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Many key features of the higher-dimensional Sachdev-Ye-Kitaev (SYK) model at finite N remain unknown.
Here we study the SYK chain consisting of N (N � 2) fermions per site with random interactions and hoppings
between neighboring sites. In the limit of vanishing SYK interactions, from both supersymmetric field theory
analysis and numerical calculations we find that the random hopping model exhibits Anderson localization at
finite N , irrespective of the parity of N . Moreover, the localization length scales linearly with N , implying no
Anderson localization only at N =∞. For finite SYK interaction J , from the exact diagonalization we show that
there is a dynamic phase transition between many-body localization and thermal diffusion as J exceeds a critical
value Jc. In addition, we find that the critical value Jc decreases with the increase of N , qualitatively consistent
with the analytical result of Jc/t ∝ 1

N5/2 log N
derived from the weakly interacting limit.
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I. INTRODUCTION

The seminal Sachdev-Ye-Kitaev (SYK) model [1,2]
presents a zero-dimensional cluster consisting of N Majorana
fermions with random all-to-all interactions. In the large-N
limit it is exactly solvable, exhibiting maximal quantum chaos
[2–4], emergent SL(2, R) symmetry, as well as a holographic
dual to dilaton gravity theory in nearly AdS2 geometry [2,3].
Owing to its solvability and intriguing properties, it has stimu-
lated enormous excitement [2,5–46]. In particular, the large-N
limit of the SYK model, after being properly generalized to
higher dimensions [14,33–46], could provide an insightful
and promising avenue to investigate the spectral and transport
properties of non-Fermi-liquid states. Nonetheless, features
of the higher-dimensional SYK models with finite N remain
largely unknown. As the case of finite N is directly relevant
to possible experimental realizations [47–50] of SYK models,
it is desired to understand the characterizing properties of the
higher-dimensional SYK models at finite N .

Here we consider a generic SYK chain model of Majorana
fermions respecting time-reversal symmetry, which includes
four-fermion random interactions and random hoppings be-
tween neighboring sites as shown in Fig. 1 [see Eq. (1) below].
Note that the neighboring fermion hopping on a bipartite
lattice respects the time-reversal symmetry defined as γ j,x →
(−)xγ j,x where γ j,x represents the Majorana fermion with
flavor j =1, . . ., N on site x. Both the random hoppings and
the random interactions are characterized by Gaussian random
variables with zero mean; their variances are given by t2/N
and 3!J2/N3, respectively.

We first consider the noninteracting limit, namely, J =0,
for which the model in Eq. (1) reduces to a one-dimensional
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(1D) random hopping model [51]. The presence of time-
reversal symmetry renders the Majorana system in the BDI
class [52,53]. In particular, when the system size L is odd,
there will be N zero-energy single-particle modes in the band
center due to the particle-hole symmetry. From numerical
calculations, we find that the zero modes are localized for
finite N (both even and odd), which implies that all single-
particle wave functions are Anderson localized. Moreover, our
results show that the localization length scales linearly with
the fermion flavor N , i.e., ξ ∝N , indicating the absence of An-
derson localization only at N =∞. Inspired by the pioneering
work of Refs. [54,55], we further derive the corresponding
supersymmetric field theory and find that the low-energy
physics can be described by the supersymmetric nonlinear σ

model with a vanishing topological θ term. From supersym-
metric field-theory analysis, we obtain that the corresponding
conductance decays exponentially with system size and the
localization length scales linearly with N , consistent with the
numerical calculations.

For the case of finite interactions, by performing ex-
act diagonalization (ED) we show that there is a dynamic
phase transition from the many-body localized (MBL) phase
[56–59] to the thermal diffusive metal phase as the interaction
strength exceeds a critical value Jc. When J < Jc, the tendency
to the MBL phase can be understood perturbatively: a weak
interaction is irrelevant to the Anderson localized phase in
the noninteracting limit so the system remains many-body
localized; namely, sufficiently weak SYK interactions cannot
effectively thermalize the system which is Anderson localized
in the noninteracting limit. Numerically we find that the
dynamic phase transition is characterized by the critical ex-
ponent ν ≈1.1 ± 0.1, which is consistent with previous works
on MBL transition using small system size ED. Moreover,
as shown in Fig. 1(b), we find that the critical interaction
strength Jc needed to thermalize the system decreases with the
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FIG. 1. (a) The schematic representation of the SYK chain
model. (b) The global phase diagram of the SYK chain model at finite
N . The system is in the many-body localized (MBL) phase when the
SYK interaction J is relatively weak, but exhibits thermalization and
diffusion when J exceeds a critical value Jc. Note that the critical
value Jc decreases with increasing N .

increase of N , which is consistent with the analytical result of
Jc/t ∝ 1

N5/2 log N derived from the weakly interacting limit [57].

II. MODEL

We consider the SYK chain model of Majorana fermions:

Ĥ =
∑
x, jk

it jk,xγ j,xγk,x+1 +
∑
x,i jkl

Ji jkl,xγi,xγ j,xγk,x+1γl,x+1

+
∑
x,i jkl

Ui jkl,xγi,xγ j,xγk,xγl,x, (1)

where γ j,x represent Majorana fermions with flavor index
j =1, . . . , N on site x=1, . . . , L. Here Ui jkl,x label the usual
on-site SYK interactions while t jk,x and Ji jkl,x refer to random
hopping and interaction between neighboring sites that are
Gaussian random variables with mean t0 = 0 and variance
〈t2

jk,x〉= t2/N and 〈J2
i jkl,x〉=J2/N3, respectively. The hopping

of Eq. (1) represents the random hopping model in the strong
disorder limit (t/t0 =∞). We shall show below that it is
qualitatively different from the weak disorder limit (t � t0)
in terms of the localization physics studied in the literature
[51,60–62]. It is obvious that the model in Eq. (1) respects
the time-reversal symmetry defined as γ j,x → (−1) jγ j,x. The
time-reversal invariance then forbids onsite quadratic term
iγi,xγ j,x in the Hamiltonian.

In the following, we shall focus on the case of vanish-
ing onsite interactions, namely, Ui jkl,x =0, while varying the
nearest-neighbor SYK interaction strength J with respect to
the hopping strength t . This is partly because the onsite
SYK interactions cannot be defined for the case of N =2
Majorana fermions. In contrast, a finite nearest-neighbor SYK
interaction J is allowed for all N �2, including N =2. As
the case of N =2 is numerically more accessible, we can
obtain more reliable results up to a reasonably large system
size L. Nonetheless, we would like to emphasize that the
general feature of the global phase diagram and the universal
properties of the MBL transitions do not depend on the
specific SYK interactions we consider. In other words, we
expect that characters of the phase diagram and the transitions
obtained for the nearest-neighbor SYK interactions also apply
to the case of onsite SYK interactions. As an illustration,
we calculate the many-body level statistics with solely onsite
SYK interactions for N = 4, the result of which shown in

FIG. 2. (a) For N = 2, 3, 4, we compute both the scaling be-
havior of disorder averaged IPR (a) and ground-state entanglement
entropy (EE) (b) with system size L. The Fermi level is set to zero
in computing the half-chain EE. (c) The representative linear fit of
ξ with N for N = 20, 21, . . . , 76 after 600 disorder realizations with
L = 6001. For clarity, we only show the scaling behavior of one zero
mode for each N and the results for all other zero modes are similar.

Fig. 5 is qualitatively the same as that of the nearest-neighbor
SYK interactions. Consequently, we study the phase diagram
as a function of N and J/t to include the case of N =2, while
setting the onsite interaction to be zero.

III. NONINTERACTING LIMIT

In the noninteracting limit, Eq. (1) is equivalent to the
random hopping model in the strong disorder limit. It was
shown previously that, when N is odd, the zero modes of
the random hopping model in the weak disorder limit are
extended rather than Anderson localized [51,60–62]; it is not
known if the system is Anderson localized or not in the
current strong disorder case, especially for odd-N Majorana
fermions. Thus, we numerically calculate the inverse partici-
pation ratio (IPR) [63] of the zero-mode wave function, which

is defined by IPR =
∑L

x=1(ψ∗
x ψx )2

(
∑L

x=1 ψ∗
x ψx )

2 , where ψx labels a zero-

mode wave function and L denotes the lattice size. Towards
the thermodynamic limit L→∞, the scaling behaviors of
the ensemble averaged IPR can tell if the wave function is
localized (IPR ∝ const), extended (∝ 1

L ), or critical (∝ 1
Lζ with

0<ζ <1). As shown in Fig. 2(a), the IPR saturates to some
nonzero constants with increasing L for N =2, 3, 4, signaling
a very strong localization behavior.

As a benchmark, we also study the scaling behaviors of
the half-chain entanglement entropy (EE) of the ground-state
wave function of the random hopping chain using Klich’s
method [64]. It was shown in Refs. [65,66] that in the non-
interacting system inspecting entanglement properties of the
ground state alone can tell if the system is localized or not. As
shown in Fig. 2(b), the ground-state EE saturates to a constant
value as L→∞ for N =2, 3, 4, implying a localized state.

The scaling behaviors of both the IPR and ground-state EE
with respect to the system size L yield consistent results and
suggest that the single-particle wave functions are Anderson
localized in the noninteracting limit, in contrast to the case
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with constant diagonal hopping [51]. To see if the Anderson
localization persists to larger N , we compute the IPR of
the zero modes up to N = 76 with fixed system size. The
corresponding localization lengths can be extracted from the
relation IPR ∝ 1/ξ [63]. From the log-log plot shown in
Fig. 2(c), we find that the localization length ξ of N ∈ [20, 76]
can fit linearly with N , namely, ξ ∝N for N � 1. It is quite
remarkable that a single linear fit works for both even and odd
N ; no discernible sign of parity oscillations can be observed.
Note that this linear scaling relation of localization length
holds for all zero-mode wave functions.

Although a similar relation was observed in the weak
disorder limit (t � t0) [51,60,67], there is an important and
qualitative distinction with the present strong disorder limit
(t/t0 =∞). For the case of the weak disorder limit, Anderson
localization occurs only for even N while all zero-energy wave
functions are extended for odd N . Consequently, it is natural
to infer that the topological protection of the delocalization
in the wave function for odd N in the weak disorder limit
fails in the strong disorder limit. Indeed, as we shall show
below, the topological θ term in the supersymmetric nonlinear
σ model vanishes in the strong order case for both even
and odd N , consistent with the numerical results discussed
above.

IV. SUPERSYMMETRIC FIELD THEORY

To furnish a firm understanding of numerical results, we
develop a field theory using the supersymmetry approach
[68–71], which is a powerful tool for analyzing noninter-
acting disorder problems. For simplicity, we only sketch
the derivation and the details can be found in the Appen-
dices. While the supersymmetry method was originally devel-
oped to deal with complex fermions, concerning the single-
particle physics the results of the supersymmetry theory ap-
ply for both complex and Majorana fermions as we argue
below. Suppose the single-particle Hamiltonian for Majorana
fermions takes the form of H (γ ) = ∑

it jk,xγ j,xγk,x+1. Imag-
ine there exists an identical “ghost” copy H (γ ′) of the original
H (γ ) such that they add up forming the complex fermionic
Hamiltonian H (χ )=H (γ ) + H (γ ′)=∑

jk[it jk,xχ
†
j,xχk,x+1 +

H.c.] where χ j = (γ 1
j + iγ 2

j )/2 are complex fermion annihi-
lation operators. The localization properties of the complex
fermion model H(χ ) are identical to those of the Majorana
fermion model H (γ ) as they share the same single-particle
matrix it jk,x.

The basic idea of the supersymmetry method is to promote
the original anticommuting fermionic field χ to the superfield
ψ by adding a commuting bosonic counterpart φ, i.e., ψ =
(φ, χ )T , such that the disorder average can be performed at
the very beginning, due to the cancellation of determinants
from the Gaussian integrals of complex and Grassmann vari-
ables. After the disorder average, the partition function can be
written as

Z =
∫
D(ψ̄,ψ ) exp

[
i
∑

n

ψ̄n,μzψn,μ− 2t2

N

∑
n ∈ A
m ∈ B

str gμμ
n gνν

m

]
,

(2)

where summation over repeated indices is assumed, z is the
frequency, str represents the supertrace, and gμμ

n ≡ ψn,μ ⊗
ψ̄n,μ is the superfield bilinear living on A and B sublattices,
respectively (for details see the Appendices). To proceed,
we introduce two auxiliary supermatrix fields Q±

nm ≡ QA,n ±
iQB,m to decouple the quartic term and then integrate out the
superfield ψ to obtain the action in terms of the superfield
Q. The next step is to get the saddle-point solution δS

δQ± = 0.
Then we perform gradient expansions around the ground-state
manifold to identify the low-energy degrees of freedom. The
resulting effective action at z = 0 is

S[T ] = − ξ̃

8

∫
drstr(∂T −1∂T ), (3)

where ξ̃ = N is in units of the lattice constant a.
One key feature of the effective action of Eq. (3) is the

absence of the topological term (N/2) str T −1∂T which, ac-
cording to Refs. [51,67,72], would lead to the delocalized
zero modes for odd N . In other words, the vanishing topo-
logical term in Eq. (3) implies Anderson localization for
both even and odd N . From the effective action in Eq. (3),
it is conceptually straightforward to calculate the physical
observables. For instance, the conductance at a given energy
E is the functional average of the corresponding retarded and
advanced Green functions g(E ) ≡ 〈G(E+)G(E−)〉. However,
the actual evaluation using the supersymmetric nonlinear σ

model is technically complex and we just show the result
here. Using the transfer-matrix method [51], we obtain the
conductance g at zero energy for L � ξ̃ :

g ≈
√

ξ̃

πL
exp

[
−L

ξ̃

]
, (4)

which is consistent with the numerically observed Anderson
localization behavior. Moreover, from Eq. (4), it is clear that
the coupling constant ξ̃ in the effective action of Eq. (3) can
be identified as the localization length, which scales linearly
with N for N � 1. This linear-N localization length for N �1
is consistent with the result obtained from numerical calcula-
tions.

V. FINITE SYK INTERACTIONS

After establishing Anderson localization in the nonin-
teracting limit, we are ready to consider finite interaction
strength, i.e., J >0. To investigate how the interactions can
thermalize the system, we employ ED to calculate the many-
body level statistics of the interacting Hamiltonian of Ma-
jorana fermions in Eq. (1). Assuming that {en} denotes the
many-body energy level in an ascending order, we calculate
the dimensionless ratio r̃n defined by r̃n = min(sn,sn−1 )

max(sn,sn−1 ) , where
sn = en+1 − en [58,73]. For the uncorrelated energy lev-
els obeying Poisson distribution, 〈̃r〉 → 2 ln 2 − 1 ≈ 0.386,
while, for the Gaussian orthogonal ensemble (GOE) of a ran-
dom matrix, 〈̃r〉 → 0.53. When J =0, 〈̃r〉 ≈ 0.386 for N =2
and 4, as shown in Figs. 3(a) and 3(b), respectively, indicating
Poisson distribution that is consistent with the Anderson local-
ized state for finite N . Moreover, 〈̃r〉 increases as J increases,
indicating that the SYK interactions tend to thermalize the
system. For both N =2 and 4, it is clear that 〈r̃〉 between
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FIG. 3. Disorder averaged level statistics for N = 2 (a) and
N = 4 (b). By varying the interaction strength J/t , there are crossings
between adjacent system sizes L. The positions of the crossings
gradually drift to smaller J/t but the trend of slowing down with
increasing L can be seen clearly. The finite-size data collapse for
N = 2 (c) and N = 4 (d) in the vicinity of the crossing points. Jc =
0.23t, ν = 1.1 for N = 2, and Jc = 0.045t, ν = 0.99 for N = 4. All
the results are obtained by setting t1 = 0.5t, t2 = 1.5t .

adjacent system sizes L crosses at a critical interaction
strength Jc, indicating that there is a dynamic quantum phase
transition from the MBL phase (J <Jc) to the thermalized
phase (J >Jc). Due to the finite-size effect, the crossing points
drift gradually towards smaller Jc as L increases, which is
common in the ED studies of many-body localizations [58].
Nonetheless, the tendency of the drift becomes slower for
larger L. Essentially, this implies that Jc is nonzero and the
MBL phase should persist below Jc in the thermodynamic
limit.

To characterize the MBL transitions, we explore the crit-
ical behaviors of the dynamic transition. Around the MBL
transition, 〈r̃〉 should obey a universal scaling function, i.e.,
〈r̃〉 = f [(J − Jc)L1/ν], where ν is the correlation/localization
length critical exponent. By collapsing the data, as shown in
Fig. 3(c), we obtain the critical exponent ν ≈1.1 ± 0.1 for
N =2 (for N =4, the data collapse shown in Fig. 3(d) gives
rise to ν ≈0.99 ± 0.2). In order to improve the quality of
data collapse, we set the variance of the random hopping in
Eq. (1) to be t2

1 /N and t2
2 /N , t1 �= t2, for odd and even bonds,

respectively. The staggered variances significantly shorten
the localization length (which is still proportional to N , as
shown in the Appendices); accordingly, the finite-size effect
decreases for the accessible system size. Our ED calculations
show that the critical exponent ν ≈ 1.1, which is consistent
with previous ED works on MBL transition using small
system size [74–76] and is still quite different from the results
obtained by real-space renormalization studies using large
system size [77–81].

As explicitly shown for the N =2 and 4 SYK chain, the
finite-N effect renders the MBL phase when the interaction
strength J is smaller than a critical value Jc. The value of Jc

of N =4 is smaller than the one of N =2, indicating that Jc

decreases as N increases. Due to the absence of Anderson
localization for N =∞, it is clear that Jc =0 for N =∞.
As the discussion of the SYK models generally relies on a
large-N approximation to control the quantum fluctuations, it
is interesting to further explore how the critical strength Jc

scales with 1/N . In the weakly interacting limit, the energy
scale corresponding to the MBL transition is given by Tc ∼

δξ

λ| log λ| [56,57], where δξ = 1
ρξ

is the average level spacing
of single-particle states within a localization length in the
noninteracting limit. ρ is the average density of single-particle
states per unit volume, and the dimensionless quantity λ=

J
N3/2δξ

characterizes the interaction strength with respect to
the average single-particle level spacing. It is known from
the noninteracting calculations that ξ ∝ N and the average
density of states per unit volume is found to be ρ ∝ t−1N
(see the Appendices), thus δξ ∝ tN−2 and Tc ∝ t2

J
1

N5/2 log N . It
directly leads to a rough estimate of the critical interaction
strength Jc/t ∝ 1

N5/2 log N for the dynamic transition of full
many-body localization (namely, requiring Tc ∼ t where t is
the order of the bandwidth). By using the numerical data
shown in Fig. 3, we estimate that the critical strength scales as
Jc ∝N−η with η≈2.4, which is close to the scaling behavior
of η=5/2 derived from the weakly interacting limit (up to
a logarithmic correction). Note that this scaling is consistent
with the requirement that Jc vanishes at N =∞.

VI. DISCUSSION AND CONCLUDING REMARKS

We have shown that, in the noninteracting limit, all the
single-particle states in the SYK chain at finite N (N � 2) are
localized irrespective to the parity of N , due to the vanishing
topological θ term. Here we conjecture that the same localiza-
tion physics should apply to the other four symmetry classes
in one dimension based on the notion of superuniversality
[67,72,82], which refers to the fact that in one dimension all
five symmetry classes, including classes D and DIII, share
similar low-energy properties. We further showed that the
system enters an MBL phase for weak SYK interactions but
undergoes a dynamic phase transition from the MBL phase to
a thermalized phase when the interaction J exceeds a critical
value Jc with Jc/t ∼ 1

N5/2 log N . Finally, we mention some future
directions related to finite N . For instance, it would be desired
to characterize the thermal phase at finite N in full details
including its Lyapunov exponent, specific heat, and transport
behaviors. Due to the finite-N effect, it is expected that its
characters should be renormalized from its large-N limit.
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APPENDIX A: DERIVATION OF SUPERSYMMETRIC
FIELD THEORY

1. Disorder average

The derivation of the supersymmetric field theory largely
follows the approach developed in Refs. [51,54,67]. The

hopping matrix elements satisfy〈
tμν
nm

〉 = 0, (A1)

〈
tμν
nm tν ′μ′

nm

〉 = λ2

N
δμμ′δνν ′δm,n+1. (A2)

In order to carry out the disorder average, we promote the
fermionic field φ to the two-component superfield:

ψ =
(
ψb

ψ f

)
(A3)

where the subscripts b and f denote the bosonic and fermionic
field variables, respectively. Then we can proceed by integrat-
ing over t :

〈
exp

⎛⎝i
∑

n∈A,m∈B,μν

ψ̄n,μtμν
nm ψm,ν + H.c.

⎞⎠〉
= C

∫
dt exp

⎛⎝i
∑

n∈A,m∈B,μν

ψ̄n,μtμν
nm ψm,ν + H.c. − N

2λ2
Tr t2

⎞⎠

= C
∫

dt exp

⎛⎝−
∑

n∈A,m∈B,μν

∣∣∣∣∣
√

N

2

1

λ
tμν
nm − iλ

√
2

N
ψ̄n,μψm,ν

∣∣∣∣∣
2
⎞⎠ = exp

⎛⎝−
∑

n∈A,m∈B,μν

2λ2

N
ψ̄n,μψm,νψ̄m,νψn,μ

⎞⎠

= exp

⎛⎝−
∑

n∈A,m∈B,μν

2λ2

N
ψn,μψ̄n,μψm,νψ̄m,ν

⎞⎠ = exp

⎛⎝−2λ2

N

∑
n∈A,m∈B,μν

str gμμ
n gνν

m

⎞⎠ (A4)

where C is a normalization constant and we have introduced the bilinear term

gμμ
n ≡ ψn,μ ⊗ ψ̄n,μ. (A5)

In the last two identities of Eq. (A4) we have made use of the cyclic invariance property of the supertrace [71]. Then we arrive
at the partition function Eq. (3) in the main text.

2. Hubbard-Stratonovich transformation

Now we perform the Hubbard-Stratonovich transformation by introducing a pair of supermatrix fields Q±
nm ≡ QA,n ± iQB,m,

where QA,n(QB,m) live on the A(B) sublattice, respectively:

Z =
∫

D(ψ̄, ψ ) exp

⎛⎝i
∑
n,μ

ψ̄n,μzψn,μ − 2λ2

N

∑
n∈A,m∈B,μν

str gμμ
n gνν

m

⎞⎠
×

∫
DQ± exp

⎡⎣−
∑

n∈A,m∈B,μν

(
1

λ

√
1

2N
Q− − iλ

√
2

N
ψn,μψ̄n,μ

)(
1

λ

√
1

2N
Q+ − iλ

√
2

N
ψm,νψ̄m,ν

)⎤⎦
=

∫
DQ±D(ψ̄, ψ ) exp

⎛⎝i
∑
n,μ

ψ̄n,μzψn,μ + i

N

∑
n∈A,μν

ψ̄n,μ(Q+
n,n−1 + Q+

n,n+1)ψn,μ

+ i

N

∑
m∈B,μν

ψ̄m,ν (Q−
m,m−1 + Q−

m,m+1)ψm,ν − N

2λ2

∑
n∈A,m∈B

Q+
nmQ−

mn

⎞⎠. (A6)

The next step is to integrate out ψ and we arrive at

S[Q±] = N

2t2

∑
n

str(Q+Q−) − N
∑
n∈A

str ln(z + Q+
n,n+1 + Q+

n,n−1) − N
∑
m∈B

str ln(z + Q−
m,m+1 + Q−

m,m−1). (A7)
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3. Nonlinear σ model in the strongly disordered limit

It is clear that, for z = 0, the action in Eq. (A7) is invariant under the transformation Q+ → T1Q+T2 and Q− → T −1
2 Q−T −1

1 ,
where T1, T2 ∈ GL(1|1), and GL(1|1) is the generalization of the original fermionic symmetry. The overall factor N enables us
to seek the saddle-point solution, which is exact in the large-N limit. By assuming a uniform ansatz Q± = 1

2 (Q±
n,n+1 + Q±

n,n−1),
from the saddle-point condition ( δS

δQ± = 0) we obtain

Q∓ = 2λ2

z + Q∓ �⇒ Q±
sp = 1

2

(
−z ±

√
z2 + 8λ2

)
. (A8)

To identify the low-energy degrees of freedom for z = 0, we can parametrize Q± by (Q+, Q−) = (PT, T −1P) in Eq. (A7),
where both T, P ∈ GL(1|1) and T stand for massless fluctuation while P is the massive fluctuation that is incompatible with the
symmetry of the ground state.

Let us ignore the massive fluctuations by setting P = 1, and the action is of the form

Sfl[T ] = N
∑
n∈A

str ln (Tn,n+1 + Tn,n−1) + N
∑
m∈B

str ln
(
T −1

m,m+1 + T −1
m,m−1

)
. (A9)

We then expand Tnm as

Tnm = Tn + a

2
∂n,mTn + a2

8
∂2

n,mTn + · · · (A10)

where a is the lattice constant and ∂n,m denote the directional derivative from site n → m. Taking Eq. (A10) into Eq. (A9),

1

N
Sfl[T ] ≈

∑
n∈A

str ln

(
2Tn + a

2
∂n,n+1Tn + a

2
∂n,n−1Tn + a2

8
∂2

n,n+1Tn + a2

8
∂2

n,n−1Tn

)

+
∑
m∈B

str ln

(
2T −1

m + a

2
∂m,m+1T −1

m + a

2
∂m,m−1T −1

m + a2

8
∂2

m,m+1T −1
m + a2

8
∂2

m,m−1T −1
m

)

≈
∑
n∈A

str ln 2Tn −
∑
m∈B

str ln 2Tm + a2

16

∑
n∈A

(
T −1

n ∂2
n,n+1Tn + T −1

n ∂2
n,n−1Tn

) + a2

16

∑
m∈B

(
Tm∂2

m,m+1T −1
m + Tm∂2

m,m−1T −1
m

)
≈ a2

16

∑
n∈A

(
T −1

n ∂2
n,n+1Tn + T −1

n ∂2
n,n−1Tn

) + a2

16

∑
m∈B

(
Tm∂2

m,m+1T −1
m + Tm∂2

m,m−1T −1
m

)
, (A11)

where we have made use of the fact that
∑

m∈B ∂n,mTn = 0. By taking the continuum limit
∑

n∈A → 1
2a

∫
, Eq. (A11) can be

written as

Sfl[T ] = Na2

8

[∑
n∈A

str
(
T −1

n ∂2Tn
) +

∑
m∈B

str
(
Tm∂2T −1

m

)] � Na

16

∫
str(T −1∂2T + T ∂2T −1) = −Na

8

∫
str(∂T −1∂T ) (A12)

where the integration by parts is used in the last equality.

APPENDIX B: LEVEL STATISTICS AT LARGE
J/t AND ONSITE U

As shown in Fig. 4, as J/t increases, the 〈r〉 value increases
towards the GOE value 0.531, for both N = 2 and 4.

FIG. 4. The level statistics at large J/t for N = 2 (a) and N = 4 (b).

Now we instead consider the onsite SYK interaction U
while setting J = 0. As shown in Fig. 5(a), the 〈r〉 value
asymptotes to Poisson and GOE values at small and large U/t
limits, respectively. If we zoom in, as shown in Fig. 5(b), we

FIG. 5. The level statistics as a function of U/t for N = 4 and
J = 0.
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can see there is a crossing around U/t ≈ 0.13, indicating a
dynamical MBL phase transition.

APPENDIX C: DENSITY OF STATES AND LOCALIZATION
LENGTH IN THE NONINTERACTING LIMIT

In the noninteracting limit, there are N×L single-particle
states in total. Therefore, the single-particle density of states
ρ per unit length can be found as

ρ = NL

L

1

�E
= N

�E
, (C1)

where �E is the total bandwidth. As shown in Fig. 6(a), �E/t
saturates to constant as N → ∞ with fixed L. Consequently,
we conclude that ρ ∝ N/t .

In addition, we also computed the localization length ξ in
the presence of dimerization. The data shown in Fig. 6(b)
give rise to ξ ≈ 0.22Nα with α = 1.04 ± 0.04, while in

FIG. 6. (a) �E as a function of 1/N with N ∈ [10, 48]. (b) The
log-log plot for the localization length ξ as a function of N with N ∈
[15,35]. The system size L = 1001. All the results are obtained by
setting t1 = 0.5t and t2 = 1.5t .

the uniform case mentioned in the main text we have ξ ≈
0.38N1.02±0.02. So we find in both cases that ξ always scales
linearly with N and the dimerization effectively shortens the
localization length ξ .
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