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Electronic energy band parameters of CuInSe2: Landau levels in magnetotransmission spectra
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Magnetotransmission (MT) at magnetic fields up to 29 T was used to study the electronic structure of
CuInSe2 in thin polycrystalline films. The zero field absorption spectra exhibited resolved A, B, and C free
excitons. Quantum oscillations, due to diamagnetic excitons comprising electrons and holes from Landau levels
quantized in the conduction and valence band, respectively, appeared in the MT spectra at fields over 5 T.
Spectral energies of Landau levels and binding energies of the corresponding diamagnetic excitons, theoretically
calculated assuming a quasicubic approximation of the CuInSe2 tetragonal lattice structure, helped to identify the
character of the experimentally observed diamagnetic excitons. Spectral energies of diamagnetic excitons in the
MT spectra with different circular polarizations were used to determine the electron and light hole effective
masses, whereas heavy hole masses as well as the γ and γ1 Luttinger parameters, Ep Kane energy, and F
parameter of the influence of remote bands, as well as their polaron values, were calculated using the Luttinger
theory.
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I. INTRODUCTION

A direct bandgap (Eg) of 1 eV as well as a high absorp-
tion coefficient make the semiconductor CuInSe2 a suitable
material for the absorber layer of solar cells [1]. A record
solar conversion efficiency of 23.3% [2] achieved for such
cells with Cu(In, Ga)Se2-based absorbers (gallium is added
to match the absorption with the solar spectrum) and the
excellent stability of these cells help position them as leading
contenders for thin film photovoltaic (PV) devices. However,
the electronic properties of CuInSe2 are much less understood
than those of Si or binary semiconductors. This lack of
knowledge results in the significant gap between the achieved
performance records and a theoretical efficiency limit of 30%
for single junction PV devices [3]. Improvements in the level
of knowledge of CuInSe2, in general, and of the fundamental
electronic properties in particular would help to accelerate the
solar cell development process and reduce this gap.

The alternation of indium and copper atoms on the cation
sublattice of CuInSe2 generates a small and negative tetrago-
nal distortion τ (τ = 1 − c/2a, where c and a are the lattice
constants) of −0.5%, which splits the valence band into the
A, B, and C subbands [1]. Following a quasicubic model [4]
this splitting can be interpreted as the simultaneous influence
of the spin-orbit �so and crystal-field �cf couplings. In high
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structural quality CuInSe2 single crystals these couplings have
values of 234.7 and 5.3 meV, respectively [5].

Magneto-optical spectroscopy is an efficient tool to study
the electronic properties of semiconductors [6]. However, this
technique achieves the best outcomes when concentrations
of defects are low, which promotes the resolution of clear
excitonic features in the optical spectra. Weak magnetic field
data have been used to analyze excited states of the A and B
free excitons, allowing determination of their binding energies
[7], g factors, hole effective masses, and their anisotropy [8].
The use of strong magnetic fields has allowed demonstration
of fans of Landau levels in absorption spectra of thin poly-
crystalline films of CuInSe2 [9], which exhibited resolved A
and B excitons at zero field [10]. Such fans appear due to the
excitation of electrons and holes from Landau levels in the
conduction and valence band, respectively [11]. Analysis of
the C exciton fan allowed determination of the binding energy
for this exciton, Eg as well as the hole effective mass for the
C valence subband [9]. Analysis of the Landau level fans,
related to the A and B excitons, would provide an opportunity
to calculate a self-consistent set of kp–theory parameters for
the electronic structure of CuInSe2. As well as improving
the general level of understanding of CuInSe2 these band
parameters are also important for technologists developing
solar cells based on this material. The achievement of high
efficiency devices is aided by increasing the mobility of the
carriers, for which an understanding of effective masses is im-
portant. Furthermore the anisotropy of the masses can indicate
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an optimal crystallographic orientation of the absorber along
which the mobility can be increased due to reduced masses for
the carriers. The electron masses are most significant as they
determine the mobility of electrons in the space charge region
of the p-type absorption layer. The dependence of the masses
on band-filling is also technologically important making it
useful to gain understanding of the nonparabolicity.

This study uses analysis of Landau fans in the magne-
totransmission (MT) spectra of thin polycrystalline films of
CuInSe2 to determine the electron and hole effective masses,
the Luttinger and Kane parameters, as well as their polaron
values.

II. EXPERIMENTAL DETAILS

Polycrystalline films of CuInSe2 with a thickness of
1.5 μm and near stoichiometric [Cu]/[In] and [Cu+In]/[Se]
ratios (determined to be 1.01 and 1.00, respectively, by energy
dispersive x-ray analysis) were fabricated on glass substrates
by the selenization of thermally evaporated Cu and In [10].
The surface morphology of these films was examined by
scanning electron microscopy (SEM) using an S-806 (Hitachi,
Japan) microscope at an electron beam energy of 20 keV. The
structural properties and presence of secondary phases of the
films were studied by x-ray diffraction (XRD) using a Brucker
D8 ADVANCE diffractometer.

MT measurements of the films were carried out at 4.2 K
in a helium vapor cryostat placed in the bore of a 20-MW
resistive magnet, providing magnetic fields B up to 29 T, in the
Faraday configuration. The light beam from a 100-W tungsten
halogen lamp was delivered to the film under examination
using optical fibers. The transmitted light was then passed
to the slits of a 0.3 m monochromator also using optical
fibers. The dispersed signal was registered using a liquid
nitrogen cooled InGaAs array detector. A linear polarizer
and a quarter-wave plate were used for circular polarization
resolved measurements. The intensity of the MT spectra I(B)
was normalized using the zero-field spectrum I(0T). The
spectral position of the lines was measured with an accuracy
of 0.1 meV at a spectral resolution of 0.2 meV.

III. RESULTS AND DISCUSSION

Plan view and cross section SEM micrographs, shown in
Figs. 1(a) and 1(b), respectively, demonstrate homogeneous
films with densely packed grains with sizes varying from 0.4
to 0.8 μm. The x-ray diffraction pattern, shown in Fig. 1(c),
reveals the chalcopyrite structure with a (112) preferential
orientation of the grains. The lattice parameters are calculated
to be a = 0.578 nm and c = 1.162 nm, giving a tetragonal
distortion of τ = −0.43%.

Room temperature Hall effect measurements showed the
n-type conductivity of the films, an electron density of
4 × 1016 cm−3 and mobility of 15 cm2/V s.

The zero magnetic field absorption spectrum is shown in
Fig. 2(a) and reveals A and B excitons at 1.0413 and 1.0444,
respectively.

A wide range spectrum exhibiting the A, B, and C exci-
tons is shown in Fig. 2(b). The bandgap energies of EgA =
1.0498 eV, EgB = 1.0528 eV and EgC = 1.2828 eV were cal-
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FIG. 1. SEM micrographs of the CuInSe2 films: plan view (a)
and cross section (b). XRD pattern (c).

culated assuming binding energies of the A, B, and C excitons
of 8.5, 8.4, and 8.5 meV, respectively [7,9]. An evolution
of the normalized, unpolarized MT spectra I(B)/I(0T) with
increasing B is shown in Fig. 3(a). The A and B exciton
ground states dominate the spectra. Their spectral positions
correspond to the minima of the grey scale density. The
spectral position of the features, appearing in the spectra near
the A, B, and C excitons at fields exceeding 5 T, show a
linear dependence on B. This demonstrates achievement of
the strong field limit at which the magnetic field forces exceed
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FIG. 2. The A and B excitons in an absorption spectrum of
CuInSe2 thin films plotted on a linear scale (a). The inset shows
a wider plot with A, B, and C excitons in the zero-field absorption
spectrum plotted on a logarithmic scale (b).
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FIG. 3. The evolution of normalized MT spectra with magnetic
field B (showing Landau fans) measured using nonpolarized light (a),
the higher the normalized intensity I(B)/I(0T) the lighter is the grey
scale density. A normalized MT spectrum measured at 29 T (b).

the Coulomb forces resulting in Landau quantization of the
circular motion of charge carriers in the plane perpendicular
to B. Oscillations of I(B)/I(0T), associated with Landau levels
[11], can also be seen in the MT spectrum measured at 29 T
shown in Fig. 2(b). The spectral region of the A and B excitons
shows clear Landau fans.

The strong field limit can be estimated by the modified
Elliott-Loudon criterion n2(aexc/L)2 � 1, where n is the prin-
cipal quantum number, aexc is the exciton radius, and L =√

ch̄/eB is the magnetic length [11]. For the CuInSe2 ground
state (n = 1) this limit can be achieved at B of 30 T [9].
However, for the first excited state (n = 2) the strong field
limit is reached just above 5 T as can be seen experimentally
in the MT spectra in Fig. 3(a), where Landau level fans
with spectral energies linearly dependent on B become clearly
apparent.

The symmetry of CuInSe2 is described by the space group
D2d

12(I 4̄2d ) (No. 122) with a body-centered-tetragonal lattice
[12]. The primitive unit cell of such a lattice contains two
formula units whereas the crystallographic unit contains four
such units as shown in Fig. 4(a). The atomic arrangement for
this symmetry (occupied Wyckoff positions) is shown in the
upper part of Table I.

Deviations of the lattice symmetry from the cubic one
result in a drastic increase of the number of parameters
required for calculations of the band structure. Therefore, it
is convenient to use a model representing noncubic lattices
with small deviations from the cubic structure as quasicubic
ones.

A quasicubic model, where crystal field induced splitting
of the valence band of hexagonal binary semiconductors,
was described as a result of uniaxial deformations [13], was

FIG. 4. Chalcopyrite lattice structure of CuInSe2 (a), quasicubic
approximation of the lattice structure of CuInSe2 by the randomiza-
tion of the Cu and In atoms positions on the cation sublattice (b).

successfully adopted to analyse Landau levels in MT spectra
of the CdSe hexagonal structure [14]. Another quasicubic
model was recently developed for theoretical analysis of the
electronic structure of CuInS2, a compound isostructural to
CuInSe2 and with τ = −0.8% [1], by randomization of Cu
and In atoms on the cation sublattice [15]. Following this
model we approximated the tetragonal lattice of CuInSe2 by
a quasicubic one making the c lattice constant (along the
tetragonal z axis) equal to the doubled a (along x and y
axes). As a result, the tetragonal unit cell transforms into two
inequivalent cubic (within an accuracy of 0.43%) unit cells.
The Cu and In atoms are then substituted by a virtual Cu/In
atom and Se is shifted by about 8% along the x axis to the
cube diagonal.

After this the body-centered-tetragonal unit cell of CuInSe2

transforms into two identical face-centered-cubic cells reduc-
ing the tetragonal lattice symmetry to an approximately cubic
one.

The symmetry of such a cubic structure is described by
the space group Oh

7(F 4̄3m) (No. 216), with Cu/In and Se
atoms occupying the Wyckoff positions in the unit cell of
the cubic lattice given in the lower part of Table I. The unit
cells of body-centered-tetragonal and face-centered–cubic lat-
tices, shown in Figs. 4(a) and 4(b), are drawn using the

TABLE I. Exact and approximate symmetries of CuInSe2: body-
centered-tetragonal and face-centered-cubic lattice, respectively.

Tetragonal lattice/Atoms Cu In Se

Exact Wyckoff position 2a 2b 4d
Exact site symmetry 4̄ 4̄ 2
x 0 0 0.2293
y 0 0 0.5000
z 0 0.5 0.1250
Quasicubic lattice/Atoms Cu/In Se
Approximate Wyckoff position 1a 1c
Approximate site symmetry 4̄3m 4̄3m
x 0 0.25
y 0 0.25
z 0 0.25
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VISUALIZE code of the Bilbao Crystallographic Server [16].
Similar approximate symmetry approaches have been proved
to be efficient for analysis of lattice vibrations explaining the
presence of line doublets and changes of relative intensity of
allowed spectral lines in phonon spectra [17–19].

In further analysis CuInSe2 is considered as a quasicubic
semiconductor with a bandgap of Eg = [Eg(B) + Eg(A)]/2 =
1.05195 eV and a spin orbital splitting �so = Eg(C) −
Eg = 231.5 meV. The condition �so � �AB, where �AB =
Eg(B) − Eg(A) = 3.0 meV is the crystal field induced splitting
of the topmost valence band, allows determination of the
crystal field parameter in the quasicubic model as �cr =
3�AB/2 = 4.5 meV [14]. The spectral energies of Landau
levels can be calculated using the Pidgeon-Brown determinant
equation [20] in the Aggarwal form [21] assuming shear
deformation. To analyze the effects of strong magnetic fields
we first consider the motion of electrons and holes in the
plane perpendicular to the magnetic field. Quantization of
this motion results in the formation of Landau levels [11].
Then we take into account the Coulomb interaction between
electrons and holes, which results in the formation of an infi-
nite series of one-dimensional states of diamagnetic excitons
corresponding to each Landau level [11]. The energies of
Landau levels for electrons En

± for B along z can be found
as follows:

E±
n = h̄ω0

[
m0

me(ε)
(n + 1/2) ± 1

4
ge

]
, (1)

where h̄ω0 = 2μBB is the
electron cyclotron energy (μB is the Bohr magne-
ton and m0 is the free electron mass), me(ε) is
the electron effective mass at ε, the energy from the bottom
of the conduction band, n is the Landau level number for
electrons (n = 0, 1, 2 . . .), ± indicates the electron spin
projection s = ±1/2 on the magnetic field direction B, and ge

is the electron effective Lande factor.
We neglect the dependence of ge on ε and consider me(ε)

as [22]

m0

me(ε)
= 1 + 2F + Ep

3

[
2

Eg + ε
+ 1

Eg + �so + ε

]
, (2)

where 2F is the contribution of remote bands and Ep =
2m0P2/h̄2 is the Kane energy parameter, whereas P is the
Kane matrix element of the momentum operator, describing
the conduction and valence band coupling, P = ih̄〈S| p̂z|〉/m0.

The energies El,λ of Landau levels for holes from the
topmost valence band can be found as

El,λ = h̄ω0

[
αl,λ + αl,λ1

2
+

(
5

4
− λ2

)

×
√

3l (l + λ + λ1)γ 2 +
(
αl,λ − αl,λ1

)2

4

⎤
⎦, (3)

where l is the Landau level number for holes involved in the
formation of diamagnetic excitons. Each of these hole states
comprises two states from the top of the valence band (mixed
by the magnetic field) with their spin indexes λ and λ1 dif-
fering by 2. Heavy holes with their momentum projection on
Bλ = ±3/2 also admix states with λ1 = 4λ(λ2 − 5/2)/3 =

∓1/2, whereas light holes with projections λ = ±1/2 also
admix states with λ1 = ∓3/2. The αl,λ coefficient is given by

αl,λ = γ1l−(5/4−λ2)(l+λ)γ + λ(γ1−κ )+δ(5/4−λ2),
(4)

where δ = �AB/h̄ω0, γ1 and γ = γ2 = γ3 are effective mass
Luttinger parameters and κ is the magnetic one [22].

Spectral energies of the optically allowed diamagnetic
excitonic transitions can be calculated theoretically as [11

E±
n,M,λ = Eg + E±

n + El,λ − Rn,M,λ, (5)

where Rn,M,λ are binding energies of diamagnetic excitons
formed for the Landau level with electron number n and
hole number l = n − M + 1

2 , where M = ±1/2,±3/2 is the
projection of the hole (belonging to this diamagnetic exciton)
total angular momentum on B. Note that M can be either
equal to λ or λ1. Rn,M,λ can be calculated by solving the
Schrodinger equation (with the Hamiltonian, describing rel-
ative motion of the electron and hole perpendicular to the
magnetic field) within the adiabatic approximation. Such an
equation was solved in Ref. [23] for cubic semiconductors
assuming isotropic effective mass of the electron me = me(0).
However, in order to find the exciton energies from Eq. (5) we
require parameters of the electronic band structure. Some of
them, namely Eg, �cf , and �so, are determined experimentally
in this paper. For me/m0 and mso/m0 we used experimental
values of 0.09 ± 0.01 [24] and 0.31 ± 0.12 [9], respectively.
An absolute value of 1.27 for the effective g factor of the
A free exciton gex was determined in Ref. [8] analyzing low
field Zeeman splitting at B⊥z and assuming an isotropic low
frequency dielectric constant ε calculated as the average value
ε = (ε|| · ε⊥2)1/3 of the theoretically calculated anisotropic
values of ε⊥ = 11.0 and ε‖ = 10.3 [26]. In general, gex

combines the electron ge and hole gh components |gex| =
|ge ± gh|. However, at B⊥z the hole component becomes
vanishing small. Therefore, for isotropic ge we can take
its modulus of 1.27. Calculations were performed for both
polarizations, left (σ+) and right circular polarizations (σ−).
Note, that the transitions with M = +3/2 and s = −1/2 as
well as M = +1/2 and s = +1/2 can be observed for the σ+
polarization, whereas M = −3/2, s = +1/2 and M = −1/2,
s = −1/2 for σ−. This allows us to determine the sign of ge,
as only ge = −1.27 resulted in a good match of the calculated
Landau level energies and the experimental MT spectra.

However, at this stage we do not know γ1, Ep, F, γ and
κ . At first a preliminary estimate of γ1 was calculated as
proposed in Ref. [14]: using the average of experimental
binding energies for the A and B excitons [7] as an effective
Rydberg and assuming the polaron reduced mass μp deter-
mined as 1/μp = 1/mep + γ1, where mep is the polaron ef-
fective electron mass of mep/m0 = 0.093 [7]. Preliminary Ep

and F were then calculated making sure that values of mso and
me, determined in further calculations, were matching their
experimental values of mso/m0 = 0.31 [9] and me/m0 = 0.09
[24], respectively. Preliminary estimates of the parameters
Ep = 13.9 eV, F = 1.16, γ1 = 3.22, γ = 1.0, and κ = 0 were
used to calculate theoretical spectra which were then used
to identify the character of the lines in the experimental MR
spectra.
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FIG. 5. MT spectra measured at 20 T for σ− (a) and σ+ (b)
polarizations (solid lines). The symbols show calculated energies
of diamagnetic excitons comprising an electron (from level n) and
holes from level l = n − M + 1

2 , with M = ±1/2, ±3/2 (upper sign
“+” for σ+ and lower sign “−“ for σ− spectra), λ = ±3/2 for the
heavy hole (� and ◦), and λ = ±1/2 for the light hole (� and x),
respectively.

Experimental MT spectra of CuInSe2 at 20 T for σ− and
σ+ polarizations of the light beam are shown by solid lines in
Figs. 5(a) and 5(b), respectively.

The symbols with drop lines show theoretically calculated
spectral positions of the diamagnetic excitons determined by
solving Eq. (5) and after subtracting corresponding binding
energies Rn,M,λ from the energies of Landau levels. For heavy
holes (symbols � and ◦) λ = ±3/2, whereas, for light holes
(symbols � and x) λ = ±1/2. The length of the lines is arbi-
trary. Figures 5(a) and 5(b) demonstrate a good match of the
theoretical spectral positions with the minima of I(B)/I(0) in
the experimental MT spectra suggesting that these preliminary
parameters can be used to identify the character of the exci-
tons. To determine me and its nonparabolicity we identified
two excitons, present in the MT spectra with opposite circular
polarizations, comprising the same hole with the Landau level
number l and two electrons with the same s: one electron
from Landau level with number n + 1 and the other with
n − 1. Thus, due to selection rules their M values differ by 2
and they were identified in the spectra with opposite circular
polarizations. The energy difference (E±

n+1 − E±
n−1) between

such excitons is related to me and the nonparabolicity αp as
follows:

E±
n+1 − E±

n−1

2h̄ω0
= m0

me
− pc(2n + 1)h̄ω0, n = 1, 2 . . . ,

(6)

where
m0

me(ε)
= m0

me
− αpε and pc = m0

me
αp. (7)

To reduce the statistical errors, generated by the scatter of
the experimental data points, we used the arithmetic average
of the energy differences (E±

n+1 − E±
n−1), calculated for two

series of excitons for 15 and 20 T. The dependence of such an
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FIG. 6. The relative difference of the spectral energies of two
excitons, comprising a hole (with number l) and two different
electrons, with Landau level numbers n + 1 and n − 1 for magnetic
fields of 15 and 20 T plotted on a h̄ω0(2n + 1) scale (c). The relative
difference of the spectral energies of two excitons, comprising an
electron (with number n) and two different holes, with Landau level
numbers l − 1 and l + 1, for magnetic fields of 20 T plotted on a
h̄ω0(2l + 1) scale (d).

average for the two magnetic fields along with the best linear
fit through the experimental points are shown in Fig. 6(a). The
intercept of the fitted line represents the inverse electron mass
m0/me, which determines me/m0 = 0.090 ± 0.002 at ε = 0.

The slope pc of the line in Fig. 6(a) was used to calculate αp =
(0.0045 ± 0.014) eV−1. Its value is also shown in Table II.
Expanding m0

me(ε) given by Eq. (2) in a Taylor series for small
ε enables the relation between nonparabolicity parameter αp

and the Kane energy parameter Ep to be obtained as [25]

αp = Ep
[
2/Eg

2 + 1/(Eg + �so)
]
/3, (8)

giving Ep = (5.55 ± 0.04) eV. This value is close to Ep =
7.95 eV, determined in Ref. [15] for CuInS2. F = 2.61 ± 0.03
was determined at ε = 0 from Eq. (2) assuming that the
nonparabolicity of me is entirely due to the valence band
contribution. Thus, using the determined values of Ep, mso,
Eg, and �so we calculated γ1 = 3.5 ± 1.3 as follows [14]:

γ1 = 1

mso
+ Ep

3

[
1

Eg
− 1

Eg + �so

]
. (9)

Theoretical studies [26] suggested a rather weak anisotropy
of the conduction band with the difference of the electron
mass perpendicular and parallel to the optical axis c of 10%.
Therefore, we expect the determined electron masses me to
be accurate within 10%, although their statistical error of
0.002 m0 is much smaller. The band structure parameters
αp, Ep, and F, calculated using me, should also be weakly
dependent on the orientation of the crystallites in the films.
Their statistical errors are rather small. Increasing the error of

TABLE II. The determined band parameters.

Band parameters γ1 γ me/m0 Ep (eV) F αp (eV−1)

Values 3.5 0.95 0.090 5.55 2. 61 0.0045
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TABLE III. Bare and polaron effective masses of the A and B
valence band holes, mA and mB, respectively.

Masses me/m0 mA‖/m0 mA⊥/m0 mB‖/m0 mB⊥/m0

Bare 0.090 0.6 0.22 0.19 0.39
Polaron 0.093 0.7 0.24 0.20 0.41
Theory [24] 0.083 0.7 0.14 0.12 0.25

me to 0.01m0 does not influence the error of αp and Ep whereas
that of F increases significantly F = 2.6 ± 1.3.

Once the oscillator character of excitons in the MT spectra
is identified we determined effective masses of the heavy
and light holes by analyzing the dependence of the spectral
energy difference between two excitons comprising electrons
from the same electron level n and two different heavy or
light holes with Landau level numbers l − 1 and l + 1. Such
excitons with the M difference of 2 were identified in the
spectra with opposite circular polarizations. The lowest level
of scatter of the experimental data for the light hole Landau
levels with λ = ±1/2 was found for MT spectra at 20 T. These
data along with the best linear fit, plotted on a h̄ω0(2l + 1)
scale, are shown in Fig. 6(b). The intercept of the fitted line
determines the inverse light hole mass, related to the Luttinger
parameters in a model cubic semiconductor with δ = 0, as
[27] m0/mlh = (γ1 + 2γ ) and results in the light hole mass
mlh/m0 = 0.185 ± 0.008. It provides us with an opportunity
to calculate the effective Luttinger parameter γ = 0.95 ±
0.75 using the following expression γ = (m0/mlh − γ1)/2
[27]. This value is also shown in Table II. Heavy hole masses,
determined using similar analysis for the Landau levels with
λ = ±3/2, exhibited a significant scatter of the data making
them unreliable. Therefore instead we used γ1 and γ to
calculate the parallel mh‖ and perpendicular mh⊥ components
of anisotropic effective bare hole masses for the A and B
valence subbands [27]. Under the condition �so � �cr these
masses can be calculated as follows [14]:

mA‖/m0 = 1/(γ1 − 2γ ), (10)

mA⊥/m0 = 1/(γ1 + γ ), (11)

mB‖/m0 = 1/(γ1 + 2γ ), (12)

mB⊥/m0 = 1/(γ1 − γ ). (13)

These calculations resulted in values of mA‖/m0 =
0.6 ± 1.1, mA⊥/m0 = 0.22 ± 0.10, mB‖/m0 = 0.19 ± 0.10
and mB⊥/m0 = 0.39 ± 0.31, respectively. The determined
values are collected in Table III. The density of state
(DOS) bare hole masses of mADOS/m0 = 0.31 ± 0.27 and
mBDOS/m0 = 0.30 ± 0.21 were calculated using the expres-
sion m∗

hDOS = (mh‖m2
h⊥)1/3 for the A and B valence subbands,

respectively. The determined masses are also collected in
Table III. A rather high error of 37% of the γ1 Luttinger
parameter is produced by that of the C valence subband
hole mass which is assumed to be isotropic [8]. Unlike its
conduction band the valence band of CuInSe2 exhibits sig-
nificant anisotropy as has been predicted theoretically [24]

and confirmed experimentally [8]. Therefore, the light hole
mass, determined in our paper for the polycrystalline films, as
well as the γ Luttinger parameter, calculated using this mass,
should be considered as estimates. The errors calculated for
the hole masses of the A and B valence subbands are also high
and only estimates.

The electron mass me, found from the fit in Fig. 6(a),
retained its preliminary value suggesting that another iteration
is not necessary. The contribution to the nonparabolicity due
to the valence band of me, estimated as m0/me − 2F = 5.98,
is close to that due to remote bands, estimated as 2F = 5.22
suggesting that our Ep = 5.55 eV may be underestimated
[27]. However, at this stage we do not take this possibility
into account.

Polaron electron mep = me(1 + αFe/6) and hole mhp =
mh(1 + αFh/6) effective masses are heavier than the bare ones
due to the interaction of the carriers with optical phonons in
polar lattices.

An isotropic Fröhlich coupling constant for the electron
αFe =

√
mee4/2h̄2ε∗2Elo = 0.202, calculated in Ref. [8] for a

longitudinal optical phonon energy Elo of 29 meV [28], and a
high-frequency dielectric constant [26] ε∗, determined as 1

ε∗ =
1

ε∞
− 1

ε
, where ε∞ = (ε‖

∞ × ε⊥2
∞ )1/3, whereas the anisotropic

high-frequency dielectric constants ε
||
∞ = 7.8 and ε⊥

∞ = 8.2
were theoretically calculated in Ref. [26]. This Fröhlich cou-
pling constant was used in Ref. [8] to determine the polaron
electron effective mass mep = 0.093m0.

Following Ref. [29], we calculated an isotropic Fröh-
lich coupling constant for holes αFh = αFe/

√
meγ1 = 0.36

and renormalized the effective Luttinger parameters as γp =
γ /(1 + αFh/6) = 0.9 and γ1p = γ1/(1 + αFh/6) = 3.3. The
polaron effective hole masses calculated with renormalized
Luttinger parameters are shown in Table III. The DOS po-
laron hole effective masses of mADOSp/m0 = 0.33m0 and
mBDOSp/m0 = 0.32m0 were calculated for the A and B va-
lence subbands, respectively. There is good agreement for
mA‖ whereas theoretical mA⊥ is significantly smaller than
that determined in this study. The anisotropy of the A sub-
band hole of 5.5 [8], determined from low field magneto-
photoluminescence experiments on high structural quality
oriented single crystals of CuInSe2, calculated as the ratio
mA‖/mA⊥, is greater than our experimental value of 2.7. This
can be attributed to the scatter of the grain orientation reducing
the anisotropy in the studied films. Hole masses, theoretically
calculated in Ref. [26], also shown in Table III, demonstrate,
an agreement of the anisotropy character.

The polycrystalline nature of the material should also
reduce the accuracy of the determined band structure pa-
rameters. Although the hole masses of the A and B
valence subbands, determined from low field magneto-
photoluminescence data [8], are greater than those determined
in this study they are still within rather broad error bars.

To improve the accuracy of the MT measurements and
that of the band parameters determined using magnetotrans-
mission one should prepare oriented slabs of high quality
single crystals of CuInSe2 exhibiting the A and B free excitons
in their PL and absorption spectra. However, the very high
absorption coefficient of CuInSe2 (of 5 × 105 cm−1 in the
spectral range of the A and B free exciton) [10] requires such
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slabs to be thinned to a micron. MT measurements on these
single crystalline slabs, performed with the field, directed
along the principal crystallographic axes, would reduce the
scatter in the experimental data and allow more accurate band
parameters to be determined.

IV. CONCLUSIONS

Landau fans were observed in MT spectra of thin poly-
crystalline CuInSe2 films. These fans correspond to the re-
combination of diamagnetic excitons, constituting electrons
from the conduction and holes from the valence A, B, and
C subbands, quantized by strong magnetic fields. Spectral
energies of Landau levels and diamagnetic exciton binding
energies were theoretically calculated by representing the
tetragonal lattice structure of CuInSe2 as a quasicubic one

under shear deformation. These calculations helped to identify
the character of the transitions, observed in the MT spectra.
Spectral energies of diamagnetic excitons from the MT spec-
tra with opposite circular polarizations were used to determine
the electron and light hole effective masses, whereas heavy
hole masses as well as the γ and γ1 Luttinger parameters, Ep

Kane energy, and the F parameter of the influence of remote
bands, as well as their polaron values were calculated using
the Luttinger theory.
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