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We consider a (2 + 1)-dimensional Wilson-Fisher boson coupled to a (3 + 1)-dimensional U(1) gauge field.
This theory possesses a strong-weak duality in terms of the coupling constant e and is self-dual at a particular
value of e. We derive exact relations between transport coefficients for a ν = 1 quantum Hall state at the
self-dual point. Using boson-fermion duality, we map the ν = 1 bosonic quantum Hall state to a Fermi sea of
the dual fermion and observe that the exact relationships between transport coefficients at the bosonic self-dual
point are reproduced by a simple random-phase approximation (RPA), coupled with a Drude formula, in the
fermionic theory. We explain this success of the RPA by pointing out a cancellation of a parity-breaking term
in the fermion theory which occurs only at the self-dual point, resulting in the fermion self-dual theory explored
previously. In addition, we argue that the equivalence of the self-dual structure can be understood in terms of
electromagnetic duality or modular invariance, and these features are not inherited by the nonrelativistic cousins
of the present model.
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I. INTRODUCTION

Dualities provide powerful tools for the study of phases of
matter and emergent properties of strongly correlated systems,
often allowing one to derive results not accessible by pertur-
bative methods. Particularly useful are strong-weak dualities
and self-dualities, which, in many cases, provide quantitative
predictions in addition to qualitative insights. Well-known
examples include the two-dimensional classical Ising model
and the one-dimensional quantum Ising model [1]. In both
systems, the location of the phase transition can be found from
the condition of self-duality.

Recently, field-theoretical infrared dualities in 2 + 1 di-
mensions have attracted the attention of the condensed-matter
and high-energy communities. These dualities are the rela-
tivistic version of nonrelativistic flux attachment and can also
be regarded as a higher-dimensional generalization of (1 + 1)-
dimensional bosonization [2,3]. A large number of equivalent
pairs of field theories can be derived from a single “seed”
boson-fermion duality [4,5]. Models in this web of dualities
have found applications in the ν = 1

2 quantum Hall prob-
lem [6], the strongly interacting surface states of topological
insulators [7,8], and the deconfined quantum critical points
[9,10]. Progress has been made in trying to come up with
a microscopic derivation of the seed duality [11–13] and in
extracting quantitative predictions from the dualities [14,15].
In particular, in our previous work [15], we made use of the
self-duality property of a certain theory to derive constraints
on the physical response at the self-dual point.

The goal of this paper is to extend the method of Ref. [15]
to bosonic quantum Hall states. Our model consists of a
(2 + 1)-dimensional [(2 + 1)D] Wilson-Fisher boson coupled
to a U(1) gauge field propagating in (3 + 1) dimensions and
is self-dual at a certain value of the coupling constant. The
self-duality allows one, in analogy with the fermionic case

considered in Ref. [15], to derive nontrivial relations between
transport coefficients at quantum Hall filling factor ν = 1.
These nontrivial relations, Eqs. (21), (22), and (23) below,
include a semicircle law for the conductivities, a relationship
between the thermal Hall angle and the Hall angle, and a
relationship between the bulk thermal Hall conductivity and
the thermoelectric coefficients.

The ν = 1 bosonic quantum Hall state allows an interpre-
tation in terms of a Fermi liquid [16] of composite fermions.
Therefore, one may pose the question. What are the prop-
erties of the composite fermions that guarantee the self-dual
properties of the bosonic theory? In this paper we will show
that it is a discrete symmetry, which we call Tf , which acts
on the composite fermion like a time reversal. The simplest
random-phase approximation (RPA) preserves Tf at any value
of the gauge coupling [17], but beyond RPA the symmetry is
realized only at the self-dual value of the coupling.

This paper is structured as follows. In Sec. II, we first
introduce our notations for the building blocks that will be
used later for constructing the action. In Sec. III, we review
the self-dualities studied in Ref. [15] in a manner that incor-
porates both bosonic and fermionic particle-vortex dualities.
In Sec. IV, we discuss how fractional bosonic quantum Hall
states and the self-dual structures can be understood in terms
of the composite fermions. In particular, we focus on the ν =
1 state and examine how transport properties at the self-dual
point can be understood using a simple fermionic picture. It
is found that there the self-dual point on the bosonic side
corresponds to a self-dual, time-reversal symmetric point on
the fermionic side, and we again elaborate its relation with
electromagnetic duality. Such a simultaneously self-dual and
time-reversal-symmetric structure can be understood in terms
of modular coupling constant and its transformation under
PSL(2,Z). At the end, we give a short summary and discuss
some open directions.
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II. BUILDING BLOCKS

In the field theories that we will consider, the matter
field will be a (2 + 1)-dimensional O(2) Wilson-Fisher (WF)
boson, denoted by φ or φ̃, or a two-component Dirac fermion,
denoted by ψ or χ . When minimally coupled to gauge fields
A, their actions are abbreviated as follows:

Im[φ, A] = |DAφ|2 − |φ|4, (1)

Im[ψ, A] = iψ̄ /DAψ, (2)

where DA = ∂ − iA. To write formulas that can be applied
equally to the bosonic and fermionic cases, we will denote
the matter field by �p, where p = 1 corresponds to the WF
boson and p = 2 corresponds to the Dirac fermion: �1 = φ,
�2 = ψ .

For gauge fields, in this work we mainly consider three
kinds of actions: a (3 + 1)D Maxwell term IM and two types
of (2 + 1)D Chern-Simons (CS) terms, IBF and ICS. They are
given as follows:

IM[A; e] = − 1

4e2

∫
d4x FμνFμν, (3)

IBF[a, A] = 1

2π

∫
d3x εμνλaμ∂νAλ, (4)

ICS[A] = 1

4π

∫
d3x εμνλAμ∂νAλ. (5)

Note that the Maxwell term involves integrating over a (3 +
1)-dimensional space-time. On some occasions, it is conve-
nient to consider its reduction to a nonlocal term in 2 + 1
dimensions [18]:

IP[A; e] = − i

2e2

∫
d3x d3x′ Fμν (x)

1√−∂2
Fμν (x′). (6)

Finally, the action Iθ [A,�θ ] refers to an axion action with a
θ -angle difference �θ across a given domain wall:

Iθ [A,�θ ] = 1

32π2

∫
d4x θ (z)εμνλρFμνFλρ, (7)

where θ (z) has a jump at z = 0, θ (+ε) − θ (−ε) = �θ , and is
constant elsewhere.

III. REVIEW OF SELF-DUAL MIXED-DIMENSIONAL QED

A. Dualities

In this section we review self-dual theories involving
a (2 + 1)-dimensional field theory on a z = 0 brane cou-
pled to a gauge field (3) propagating in (3 + 1)-dimensional
Minkowski space-time. First, let us recall the bosonic [19–21]
and fermionic particle-vortex dualities [6–8]. In our notation,
these dualities can be written in a uniform way,

Im[�p, A] ↔ Im[�̃p, a] + 1

p
IBF[a, A]. (8)

In Eq. (8), Aμ is considered a background (probe) field. We
add to both sides of Eq. (8) a (3 + 1)D Maxwell term (3) and
integrate over Aμ. The duality now becomes

Im[�p, A] + IM[A; e] ↔ Im[�̃p, a] + 1

p
IBF[a, A] + IM[A; e].

(9)

This procedure introduces an exactly marginal coupling
e into the theory. The theories on the two sides of Eq. (8)
are now of the “brane-world” type, with matter living on a
(2 + 1)D “brane” interacting with a (3 + 1)D “bulk” field.
This type of theory can be regarded as a Lorentz-invariant
version of condensed-matter systems, such as graphene or a
superconducting thin film, with noninstantaneous Coulomb
interaction. In the rest of the paper, we often call the tilde
variables �̃p the “composite particles” or “vortices” of the
ordinary matter fields �p.

The operator mapping between the two sides of the duality
can be found by equating the variations of the two sides of
Eq. (8) with respect to A and from the equation of motion
obtained by varying the action on the right-hand side of Eq. (8)
with respect to a,

Jμ
p = 1

2π p
εμνλ∂νaλ, (10)

J̃μ
p = − 1

2π p
εμνλ∂νAλ. (11)

The μ = 0 component reads [22]

ρp = − b

2π p
, ρ̃p = B

2π p
. (12)

The implication of Eq. (12) is that a particle on one side of the
duality maps to a flux on the other side. Moreover, the flux is
double in the fermionic case (p = 2). Next, we can also look
at the relationship between the filling fraction ν = 2πρ/B on
the two sides. From Eq. (12) we find

νν̃ = 2πρp

B

2πρ̃p

b
= − 1

p2
. (13)

Similarly, the spatial components of Eqs. (10) and (11) read

Ji
p = − 1

2π p
εi je j, J̃ i

p = 1

2π p
εi jE j, (14)

where εi j is the antisymmetric tensor, ε12 = −ε21 = 1.
One can take the Gaussian integral over A on the right-hand

side (or the vortex side) of (8). The result is

Im[�p, A] + IM[A; e] ↔ Im[�̃p, a] + IM[a, ẽ], (15)

where

ẽ = 4π p

e
. (16)

The duality is now a strong-weak duality and is reminis-
cent of electromagnetic duality. In particular, there exists a
self-dual point e2 = 4π p at which both sides of the theories
become exactly the same. The latter should be of no surprise
since the coupling adA is an S operation on three-dimensional
a conformal field theory [23,24]. It also helps explain the ex-
istence of the strong-weak duality as a legacy of the modular
symmetry.

One can use duality to constrain the physics at finite
chemical potential and magnetic field. According to Eq. (13),
electromagnetic duality maps a state with filling factor ν to
a state with filling factor ν̃ = −(p2ν)−1. In particular, in the
fermionic case p = 2, the duality maps ν = 1/2 to ν̃ = −1/2;
that is, it maps a filled zeroth Landau level to an empty
one [25]. Combined with time reversal, the duality mapping
can relate the physics at filling factors ν and −ν̃ = (p2ν)−1.
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In particular, at ν = ±p−1 and when the coupling constant
is tuned to the self-dual value, duality combined with time
reversal maps the theory to itself, a fact that we will explored
in the next section.

B. Transport coefficients

We now use duality to put constraints on transport proper-
ties. They include the electronic conductivity σ , thermoelec-
tric tensor α, thermal conductivity in the absence of electric
field κ̄ , and thermal conductivity in the absence of electric
current κ . They are defined by the following identities (with
the p subscript suppressed):

Ji = σ i jE j + αi j∂ jT, (17a)

qi = −T αi jE j − κ̄ i j∂ jT, (17b)

κ = κ̄ − T ασ−1α, (17c)

where qi is the heat current. Similar equations apply to the
dual theory, where all quantities are replaced by their version
with a tilde,

J̃ i = σ̃ i j Ẽ j + α̃i j∂ jT, (18a)

qi = −T α̃i j Ẽ j − ˜̄κ i j∂ jT, (18b)

κ̃ = ˜̄κ − T α̃σ̃−1α̃. (18c)

Note that the temperature T and the heat current qi are
invariant under electromagnetic duality. First, let us look at the
J equation. Using the duality mappings (14), it can be shown
that

σ = − 1

(2π p)2
εσ̃−1ε, (19a)

α = (2π p)σεα̃ = 1

(2π p)
εσ̃−1α̃, (19b)

κ̄ = ˜̄κ − T α̃σ̃−1α̃ = κ̃ . (19c)

Identities similar to Eqs. (19) are explicitly found in Ref. [26],
where hydrodynamics equipped with bulk electromagnetic
duality is studied. In the context of holographic duality, sim-
ilar results, but with different numerical factors, are found in
Ref. [27].

Equations (19) become much more restrictive when a self-
dual structure is present. Let us now consider the self-dual
value e2 = 4π p and self-dual configuration ν = ±p−1, and
for simplicity we consider the response at infinite wavelength
and finite frequency. The conductivity tensor σ , due to rota-
tional invariance, must have the form

σ i j = σxxδ
i j + σxyε

i j . (20)

Under duality, since ν flips sign, σ changes to its transpose.
For instance, σ̃ = σ T . Consequently, we can further simplify
Eqs. (19) and conclude that

σ 2
xx + σ 2

xy = 1

(2π p)2
, (21)

αxy

αxx
= tan

(
π

4
+ θH

2

)
, θH = arctan

σxy

σxx
, (22)

κ̄xy = −κxy = T

2

α2
xx + α2

xy

1/(2π p)
. (23)

The Hall angle θH is a function of ω/T , where T is the
temperature. Although we cannot compute θH at arbitrary T ,
there are two limit cases to be illustrated. In the clean ballistic
limit ω/T → ∞, σxx = 0 and σxy = 1

2π p ⇒ θH = π
2 . In the

opposite hydrodynamic limit T/ω → ∞, σxy = 0, and thus,
θH = 0. These are the main results obtained in the previous
work [15], yet in the present paper we perform the derivation
by putting bosonic and fermionic dualities on equal footing.
In the rest of the paper, we are going to focus on the p = 1
case.

IV. BOSONIC QUANTUM HALL STATE

A. Dual descriptions of the bosonic quantum Hall state

In this section we present the main result, discussing vari-
ous descriptions of our bosonic theory near filling factor ν =
1. A potential way to realize the bosonic quantum Hall states
is by using the rapidly rotating Bose-Einstein condensate
(BEC) [28]. It is anticipated that some quantum Hall states
will emerge as the Abrikosov lattice melts [29]. We will use
the flux attachment picture [30] to guide our intuition.

Particularly interesting is the limiting compressible state
at ν = 1. In analogy with the fermionic Halperin-Lee-Read
(HLR) ν = 1

2 state, this state is expected to be a Fermi
liquid of the composite fermions [31,32]. On the other hand,
numerical studies on the rotating Bose-Einstein condensate
suggested a gapped ground state [29,33], perhaps a Pfaffian
state. The theory considered here differs from the one de-
scribing the rotating BEC by relativistic invariance and the
gauge interactions between the bosons. To simplify further
discussion we will assume no pairing instability of the com-
posite fermions, or if there is such an instability, we are at a
temperature above the critical temperature.

The minimal ingredient to model the bosonic quantum Hall
physics is the Wilson-Fisher boson defined by (1). Making use
of the duality web [4,5,34], the theory on the particle side φ is
dual to a fermionic theory,

Im[φ, A] + IM[A; e] (24a)

�
Im[ψ, a] − 1

2 ICS[a] − IBF[a, A]

− ICS[A] + IM[A; e], (24b)

while on the vortex side φ̃ one has the duality

Im[φ̃, ã] + IBF[ã, A] + IM[A; e] (24c)

�
Im[χ, c] + 1

2 ICS[c] − IBF[c, A] + ICS[A]

+IM[A; e]. (24d)

We define the physical time reversal as the symmetry under
which the Wilson-Fisher boson (24a) is invariant. The naive
time reversal and charge conjugation on the fermionic sides
of the duality will be denoted as Tf and Cf . They act on the
gauge fields as

Tf : α0 → α0, αi → −αi (α = a, c, A), (25)

Cf : aμ → −aμ, cμ → −cμ, Aμ → Aμ, (26)
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and on the fermionic fields ψ and χ in such a way that the
fermionic kinetic terms are invariant.

There are two apparent puzzles: (i) The Lagrangians (24b)
and (24d) map to each other under CfTf . On the other hand,
the mapping between (24a) and (24c) is nonlocal. (ii) Only
one of the four equivalent theories written in Eqs. (24) [the
(2 + 1)-dimensional Wilson-Fisher boson] is manifestly time
reversal invariant, whereas the other theories seem not to be,
at least classically. These puzzles are explained in Ref. [4]:
the invariance under T, manifesting as a classical symmetry
of the Wilson-Fisher boson (24a), emerges on the fermionic
sides as a quantum symmetry, which maps a theory to its dual.
It has also been pointed out in Ref. [34] that particle-vortex
dualities, under bosonization or fermionization, become local
symmetry operations.

We will see in the following that the naive time-reversal
operation on the fermion side of the duality is analogous to the
particle-vortex duality in the Dirac composite fermion theory
[6]. On top of that, after introducing IM there exists a value of
e2 at which the fermionic theories are Tf invariant.

The four theories defined in Eqs. (24) are equivalent, so a
given state can be described in all four theories. A state with
a certain filling factor νφ in the original theory of φ maps to
states with different filling factors in the other three theories.
We can look at the duality mappings given by these theories
by varying Lagrangians with respect to A, a, ã, and c:

Jμ
phys = Jμ

φ = − 1

2π
εμνλ∂νaλ − 1

2π
εμνλ∂νAλ (27)

= 1

2π
εμνλ∂ν ãλ = 1

2π
εμνλ∂νAλ − 1

2π
εμνλ∂νcλ, (28)

Jμ
ψ = 1

4π
εμνλ∂νaλ + 1

2π
εμνλ∂νAλ, (29)

Jμ

φ̃
= − 1

2π
εμνλ∂νAλ, (30)

Jμ
χ = − 1

4π
εμνλ∂νcλ + 1

2π
εμνλ∂νAλ. (31)

First, we look at the zeroth components of (27) and (29):

ρφ = b

2π
+ B

2π
⇒ νφ = 〈b〉

〈B〉 + 1, (32)

ρψ = − b

4π
− B

2π
. (33)

Therefore, if the original boson has νφ = 1, then 〈b〉 = 0. The
ψ fermions have a finite density ρψ = −〈B〉/(2π ) and live in
an average zero magnetic field and therefore can form a Fermi
liquid.

At more general filling fractions, we find

(νφ − 1)

(
νψ + 1

2

)
= −1. (34)

In particular, if ψ forms an integer quantum Hall state with
νψ = n + 1

2 , then

νφ = 1 − 2

2νψ + 1
= n

n + 1
, (35)

which are the Jain sequences for bosons [33]. Equation (35)
is reminiscent of the conventional flux attachment since du-
ality is in essence the relativistic counterpart. Note that if

TABLE I. Some examples of filling fractions under duality map-
ping.

Field ν ν(n = ∞) ν(n = 0)

φ n
n+1 1 0

φ̃ − n+1
n −1 ∞

ψ n + 1
2 ∞ 1

2
χ −1

2(2n+1) 0 − 1
2

we choose νψ = −(n + 1
2 ), then νφ = n+2

n+1 = 2 − n
n+1 . The

transition from filling factor ν to 2 − ν is the “particle-hole”
transformation for bosons, considered in Ref. [35]. Here we
see that a symmetry operation corresponds to the time reversal
of composite fermions, which flips the sign of νψ . However,
since such time reversal is not the symmetry of the fermionic
theory, the physics of the bosonic states with filling factors ν

and 2 − ν are not equivalent.
Straightforwardly, one can make use of Eq. (30) to elimi-

nate A in Eqs. (28) and (31) and derive the mapping between
the filling fractions in the φ̃ and the χ theories. It turns out the
relation is the same as Eq. (34),

(νφ̃ − 1)

(
νχ + 1

2

)
= −1. (36)

Since the theories involving φ and φ̃ are particle-vortex
duals of each other, the connection between the filling factors
in the two theories is given by the standard relation

νφνφ̃ = −1, (37)

and from Eqs. (34) and (36), we obtain

νψνχ = − 1
4 . (38)

In particular, when the original boson is in the Jain state
with νφ = n

n+1 , the χ fermion has filling factor νχ = − 1
2(2n+1) ,

which is a fractional quantum Hall state (a Jain state). The
νφ = 1 state corresponds to νχ = 0, i.e., the half-filled Landau
level of χ . We list some examples in Table I.

B. Fermionic representations of bosonic observables

In Sec. III B we reviewed relations between transport coef-
ficients, Eqs. (19a), (19b), and (19c), in theories that map to
each other under particle-vortex duality. We can also derive
the connection between the transport coefficients between
the bosonic and fermionic sides of each duality (24). We
write down the spatial components of Eqs. (27) and (29) and
introduce the relevant transport coefficients,

Jφ = σφE + αφ∇T = 1

2π
ε e + 1

2π
εE, (39)

Jψ = σψe + αψ∇T = − 1

4π
ε e − 1

2π
εE. (40)

In the same manner as in Ref. [17], the consistency between
the two equations requires

ε

(
σφ − ε

2π

)
ε−1

(
σψ + ε

4π

)
= 1

(2π )2
, (41a)

αφ = − ε

2π

(
σψ + ε

4π

)−1

αψ. (41b)
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In addition to electrical and thermoelectric responses, we fur-
ther look at thermal transport. As the heat current should have
the same form in either of the dual theories, q = −κ̄φ∇T −
αφT E = −κ̄ψ∇T − αψT e, we can then obtain

κ̄φ = κ̄ψ − αψ

(
σψ + 1

4π

)−1

αψT . (41c)

It is straightforward to show these relationships hold with
the replacement φ → φ̃ and ψ → χ .

One can also verify that if the transport coefficients in
the two bosonic (φ and φ̃) theories are related by Eqs. (19)
with p = 1, then Eqs. (41) (and similar equations with the
replacement φ → φ̃ and ψ → χ ) imply that the transport
coefficients in the two fermionic theories satisfy the duality
relations with p = 2. This is consistent with ψ and χ being
related by particle-vortex duality.

C. Transport in self-dual boson: A fermionic view

We now look at the self-dual νφ = 1 state and show that the
constraints that follow from duality can be understood using
the fermionic picture, in which ψ forms a Fermi surface. At
self-duality (σ xx

φ )2 + (σ xy
φ )2 = 1

(2π )2 , and one can parametrize

σ xx
φ = 1

2π
cos θH and σ

xy
φ = 1

2π
sin θH , where θH is the Hall

angle. Using Eq. (41a), we have

σ xx
ψ = 1

4π
tan

(
θH

2
+ π

4

)
, σ

xy
ψ = 0. (42)

In reverse, if the Hall conductivity of the composite fermion
σ

xy
ψ vanishes, then the bosonic conductivity tensor satisfies the

self-duality constraint.
Note that the average magnetic field acting on the compos-

ite fermion is zero, and the vanishing of σ
xy
ψ takes place in

the simple Drude model of transport. It is instructive to derive
all three self-duality constraints for bosonic transport from the
Drude model of the composite fermion. This model gives only
diagonal transport tensors

σ
i j
ψ = σψδi j, α

i j
ψ = αψδi j, κ

i j
ψ = κψδi j . (43)

Plugging σ
i j
ψ into Eq. (41a), we find

σ xx
φ = 1

4π2

σ xx
ψ(

σ xx
ψ

)2 + 1
(4π )2

,

σ
xy
φ = 1

2π
− 1

16π3

1(
σ xx

ψ

)2 + 1
(4π )2

⇒ (
σ xx

φ

)2 + (
σ

xy
φ

)2 = 1

(2π )2
. (44)

Given the above, we can parametrize σφ using the Hall angle.
Then by the same token, using Eqs. (41b) and (42), we find

α
xy
φ

αxx
φ

= 4πσ xx
ψ = tan

(
π

4
+ θH

2

)
. (45)

Finally, we look at the difference κ̄
xy
φ − κ̄

yx
φ . Using Eqs. (41c)

and (42), it is

κ̄
xy
φ − κ̄

yx
φ = 8πT α2

ψ(
16π2σ 2

ψ + 1
) = 8πT α2

ψ cos2

(
π

4
+ θ

2

)
.

To find α2
ψ in terms of αφ , we use (41b) and (45) to get

α2
ψ =1

4
sec2

(
π

4
+ θ

2

)[(
αxx

φ

)2 + (
α

xy
φ

)2
]
,

and as a consequence,

κ̄
xy
φ − κ̄

yx
φ = 2πT

[(
αxx

φ

)2 + (
α

xy
φ

)2
]
. (46)

To summarize, the exact relationships (21), (22), and (23),
which are the consequences of self-duality in the bosonic
theory, can be derived assuming (43) on the fermion side,
which would appear naturally in the simplest Drude model
of transport.

The above “derivation” of the self-duality constraints on
bosonic transport gives rise to a puzzle. If we recall the
derivations in the self-dual QEDs, these identities hold under
two assumptions: (i) e2 = 4π p, and (ii) the matter field is
tuned at self-dual filling ν = 1/p. On the other hand, the
derivation through the fermionic Drude model does not seem
to requires one to tune e2 = 4π . In the literature, a similar
argument was used [17] to derive the semicircle law (21) in
the absence of any self-duality. In the following section, we
explain why the fine-tuning of e2 is required for the derivation
to work.

D. Self-duality and manifest Tf symmetry

In the previous section, we showed that all self-dual prop-
erties of boson field φ can be understood in terms of those of
ψ at the level of Drude approximation. This argument does
not make use of the value of e and thereby is independent
of self-dual structure, implying that the exact relationships
between transport coefficients that we have derived using
self-duality are valid even when the coupling constant is away
from the self-dual point. In this section we show that the naive
argument is not correct and, indeed, the fine tuning of the
coupling constant is required.

We note that those transport properties hold as long as
(σψ, αψ, κ̄ψ , κψ ) have no off-diagonal and parity-breaking
components and are isotropic, being proportional to δi j . We
have also argued that, since the average magnetic field is zero,
Drude approximation indeed gives zero off-diagonal transport
coefficients. However, the approximation neglects gauge field
fluctuations. In a theory where the dynamics of the gauge field
violates parity and time-reversal symmetries, a contribution of
the type depicted in the two-loop self-energy diagram in Fig. 1
necessarily introduces nonzero Hall transport.

It remains for us to explain why at a particular value
of the gauge coupling, namely, the self-dual value e2 = 4π ,
gauge field fluctuations do not lead to nondiagonal transport
coefficients.

To do that, we integrate over A in Eq. (24b) and obtain an
effective action with a nonlocal term for a (a pseudo quantum
electrodynamics in the terminology of Ref. [18]):

Ieff = Im[ψ, a] + e2 − ẽ2

2(e2 + ẽ2)
ICS[a] + IP[a; g], (47)

1

g2
= 1

e2

1

[1 + (4π/e2)2]
= 1

e2 + ẽ2
. (48)
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FIG. 1. In the present work, transport coefficients are defined
as the 1PI diagram in the first line. In the second line, the leading
diagram on the left is given by the RPA, which can be isotropic. As
higher-order diagrams such as the right one in the second line are
included, 〈aa〉 will contribute to parity-violating off-diagonal terms
at general e2 and invalidate the assumption of Drude values.

We see that at e2 = 4π , the integration procedure completely
cancels out − 1

8π
ada in the original Lagrangian. This provides

an explanation for the puzzle: only at this value of e2 would
the off-diagonal transport coefficient in the fermionic theory
remain zero once one goes beyond the mean-field approxima-
tion and integrates over gauge field fluctuations.

Note that the coincidence between self-dual and time-
reversal restoration is also found and discussed in the wire-
construction version of the model [34].

E. Electromagnetic duality revisited

In Sec. IV D we saw that, as e2 = 4π , the fermionic
theories are also tuned to their self-dual point. It is instructive
to examine this fact from the point of view of electromagnetic
duality in the bulk. In this section we show that at e2 = 4π , the
gauge field seen by ψ is the electromagnetic dual of one seen
by χ . To avoid confusion, we introduce an index to distinguish
the gauge field that couples to the matter field in each of the
four theories, so

φ couples to A, ψ couples to aψ,

φ̃ couples to aφ̃ , χ couples to aχ . (49)

For a gauge field whose action contains a (3 + 1)D
Maxwell term IM, one can impose certain orbifold conditions
[15]. For example, in the theory of φ, one can require

Aμ(z) = Aμ(−z), μ = t, x, y,

Az(z) = −Az(−z).
(50)

Such orbifold conditions can be imposed without changing the
theory because the parts of A with opposite parities (odd part
of Aμ and even part of Az) decouple [15].

We first relate fields A and aψ . Using the boundary condi-
tion for the bulk Maxwell equation and the relations between
Jμ
φ , aψ , and A, Eqs. (27) and (29), we have

2π

e2
�Ez = 4π

e2
Ez(0+) = bψ + Bz, (51a)

2π

e2
�B‖ = 4π

e2
B‖(0+) = −eψ − E‖. (51b)

In the formulas that follow, quantities that are discontinuous
across the plane z = 0 will be assumed to be evaluated at z =

+0 unless we explicitly specify otherwise. Next, we perform
an electromagnetic duality transformation in the bulk:

E = −sgn(z)B̃, (52)

B = sgn(z)Ẽ. (53)

Note that we have chosen opposite sign conventions in the
definition of the dual gauge fields E and B on the two sides of
the brane. Equations (51) now can be rewritten as

−4π

e2
B̃z = bψ + Ẽz, (54)

4π

e2
Ẽ‖ = −eψ + B̃‖. (55)

As suggested by this relation, in the dual ψ theory, we extend
gauge fields aψ into the bulk by

(
eψ

bψ

)
= 1

e

(−ẽ e
−e −ẽ

)(
Ẽ
B̃

)
, ẽ = 4π

e
. (56)

The relation between A and aφ̃ was shown previously in
Ref. [15]. Because of particle vortex duality,

ρφ̃ = 1

2π
Bz = 1

2π
Ẽz(0+), (57)

Jφ̃ = 1

2π
εE‖ = − 1

2π
εB̃‖(0+). (58)

aφ̃ is identified on the brane and extended to the bulk with A
(or Ã) via

aφ̃ = 4π

e2
Ã. (59)

Finally, we relate aχ and A using (28), (30), (31), (57), and
(58). After eliminating Jμ

φ̃
, in terms of Ã,

Ẽz = bχ + 4π

e2
B̃z, (60)

B̃‖ = −eχ − 4π

e2
Ẽ‖. (61)

Again, as suggested by this relation, in χ theory we extend aχ

into the bulk by(
eχ

bχ

)
= 1

e

(−ẽ −e
e −ẽ

)(
Ẽ
B̃

)
. (62)

Now we can relate aψ and aχ by these relations:
(

eχ

bχ

)
= 1

e2 + ẽ2

(
ẽ2 − e2 8π

−8π ẽ2 − e2

)(
eψ

bψ

)
. (63)

Therefore, at e2 = 4π ,

eχ = bψ, (64)

bχ = −eψ. (65)

To summarize, at any e2, aφ and A are related by electromag-
netic duality and aψ and aχ can be related by (63). However,
at e2 = 4π , where φ and φ̃ become self-dual, aχ and aψ also
become the electromagnetic duals of each other.
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Continuing this procedure, we may look at the effective
action led by this integration process. Using duality mapping
(29),

ρψ = −bψz

4π
− Ẽz

2π
, (66)

Jψ = − 1

4π
eψ‖ × ẑ + 1

2π
B̃‖ × ẑ. (67)

Inverting (56), the above equations become

eψz = e2 + ẽ2

2

(
ρψ − 1

4π2

(e2 − ẽ2)π

e2 + ẽ2
bψz

)
, (68)

bψ‖ = e2 + ẽ2

2

(
Jψ × ẑ + 1

4π2

(e2 − ẽ2)π

e2 + ẽ2
eψ‖

)
. (69)

Similarly, inverting (62) gives us

eχz = e2 + ẽ2

2

(
ρχ + 1

4π2

(e2 − ẽ2)π

e2 + ẽ2
bχz

)
, (70)

bχ‖ = e2 + ẽ2

2

(
Jχ × ẑ − 1

4π2

(e2 − ẽ2)π

e2 + ẽ2
eχ‖

)
. (71)

Referring to the general theory of axion electrodynamics [36],
these boundary conditions are given by the actions

Im[ψ, aψ ] + IM[aψ, g] + 1

4π2

∫
d4x θ (z)eψ · bψ, (72)

Im[χ, aχ ] + IM[aχ , g] − 1

4π2

∫
d4x θ (z)eχ · bχ , (73)

g2 = e2 + ẽ2, θ (z) = sgn(z)

2

(
e2 − ẽ2

e2 + ẽ2

)
π. (74)

The choice of the θ term accommodates the orbifold boundary
conditions. From this perspective, we learn that in the pres-
ence of the bulk fluctuation, bosonization dualities have the
following structure:

Im[φ, A] + IM[A; e] ↔ Im[ψ, a] + IM[a; g] + Iθ [a; �θ ]

� �
Im[φ̃, Ã] + IM[Ã, ẽ] ↔ Im[χ, a] + IM][a; g] + Iθ [a; −�θ ].

In terms of the bulk field actions, the manifest T-symmetric
point occurs when we flow e2 to ẽ2, tuning �θ = 0.

V. MODULAR INVARIANCE

We have defined the mixed-dimensional QED so that the
gauge field propagates on both sides of the (2 + 1)D brane.
In Ref. [15] we compared this picture with the alternative
picture often used in the literature (for example, in Ref. [4]),
where the brane is the boundary of space and the bulk fields
propagate only on one side of it. There we see that the self-
dual structure is also evident in the latter model, in which
fermion and boson self-dual couplings are g2

f = 4π and g2
b =

2π , respectively.
Let us argue that the fermionic self-dual point g2

f = 4π is
equivalent to g2

b = 2π from this perspective. More concretely,
we consider a bulk electromagnetic action with complex cou-
pling constant τ with a boundary matter minimally coupled
to the bulk field. The mixed Chern-Simons term adA and the
Chern-Simons term AdA are regarded as the results of S and

T. The action of deforming action, via a Gaussian integral, is
rephrased in terms of mapping coupling constants via [23,24]

S[τ ] = − 1

τ
, (75)

T[τ ] = τ + 1. (76)

We denote the bulk action as IM[τ ] and the boundary min-
imally coupled matter action as Ib/f [· · · ]. As a warm-up,
we may recall the fermionic self-dual theories can be stated
concisely as

If [ψ] + IM[τf ] ↔ If [ψ̃] + IM[τ̃f ], (77)

with

τ̃f = ST−2ST−1[τf ] = τf − 1

2τf − 1
. (78)

Similarly, the bosonic self-dual theories are stated as

Ib[φ] + IM[τb] ↔ Ib[φ̃] + IM[τ̃b], (79)

with

τ̃b = S[τb] = − 1

τb
. (80)

The boson-fermion duality states that

Ib[φ] + IM[τb] ↔ If [ψ] + IM[τf ], (81)

where [37]

τf = 1

1 − τb
, TS[τf ] = τb. (82)

At the bosonic self-dual point τb = τ̃b = i, we see fermion
theories are also pinned at the self-dual point τf = τ̃f = 1

2 (1 +
i). To avoid possible confusion, we note that up to a T
operation the self-dual coupling of fermions can also be

τf = −1

2
+ i

2
. (83)

This picture can provide additional understanding of the fact
that the parity-violating term in the effective action vanishes
at the self-dual point. The relation between τφ and τψ is given
by

τφ = − 1

τψ

− 1 = T−1S[τψ ]. (84)

Taking τφ = iτ ′′
φ ,

τψ = − 1

1 + iτ ′′
φ

= − 1

1 + (τ ′′
φ )2

(1 − iτ ′′
φ ). (85)

The parity-invariant condition

Re[τψ ] = −1

2
⇒ τ ′′

φ = 1, Im[τψ ] = 1

2
. (86)

The same argument applies in the reverse, where

τψ = − 1

τφ + 1
= ST[τφ]. (87)

Taking τψ = − 1
2 + i 1

2τ ′′
ψ ,

τφ = 1 − (τ ′′
ψ )2

1 + (τ ′′
ψ )2

+ 2i

1 + (τ ′′
ψ )2

. (88)
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The parity-invariant condition

Re[τφ] = 0 ⇒ τ ′′
ψ = 1, τφ = i. (89)

As a simple exercise, we can also redefine the coupling
constants such that τφ and τψ share the same self-dual point as
found in Refs. [34,38]. Explicitly, we define −1/zf = 2τf − 1
and zb = τb. Equation (82) becomes

zf = zb − 1

zb + 1
. (90)

The self-dual point is moved to zf = zb = i.

VI. CONCLUSION

To summarize, In the first half of the paper we reviewed the
self-dualities led by combining (2 + 1)-dimensional particle-
vortex dualities and 3 + 1 U(1) gauge fields and conjectured
a relation with S duality. Those dualities also imply mappings
between transport properties. In particular, at self-dual points
and self-dual states, these mappings become more concrete

constraints on the entries of transport tensors. In the second
part, we studied the ν = 1 bosonic quantum Hall state using a
description in terms of a Dirac composite fermion. We showed
that the self-duality constraints on transport in the bosonic
theory can be understood very easily as a consequence of the
discrete symmetry of the composite fermion. We hope that the
model studied in this paper will provide additional insights
into the composite fermions in quantum Hall states.
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