversal

and particle-hole symmetries. To break the symmetries
except the chiral symmetry, we add a perturbation term,
Hp = ∑

R

∑
αβ[tpx (τy ⊗ σz )αβ + tpy (τ0 ⊗ σy)αβ]c†

RαcRβ +∑
R tp[c†

R+x̂BcRA + c†
R+x̂CcRD + H.c.], in Eq. (9), where the

summation of α and β runs over sublattices A, B, C, and D.
The perturbation preserves the chiral symmetry. Unless the
additional term closes the bulk and edge gaps in the nontrivial
phase, the corner modes are robust even if the Hamiltonian
does not have the form in Eq. (1). Figure 5 shows topological
corner modes in the model. As shown in Fig. 5(b), the corner
modes survive after the perturbation breaking the crystal
symmetries is added. Hence, we can see the topological
stability of the corner modes due to the chiral symmetry.
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