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Cumulants and scaling functions of infinite matrix product states
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The order parameter cumulants of infinite matrix product ground states are evaluated across a quantum phase
transition. A scheme using the Binder cumulant, finite-entanglement scaling, and scaling functions to obtain
the critical point and exponents of the correlation length and cumulants is presented. Analogous to the scaling
relations that relate the exponents of various thermodynamic quantities, a cumulant exponent relation is derived
and used to check the consistency and relationship between the cumulant exponents. This scheme gives a
numerically economical way of accurately obtaining the critical exponents. Examples of this scheme are shown
for four one-dimensional models—the transverse field Ising model, the topological Kondo insulator, the S = 1
Heisenberg chain with single-ion anisotropy and the Bose-Hubbard model. A two-dimensional model is also
exemplified in the square lattice transverse field Ising model on an infinite cylinder. These exemplary systems
portray a variety of local and string order parameters as well as phase transition classes that can be studied with
the scaling functions and infinite matrix product states.
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I. INTRODUCTION

One of the cornerstones of quantum mechanics is the pos-
tulate that all information of a quantum system is contained
in its wave function. From a practical perspective, storing and
manipulating quantum wave functions can be a costly ordeal.
This is due to the inherent nature of the Hilbert space of
quantum systems, specifically, the size of the Hilbert space
and its scaling with the number N of particles of d degrees
of freedom is dN , i.e., it scales exponentially with system
size. Thus, capturing the information of merely 300 two-state
particles would require 2300 bits, a number so large that it
would bankrupt the visible universe of its information-storage
capacity. This motivates the necessity to concisely represent
a wave function while revealing the important physics in
question.

In the field of low-dimensional many-body quantum
physics, a class of ansatz known as tensor network states has
been successful in faithfully representing the states of various
gapped and gapless phases described by Hamiltonians with
local interactions. This success is attributed to the entangle-
ment structure that these physical systems possess, namely
where the amount of entanglement entropy is constrained
by the system’s physical dimension D [1]. For example, in
gapped systems of size L, the entanglement entropy S of the
ground state is proportional to LD−1. This is known as the
“area law of entanglement entropy” and it holds true as long
as the system possesses a nonzero energy gap. At a critical
point however, the system’s energy gap vanishes and the
entanglement entropy violates the area law. In one dimension
(1D), Ref. [2] has shown that S diverges logarithmically with
L. This drastic change of behavior in the entanglement entropy
and its ease of computation via tensor network states has made
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it a viable tool in identifying critical points—by continuously
tuning a Hamiltonian parameter, the entanglement entropy
would gradually increase approaching the critical point and
peaks at the critical point.

Unlike a finite system of size L, an infinite translationally
invariant system has no notion of boundaries that allows one
to specify the size of the system. Thus, the common notion
of length in such systems is the correlation length ξ of some
quasiparticle excitation. Being inversely proportional to the
energy gap, ξ diverges at a critical point. The tensor network
state used to represent an infinite translationally invariant 1D
systems is known as an infinite matrix product state (iMPS)
given as

|ψ〉 =
∑
{si}

(· · · Asn Asn+1 · · · ) |· · · snsn+1 · · ·〉 (1)

for a one-site unit cell. Asi is an m × m matrix and the
superscript si represents an element of the d-dimensional local
Hilbert space at site i. The quantity m is called the bond
dimension, and it is a controllable parameter that governs the
maximum amount of entanglement that the state can possess.
Since m is finite, the peak of S at the critical point does not
diverge to infinity, but instead saturates to a value that depends
on m. The parameter value that corresponds to the maximum S
is known as a “pseudocritical point” and has been thoroughly
studied in Ref. [3] where it was shown that S ∝ log mκ . κ is
the finite-entanglement scaling exponent—a quantity related
to the central charge of the critical point [4]. More importantly,
by using finite-entanglement scaling, the authors of Ref. [3]
presented a scheme to extract κ from various universal quan-
tities such as the correlation length, entropy, magnetization
order parameter, etc. Analogous to finite-size scaling in finite
systems, where critical exponents are extracted by scaling
data of universal quantities at the critical point with respect
to L, the scheme describes extracting the critical exponents
by scaling data with respect to m. In addition to this, the
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scaling function of the magnetization order parameter relates
the magnetization at different values of m to each other across
the critical point. This is again analogous to scaling functions
in finite systems where such functions relate universal data of
different system sizes to each other. Using the known value
of the critical point, the authors used this scaling function to
determine κ by selecting the value of κ that gave the best
data collapse of the magnetization of several different values
of m. Though not done in Ref. [3], the scaling functions
could also be used to locate and fine-tune both the critical
point and κ simultaneously. This is motivated by the fact that
the magnetization scales as a power law of m at the critical
point and thus its ability to detect the critical point is more
pronounced than S which scales logarithmically with m at
the critical point. More importantly, generalizing and applying
these scaling functions to other universal quantities allows one
to determine other critical exponents such as the correlation
length exponent ν and higher order cumulant exponents—all
of which are presented in this work.

While an order parameter M is an invaluable tool in dis-
cerning phases and locating critical points, there is more infor-
mation available in its distribution function. Even though this
distribution is typically difficult to obtain, it is still possible to
gain information about the distribution from the cumulants κn

and the higher moments μn = 〈Mn〉 of the order parameter. In
probability theory, the cumulants specify the shape of a given
distribution. The first cumulant is the mean value

κ1 = 〈M〉 , (2)

the second cumulant is the variance

κ2 = 〈M2〉 − 〈M〉2 , (3)

the third cumulant is the skewness

κ3 = 〈M3〉 − 3 〈M2〉 〈M〉 + 2 〈M〉3 , (4)

and the fourth cumulant is the kurtosis

κ4 = 〈M4〉 − 4 〈M3〉 〈M〉 − 3 〈M2〉2

+ 12 〈M2〉 〈M〉2 − 6 〈M〉4 . (5)

Besides probability theory, a modification of the fourth cumu-
lant has found practical usage in the field of phase transitions
in what has been known as the Binder cumulant [5]

U4 = 1 − 〈M4〉
3 〈M2〉2 . (6)

By tabulating data the Binder cumulant for different system
sizes L across a phase transition, the critical point is read off
the point where the Binder cumulant of different system sizes
cross each other. The benefit of using the Binder cumulant is
that by finding the crossing point between different systems
sizes and using two higher order cumulants simultaneously,
finite-size effects are drastically reduced. Hence, the critical
point obtained from it is much more precise than using solely
the order parameter. The occurrence of a crossing point in
the Binder cumulant is also observed in infinite translationally
invariant systems represented by an iMPS, where the crossing
occurs between U4 of different bond dimension m instead of
L [6].

A true phase transition only occurs when a system is in the
thermodynamic limit L → ∞ where the correlation length ξ

diverges. In a finite-sized system, ξ is upper bounded by the
system size L. The conventional method of studying a phase
transition with a finite MPS is to obtain data in the vicinity
of the critical point for several system sizes. Since ξ also
depends on m, m must be chosen such that the criteria ξ ≈ L
is fulfilled for each system size. By employing finite-size
scaling, the data are extrapolated with respect to L to obtain
the quantity of interest in the thermodynamic limit [7]. This
dependence of m on L complicates the procedure of obtaining
data since m has to be obtained to satisfy the condition ξ ≈
L for each system size. A simpler and more direct way to
probe phase transitions would thus be to use an iMPS. There
are two advantages of this over a finite MPS. First, since
there is no notion of a system size in an iMPS, one does not
have to worry about determining the value of m that satisfies
the criteria ξ ≈ L. Hence one only has to extrapolate data with
respect to m in order to obtain the data in the m → ∞ limit.
Second, the absence of boundaries completely removes any
Friedel oscillations that affects quantities that are dependent
on spatial properties of the system.

In the spirit of determining the critical point and exponents
via finite-entanglement scaling and scaling functions of the
order parameter, this work extends the scheme of Ref. [3]
through the addition of the order parameter cumulants, the
Binder cumulant, and the cumulant scaling functions. The
advantage this has over the previous schemes is that this
scheme requires a much smaller m in order to determine
the critical point and exponents with a higher accuracy. To
this end, several 1D examples are given, namely the trans-
verse field Ising model, the topological Kondo insulator, the
S = 1 Heisenberg chain with single-ion anisotropy, and the
Bose-Hubbard model. A two-dimensional (2D) square lattice
transverse field Ising model on an infinite cylinder is also
investigated. These examples show the capacity of the scaling
functions of higher order cumulants in determining the critical
point and exponents of a variety of order parameters and phase
transitions classes.

II. HIGHER-ORDER MOMENTS AND CUMULANTS
IN TENSOR NETWORKS

To obtain moments and cumulants of an observable, one
has to compute the expectation value of the observable opera-
tor to different orders. This can be done efficiently through
the use of a triangular matrix-product operator (MPO) and
its fixed-point equation. The latter is a recursive formula that
relates the different elements of the environment matrix E
for a given triangular MPO. The advantage this recursive
method has over other tensor network methods of calculating
higher-order moments and cumulants such as that in Ref. [6] is
that it unifies the method of computing the expectation values
of local and string operators whereby the latter ends up being
treated as a second order operator (i.e., a two-point correlator).
For an upper triangular MPO, this recursive formula is given
by [8]

Ei(L + 1) = TWii [Ei(L)] +
∑
j<i

TWji [Ej (L)], (7)
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where Ei is the ith element of E , L are the number of sites,
and Wii (Wji) are the diagonal (off-diagonal) elements of the
triangular MPO. For a lower triangular MPO, the index in the
second sum is simply swapped, i.e., j > i. TX is the transfer
operator that acts the matrix-valued X operator element of the
MPO:

TX [E (L)] =
∑
ss′

〈s′| X |s〉 As′†E (L)As. (8)

Equation (7) specifies the action of adding one site to the
expectation value in terms of the polynomial form for the d
different matrices Ei (1 � i � d), for a d × d dimensional
MPO [8–10]. A triangular MPO with zero momentum is
characterized by diagonal elements Wii that are proportional
to the identity operator Wii = xI , with prefactor x satisfying
either x = 1 or |x| < 1. As such, the expectation value is a
polynomial function of L with matrix-valued coefficients [8]:

Ei(L) =
p∑

m=0

Ei,mLm, (9)

where p is the polynomial degree of Ei(L).
The expectation value of operator M written in the form

of an upper triangular MPO is 〈M〉 = Tr[Ed (L)ρR], where ρR

is the reduced density matrix of the right bipartition of the
state, and Ed (L) is the component of the left environment
matrix that contains the matrix-valued operator that represents
the accumulation of all terms of the MPO, corresponding to
the dth column of an upper triangular MPO. For a lower
triangular MPO, the expectation value is 〈M〉 = Tr[E1(L)ρR]
where E1(L) is the component of the left environment matrix
that contains the matrix-valued operator accumulated from the
first column of the lower triangular MPO. The choice of left
(right) environment matrix, left (right) transfer operator, and
right (left) reduced density matrix is arbitrary, and one could
use either choice. As an example, the magnetization order
parameter is shown here. This order parameter is given by the
upper triangular MPO,

W =
(

I Z
I

)
, (10)

where Z ≡ Sz is the z component of the spin operator, and I is
the identity. For this triangular MPO, the operator represent-
ing the observable is E2(L) which has the expectation value
of 〈M〉 = Tr[E2(L)ρR]. This quantity is actually trivial to
compute via conventional tensor network methods since it is a
local expectation value and the MPO is a single-site operator.
However, its evaluation from first principles is shown here
since, in contrast to the conventional tensor network approach,
this method is applicable to more complicated MPOs such as
higher-order moments and string order parameters. The goal
here is to show that the correct polynomial degree matrix-
valued coefficient Eq. (9) is related to Tr[E2(L)ρR]—this is
done as follows. W has dimension d = 2, so Eq. (7) gives two
terms. First,

E1(L + 1) = TW11 [E1(L)] = TI [E1(L)]. (11)

The only operator acting here is transfer operator TI contain-
ing the identity operator I . As a result, its operation on E1(L) is
trivial and therefore independent of L. Hence, the polynomial

degree p in Eq. (9) for E1(L) is p = 0 and thus E1(L) can be
written as

E1(L) = E1,0L0 = E1,0. (12)

Inserting this into Eq. (11) gives

E1,0 = TI (E1,0), (13)

which implies that E1,0 is an eigenvector of operator TI with
eigenvalue equal to 1. If the iMPS is in left-canonical form,
then E1,0 ∝ Ĩ where Ĩ is the m × m identity matrix. An obvi-
ous choice of proportionality factor is to fix Tr(E1,0ρR) = 1,
which implies

E1(L) = E1,0 = Ĩ. (14)

The second term of the recursion formula is

E2(L + 1) = TW22 [E2(L)] + TW12 [E1(L)]. (15)

Using Eq. (14) and the elements of the MPO from Eq. (10),
this becomes

E2(L + 1) = TI [E2(L)] + TZ (Ĩ ) = TI [E2(L)] + CZ , (16)

where in the last step, CZ ≡ TZ (Ĩ ) is a constant matrix, i.e.,
it has no dependence on any Ei’s and thus its value can be
calculated beforehand. With this, one can now proceed to find
an ansatz for the form of E2(L) in the asymptotic large-L limit.
This limit should not depend on the “boundary” form E2(0),
hence one can choose E2(0) = 0 (this choice has no effect on
the final solution, up to an irrelevant constant), which leads to

E2(1) = CZ ,

E2(2) = TI (CZ ) + CZ ,

E2(3) = T 2
I (CZ ) + TI (CZ ) + CZ ,

...

E2(L) =
L−1∑
n=0

T n
I (CZ ), (17)

where T n
I (CZ ) means n repeated applications of the transfer

operator TI{TI [· · · (CZ ) · · · ]}. Thus E2(L) is the form of a
geometric series, and the large-L limit depends on the nature
of the spectral decomposition of CZ . Since TI only has a single
eigenvalue equal to 1 and all other eigenvalues are strictly less
than 1, it follows that E2(L) can diverge at most linearly with
L, hence the polynomial degree p of Eq. (9) for E2(L) is p = 1
and thus E2(L) can be written as

E2(L) = E2,0 + E2,1L. (18)

Inserting this into Eq. (16) gives

E2,0 + E2,1(L + 1) = TI (E2,0 + E2,1L) + CZ ,

E2,0 + E2,1 + E2,1L = TI (E2,0) + TI (E2,1)L + CZ . (19)

Equating powers of L gives

L0 : E2,0 + E2,1 = TI (E2,0) + CZ , (20)

L1 : E2,1 = TI (E2,1). (21)

Similar to Eq. (13), Eq. (21) implies E2,1 ∝ Ĩ = e2,1,1 Ĩ , where
e2,1,1 is a proportionality constant. The first two indices in
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the subscript of e2,1,1 denotes that it corresponds to E2,1 (i.e.,
same subscript indices for clarity), while the third subscript
denotes the eigenvalue number of the transfer operator. Since
the first eigenvector of the transfer operator TI is Ĩ , the third
index in the subscript of e2,1,1 is 1. The transfer operator TI

can be further decomposed into its components through an
eigenvalue decomposition TI = ∑m2

i=1 λi |λi〉 〈λi|, where |λi〉
are the eigenvectors of TI . E2,0 can also be expanded in terms

of the basis |λi〉, i.e., E2,0 = ∑m2

i=1 e2,0,i |λi〉. The constant
matrix CZ on the other hand is expanded as CZ ≡ TZ (Ĩ ) =∑m2

i=1 CZ,i |λi〉 where CZ,i are elements of the constant matrix
CZ . Using these in Eq. (20) gives

m2∑
i=1

e2,0,i |λi〉 + e2,1,1 Ĩ

=
m2∑
i=1

λi |λi〉 〈λi|
⎛
⎝ m2∑

i′=1

e2,0,i′ |λi′ 〉
⎞
⎠ +

m2∑
i=1

CZ,i |λi〉

=
m2∑

ii′=1

λie2,0,i′ |λi〉 〈λi|λi′ 〉 +
m2∑
i=1

CZ,i |λi〉

=
m2∑
i=1

λie2,0,i |λi〉 +
m2∑
i=1

CZ,i |λi〉 , (22)

where the orthogonality relation
∑

i′ 〈λi|λi′ 〉 = δii′ was used
in the last step. By construction, the spectrum of TI contains
the eigenvalue 1 with corresponding eigenvector Ĩ . Thus, the
eigenvalue decomposition of TI and E2,0 can be separated into
a part parallel to the identity Ĩ and remaining parts that are
perpendicular to Ĩ , i.e.,

m2∑
i=1

e2,0,i |λi〉 = e2,0,1 |λ1〉 +
m2∑
i=2

e2,0,i |λi〉 , (23)

with |λ1〉 = Ĩ , and similarly for the decomposition of∑m2

i=1 λie2,0,i |λi〉 = e2,0,1 |λ1〉 + ∑m2

i=2 λie2,0,i |λi〉, with λ1 =
1. Equation (22) then becomes

e2,0,1 Ĩ +
m2∑
i=2

e2,0,i |λi〉 + e2,1,1 Ĩ

= e2,0,1 Ĩ +
m2∑
i=2

λie2,0,i |λi〉 + CZ,1 Ĩ +
m2∑
i=2

CZ,i |λi〉 ,

m2∑
i=2

e2,0,i |λi〉 + e2,1,1 Ĩ

=
m2∑
i=2

λie2,0,i |λi〉 + CZ,1 Ĩ +
m2∑
i=2

CZ,i |λi〉 . (24)

As stated above, the goal is to show that the correct polyno-
mial degree of Eq. (9) is related to Tr[E2(L)ρR]. In Eq. (18)
the polynomial degree p = 1 is that corresponding to the co-
efficient E2,1. The latter’s proportionality constant is e2,1,1 and
this can be related to Tr[E2(L)ρR] via Eq. (24) by multiplying

ρR on the left- and right-hand sides and taking the trace:

Tr

⎛
⎝ m2∑

i=2

e2,0,i |λi〉 ρR

⎞
⎠ + Tr(e2,1,1 ĨρR)

= Tr

⎛
⎝ m2∑

i=2

λie2,0,i |λi〉 ρR

⎞
⎠ + Tr(CZ,1 ĨρR)

+ Tr

⎛
⎝ m2∑

i=2

CZ,i |λi〉 ρR

⎞
⎠. (25)

The spectrum of the left transfer operator TI contains the
eigenvalue λ1 = 1 corresponding to its left eigenvector Ĩ and
right eigenvector ρR (the right transfer operator on the other
hand has eigenvalue 1 corresponding to its left eigenvector ρL,
which is the reduced density matrix of the left bipartition, and
its right eigenvector Ĩ). As such, the product between the term
parallel to the identity and ρR in Eq. (25) is ĨρR = 1, while
the products of the terms perpendicular to the identity with ρR

give |λi〉 ρR = 0. Equation (25) thus reduces to

Tr(e2,1,1 ĨρR) = Tr(CZ,1ĨρR) e2,1,1 = CZ,1, (26)

where from the first to second line of Eq. (26), e2,1,1 and CZ,1

are just numbers, so their trace are the numbers themselves.
Equation (26) states that the polynomial degree p = 1, i.e.,
the degree of L1 with coefficient E2,1, is related to the desired
expectation value Tr[E2(L)ρR]. Though the terms perpendic-
ular to the identity vanished upon multiplication of ρR, they
can be evaluated separately when they are needed for the
evaluation of other terms such as in the case of where higher
order moments are needed. This derivation can be generalized
for the higher order moments and a detailed derivation of 〈M2〉
of the MPO in Eq. (10) is shown in Appendix A. Ultimately,
the moments are expressed as an n-degree polynomial in L [8].
For example, the first four moments in terms of cumulants per
site are

〈M〉 = κ1L, (27)

〈M2〉 = κ2L + κ2
1 L2, (28)

〈M3〉 = κ3L + 3κ2κ1L2 + κ3
1 L3, (29)

〈M4〉 = κ4L + (
4κ3κ1 + 3κ2

2

)
L2 + 6κ2κ

2
1 L3 + κ4

1 L4. (30)

Comparing Eq. (27) and the result of Eq. (26) reveals that the
coefficient e2,1,1 is indeed the first cumulant κ1.

III. RELATION BETWEEN CUMULANT EXPONENTS

The fact that the Binder cumulant of different system sizes
cross one another at the critical point implies that U4 is
independent of L at the critical point. This sets a constraint or
relationship between the cumulant exponents αi since varying
them should not change the value of U4 at the critical point.
This relationship is revealed by equating the exponent of the
bond dimension m in the nth order derivative of the singular
part of the free energy density f to the exponent of m in the
nth order cumulant written as a power-law function of m.

235140-4



CUMULANTS AND SCALING FUNCTIONS OF INFINITE … PHYSICAL REVIEW B 100, 235140 (2019)

The singular part of the free energy density f introduced in
Ref. [11] for a finite system is given by

f ≈ L−dY
(
C1tL1/ν,C2hL(β+γ )/ν

)
, (31)

where L is the system size, d is the spatial dimension, t
is the reduced temperature given as t ≡ T −Tc

Tc
, and h is the

scaled applied field h ≡ H/kBT . Y is the universal scaling
function which even though is universal, depends on system
specific properties such as the boundary conditions, lattice
geometry, coupling constants, etc., which are captured in the
nonuniversal metric factors C1 and C2. In an infinite system,
there is no notion of a system size L. Instead, any need for
a length is replaced by the correlation length ξ , i.e., L ∝ ξ .
This in turn is related to the bond dimension m through the
expression ξ ∼ mκ [3,4] which will be discussed in Sec. IV.
One now has L ∝ mκ and by substituting this into Eq. (31)
gives

f ≈ m−κdY
(
C1tmκ/ν,C2hm(β+γ )κ/ν

)
. (32)

From the rules of thermodynamics, the change of the free
energy density with respect to a parameter of interest gives the
measure of that parameter, i.e., its thermodynamic observable
or order parameter. Therefore, the first order derivative of f
with respect to h gives the first cumulant:

κ1 = −∂ f

∂h

= C2m(β+γ−νd )κ/νY (1)
(
C1tmκ/ν,C2hm(β+γ )κ/ν

)
= C2m[β+γ−(2β+γ )]κ/νY (1)

(
C1tmκ/ν,C2hm(β+γ )κ/ν

)
= C2m−βκ/νY (1)

(
C1tmκ/ν,C2hm(β+γ )κ/ν

)
, (33)

where from the second to third lines, the Josephson relation
νd = 2 − α, and the Rushbrooke relation α + 2β + γ = 2,
were combined to eliminate α and give νd = 2β + γ . The
superscript of Y marks the order of the derivative. Proceeding
in the similarly fashion for the higher order derivatives of f :

κ2 = −∂2 f

∂h2
=C2

2 mγ κ/νY (2)(C1tmκ/ν,C2hm(β+γ )κ/ν
)
, (34)

κ3 = −∂3 f

∂h3
=C3

2 m(β+2γ )κ/νY (3)(C1tmκ/ν,C2hm(β+γ )κ/ν
)
, (35)

κ4 = −∂4 f

∂h4
= C4

2 m(2β+3γ )κ/νY (4)
(
C1tmκ/ν,C2hm(β+γ )κ/ν

)
,

(36)

...

κn = −∂n f

∂hn

= Cn
2 m[(n−2)β+(n−1)γ ]κ/νY (n)

(
C1tmκ/ν,C2hm(β+γ )κ/ν

)
. (37)

This shows that the exponent of m of any nth order cumulant
can be obtained from the exponents of just the two first
cumulants β and γ .

Cumulants of an order parameter show singular behavior at
the critical point, i.e., they either vanish or diverge at the crit-
ical point. For an iMPS with a fixed m these divergences still
occur, at least in the limit of perfectly converged numerics,
although sufficiently close to a pseudocritical point the iMPS

exhibits mean-field-like behavior [12], i.e., the exponents di-
verge from their true values. Nevertheless, finite-entanglement
scaling of the cumulants at the true critical point follows the
correct power-law scaling behavior with the basis size,

κi ∼ mαi , (38)

where αi is the cumulant critical exponent. Equating the
exponents of m of Eqs. (37) and (38) gives a relation between
the exponent of the nth order cumulant and the first two
cumulant exponents:

αn = [(n − 2)β + (n − 1)γ ]
κ

ν
. (39)

Equivalently, a self-contained expression for all αn’s in terms
of α1 and α2 can be written as

αn = −(n − 2)α1 + (n − 1)α2, (40)

where α1 = −βκ/ν and α2 = γ κ/ν. Equation (40) is dubbed
the cumulant exponent relation and it will be tested for the
various models in Sec. V.

An especially useful application of this relation is in the
calculation of certain cumulant exponents whose cumulants
are not directly accessible, from those that are readily ob-
tained. For example, in the case when certain symmetries
are enforced on a wave function, the odd n order cumulants
may turn out to be identically zero, whereas the even n order
cumulants are nonzero. In such a circumstance, Eq. (40) can
be used to calculate the odd order cumulant exponents from
the even ones. To illustrate this, supposing α2 and α4 have be
determined, then by setting n = 4, Eq. (40) gives

α4 = 2α1 + 3α2

which gives the first cumulant exponent:

α1 = 1
2 (−3α2 + α4).

Subsequently, by setting n = 3, Eq. (40) gives

α3 = α1 + 2α2,

which upon substitution of α1 above gives

α3 = (
1
2 (−3α2 + α4)

) + 2α2 = 1
2 (α2 + α4).

IV. FINITE-ENTANGLEMENT SCALING
AND SCALING FUNCTIONS

The idea of finite-entanglement scaling (FES) for infinite
systems represented by iMPS was directly adopted from
finite-size scaling (FSS) of finite systems [3]. The need for
FES can be appreciated by understanding the role m plays in
the iMPS. To do so, one has to apply a Schmidt decomposition
of a state |ψ〉 which will allow one to observe the entangle-
ment within the bipartition of the state through means of the
Schmidt values λn. Splitting a state into two parts A and B, the
Schmidt decomposition is a basis choice that expresses |ψ〉 as
a sum of product between the two parts of the wave function:

|ψ〉 =
∞∑

n=1

λn

∣∣φA
n

〉 ∣∣φB
n

〉
, (41)

where |φA
n 〉 and |φB

n 〉 are orthonormal bases of the Hilbert
spaces of the two subsystems A and B. The entanglement
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entropy S between the two subsystems is given as

S = −
∑

n

λ2
n log λ2

n. (42)

Since the size of each matrix Asi in an iMPS is bounded by
the bond dimension m, all properties of the state at and away
from a critical point is dictated by m. Away from the critical
point, the entanglement entropy S of a ground state is finite,
therefore a finite m iMPS would be able to represent the state
well. At the critical point, the maximum S for m Schmidt
eigenvalues is log(m). As a result, the finite m dimensional
matrices Asi cannot approximate the ground state well and all
singular behavior of observables or thermodynamic quantities
are blurred out. This is further corroborated by the fact that all
correlation functions of MPS decay exponentially, implying
that they have finite correlation lengths [13,14]. In spite of
this, it is possible to quantitatively measure how observables
and thermodynamic quantities behave at and in the vicinity of
the critical point through means of FES.

The nature of the transition in a finite and infinite sys-
tem can be appreciated from their energy landscapes and
magnetization order parameter. In a finite system, the energy
landscape contains minimums which cross each other at the m
and L dependent pseudocritical point Bc(m, L). This causes a
discontinuous change of the magnetization at Bc(m, L) which
is a first order transition. As L is increased, these energy
minimums move closer to each other in parameter space and
finally coincide at Bc(m, L → ∞) when L → ∞. This causes
the magnetization to vanish smoothly which is a continuous
(second order) phase transition. In an infinite system, the
behavior of the order parameter in the vicinity of the critical
point is always mean field in nature. Increasing m shrinks
this mean-field behavior around the critical point and the true
transition type is recovered in the region left behind by the
mean-field behavior. In the case of the transverse field Ising
(TFI) model, Ref. [12] has shown this change of the magneti-
zation exponent which is β = 1/2 when m is small, whereas
a region of β = 1/8 increases in size as m is increased. The
former is the well-known magnetization exponent of the TFI
model under a mean-field treatment, whereas the latter is the
true magnetization exponent of the Ising class.

In a finite system, all observables do not form singularities.
Taking the correlation length as an example, ξ cannot exceed
the system size L. Thus, as ξ approaches its maximum value
of ∼L, it forms a smooth, rounded peak at the L-dependent
pseudocritical point. This pseudocritical point is located some
distance from the true critical point and approaches it as
L is increased. This smoothness ensures that ξ is always
continuous, i.e., no singularity. In contrast to this, the infinite
system’s observables always forms a singularity because there
is no system-size restriction. Hence, at its m-dependent pseu-
docritical point, ξ forms a sharp, discontinuous peak whose
height and pseudocritical point is dependent on m. Using
these facts, one is able to determine the true critical point
by tabulating the singular part of the observable with respect
to m and extrapolating the observable or parameter value to
the m → ∞ limit in order to obtain the true value of that
observable and the true critical point.

To draw parallels between FSS and FES, let us first look at
FSS. In the thermodynamic limit, the correlation length ξ (B)

in the vicinity of the critical point Bc diverges as a power-law
function

ξ (B) ∝ 1

|B − Bc|ν , (43)

where ν is the critical exponent of ξ . Similarly, suppose there
is some observable κn(B) that also diverges at the critical point
Bc as a power-law function:

κn(B) ∝ 1

|B − Bc|q ∝ ξ (B)q/ν, (44)

where q is the critical exponent of κn. In a finite system of size
L, both ξ and κn are now functions of B and L, i.e., ξ (L, B) and
κn(L, B), and they both form peaks at the pseudocritical point
B∗(L). Since the system is finite, the ground state is effectively
ordered when ξ [L, B∗(L)] ≈ L since ξ [L, B∗(L)] cannot grow
larger than L. Thus Eq. (43) for a finite system is written as

ξ [L, B∗(L)] ∝ 1

|B∗(L) − Bc|ν L = g

|B∗(L) − Bc|ν , (45)

where g is the proportionality constant. Equation (45) states
that the effective distance between the pseudocritical point
B∗(L) and the true critical point Bc is determined by the
system size L. This equation can be reexpressed in two useful
ways. First, as

|B∗(L) − Bc|L1/ν = g′, (46)

where g′ = g1/ν . This equation states that all L-dependent
terms on the left-hand side must give an overall L-independent
constant which is on the right-hand side. The second expres-
sion is

B∗(L) = g′

L1/ν
+ Bc. (47)

This is the FSS equation. It enables one to determine Bc

and ν from data of an observable, e.g., the location of B∗(L)
corresponding to the peak of κn[L, B∗(L)], of different values
of L. Similarly, one can also apply these steps to κn(B) as
follows. For a finite system, the peaks of κn[L, B∗(L)] for a
given L occurs B∗(L). Using the fact that ξ [L, B∗(L)] ≈ L in
the finite system, Eq. (44) becomes

κn[L, B∗(L)] ∝ ξ [L, B∗(L)]q/ν = g̃Lq/ν, (48)

where g̃ is the proportionality constant. This equation can be
reexpressed as

κn[L, B∗(L)]

Lq/ν
= g̃, (49)

which states that all the L-dependent terms on the left must
give an overall L-independent constant on the right. This
is called the scaling function of κn(L, B). By comparing
Eqs. (46) and (49), one notices that the former appears to be a
form of scaling of the parameter B while the latter appears
to be a scaled form of κn(L, B). Both equations are scaled
such that there is no overall dependence of L. Therefore by
plotting the data of κn[L, B∗(L)]/Lq/ν versus |B∗(L) − Bc|L1/ν

for several values of L, and by treating the Bc, q, and ν

as tuning parameters, one would find that the data for the
different values of L will collapse onto a single curve when
the suitable values of the tuning parameters are chosen.
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In an infinite system, there is no notion of a system size
L. Instead, any need of a length is replaced by the correlation
length ξ . If this system is described by an iMPS, then ξ is
related to m by

ξ ∝ mκ , (50)

where κ is the finite-entanglement scaling exponent. This re-
lation was found empirically in Refs. [3,15], and later derived
by Pollmann et al. [4]. The latter was done by relating the
distribution of Schmidt values λn of the bipartition of the wave
function, the central charge c of the transition described by the
associated conformal field theory, and m and ξ at the critical
point. This revealed that κ is intimately related to the central
charge c by

κ = 6

c
(√

12
c + 1

) . (51)

The significance of Eq. (51) is that since only a handful
of transition classes, and thus c’s, are known in 1D, this
constraints the possible values of κ . By using L ∝ ξ ∝ mκ ,
the three important Eqs. (46), (47), and (49) become

|B∗(m) − Bc|mκ/ν = g′, (52)

B∗(m) = g′

mκ/ν
+ Bc, (53)

and
κn[m, B∗(m)]

mκq/ν
= g̃. (54)

Just as in the case of finite L, Eqs. (52) and (54) describe
a scaled parameter B and scaled function κn(m, B) that are
overall independent of m, respectively. Hence by plotting data
of κn[m, B∗(m)]/mκq/ν versus |B∗(m) − Bc|mκ/ν for several
values of m, one can expect a data collapse when the suitable
values of Bc, γ , ν, and κ are chosen. Besides the scaling
function of the cumulants, Eq. (50) gives a scaling function
of ξ that does not have an analog in finite-size scaling. This is
written as

ξ [m, B∗(m)]

mκ
= g, (55)

where g is a proportionality constant. Thus plotting this
against Eq. (52) would give a data collapse of ξ [m, B∗(m)]
with tuning parameters Bc, ν, and κ .

V. RESULTS

All ground state wave functions in this work were vari-
ationally optimized using the infinite density-matrix renor-
malization group (iDMRG) algorithm with single-site op-
timization [10,16,17]. Wave functions of several different
bond dimensions m were generated to demonstrate the finite-
entanglement scaling of the cumulants κi and correlation
length ξ , as well as to be used to locate the critical point
through means of the Binder cumulant U4(m).

A. One-dimensional transverse field Ising model

The 1D transverse field Ising (TFI) model is the
quintessential model for studying phase transitions. Its

(b)

(d)

(a)

(c)

FIG. 1. 1D TFI model. First four cumulants of the order parame-
ter 〈M〉 = ∑

i σ
z
i as a function of transverse field B for several values

of m. (a) First cumulant κ1 is the order parameter itself which is
nonzero when B < Bc and zero when B > Bc. (b) Second cumulant
κ2 is the variance of the order parameter, which diverges at the critical
point. (c) Third cumulant κ3 is the skewness. (d) Fourth cumulant κ4

is the kurtosis. The point where the cumulants vanish/diverge shifts
towards Bc = 1 as m is increased.

Hamiltonian is given by

H = −
∑

i

σ z
i σ z

i+1 + B
∑

i

σ x
i , (56)

where B is the transverse field strength. The ground state of
this model is ferromagnetic when B < Bc and paramagnetic
when B > Bc with Bc = 1. Figure 1 shows the first four
cumulants of the magnetization order parameter

〈M〉 =
∑

i

σ z
i , (57)

as a function of the transverse field B. The ground state is
ordered at B < Bc, giving a nonzero 〈M〉, and disordered when
B > Bc, giving 〈M〉 = 0. The variance, skewness, and kurtosis
on the other hand diverge at the critical point due to large
fluctuations in the ground state. One can picture that as the
variance diverges, the distribution function expands infinitely.
As a result, the skewness and kurtosis of the distribution
function also diverges. All four cumulants Figs. 1(a)–1(d)
show the same dependence of m, i.e., the point where they
vanish/diverge shifts towards the known value of Bc as m is
increased. This indicates that the iMPS wave function better
approximates the true wave function with increasing m.

While Bc of the 1D TFI model is known, it is good
practice to extract its value directly from the cumulant data by
employing the Binder cumulant. This also serves as practice
for systems where the critical point is not known. In finite
systems, the Binder cumulant of several system sizes U4(L, B)
are tabulated as a function of a Hamiltonian parameter B,
and the critical point Bc is read off from the point where
U4(L, B)∀L cross or intersect each other, which is denoted
U4(L, Bc). In an infinite system described by an iMPS, the
length L is replaced by the correlation length ξ up to a
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FIG. 2. 1D TFI model. The Binder cumulant for s = 2 (top) and
s = s∗ = 5.31 (bottom) as a function of B for various values of m. In
the top figure there is an intersection between the different values of
m at B = 1 and spurious crossing points in the region 1 < B < 1.007.
Increasing s removes the spurious crossing points, leaving only one
point with the largest number of crossings (bottom). This marks the
critical point Bc = 1. Inset of top figure: Binder cumulant for s = 2
in the vicinity of B = 1 shows an imperfect intersection, i.e., ∂U4(m,B)

∂m
is a small, nonzero value. A larger version of this inset is shown in
Fig. 25.

factor s:

L = sξ, (58)

and ξ in turn is related to the bond dimension m through
Eq. (50). Thus, just as in the case of finite system sizes,
the Binder cumulant of different bond dimensions, denoted
U4(m, B), can be tabulated and the critical point read off
where U4(m, B)∀m cross or intersect each other. The factor
s is treated as a length scaling parameter, and it affects the
Binder cumulant by shifting U4(m, B) at different rates that
are dependent on the value of m, causing U4(m, B) to cross
and/or intersect each other at different values of B. The
optimal value s∗ in determining the critical point in this work
is defined as the value s that gives the crossing or intersection
between U4(m, B)∀m, which is denoted U4(m, Bc). This will
be important where there arises a need to distinguish between
U4(m, Bc) and crossing/intersecting points that are formed
between U4(m, B) of several different values of m but not all
the different values of m—this will be referred to as “spurious
crossing points” and they are disregarded as critical point can-
didates. Since s∗ is defined to occur at a crossing/intersection
of U4(m, B)∀m, it can be obtained by solving ∂U4(m,B)

∂m = 0 for
s with a linear solver over the range of B—this is how s∗
is obtained throughout this work. The Binder cumulant for
s = 2 (top) and s = s∗ = 5.31 (bottom) are plotted in Fig. 2,
where the latter was obtained using a linear solver. In the top
figure, U4(m, B)∀m appears to intersect at B = 1. However,
upon close inspection as shown in the inset of the top figure,
this is not a true intersection because ∂U4(m,B)

∂m = 0, instead, it
is a small but nonzero number. The fact that this occurs at
the known critical point is possibly attributed to the simplicity
of the 1D Ising model and further examples of other models

(a) (b)

FIG. 3. 1D TFI model. Log-log plot of (a) correlation length ξ

and (b) cumulants, at the critical point with respect to m. The symbols
are the data points and the lines are the linear fits. The linear fit’s
gradient corresponds to the critical exponent.

will elucidate that this is not generic. Within the region of
1 < B < 1.007, there are multiple spurious crossing points—
each formed from the crossing between pairs of different m’s,
and can be disregarded as candidates of the critical point. By
gradually increasing s, the Binder cumulant gradually shift
at different rates. The overall effect is that U4(m, B) in the
region of B < 1 moves upwards while U4(m) in the region
of B > 1 moves downwards as can be seen by comparing the
top and bottom figures. This causes the intersection point at
Bc to gradually change into a crossing point at Bc, all while
maintaining the value of Bc = 1. By tuning s to s∗, U4(m, Bc)
is achieved at B = 1 which is taken as the critical point Bc.
Increasing s beyond s∗ does not shift the crossing point any
further, however, it must be once again stressed that this
observation of having a stable critical point when s = s∗ is
special to the 1D Ising model. The latter will be elucidated
in the remaining exemplary systems. The key difference of
using the Binder cumulant in an iMPS and a finite MPS is
the existence of the scaling parameter s in the iMPS. Though
it takes an extra step to determine s = s∗, this step does
not require additional simulation time or computational cost.
In fact, the overall simulation time and computational cost
is greater in the case of finite MPS since data have to be
produced for both L and m. The utilization of the linear solver
requires a guess input value of s. Within a guess range of
s, the linear solver typically converges to a value of s∗ that
gives the single crossing point of U4(m, Bc)∀m. Whereas far
outside this range, the linear solver will either not converge or
produce a value s∗ that does not give the single crossing point
of U4(m, B).

Now that Bc has been obtained, the finite-entanglement
scaling exponent κ and the exponents of the cumulants αi

(where i = 1, 2, 3, 4) have to be extracted before the corre-
lation length exponent ν. By taking the logarithm of Eq. (50),
κ can be extracted as the gradient of the linear equation ln ξ =
κ ln m. This is plotted in Fig. 3(a) where the blue circles are
the value of the correlation length at the critical point and the
red line is the linear fit whose gradient is ∼2.083 ± 0.015.
This is rather close to the previously known value of κ which
is ∼2 [3]. In a similar fashion, the cumulants at Bc are also
plotted as a function of m to extract their critical exponents
αi in Fig. 3(b). The respective critical exponents are α1 =
−0.257 ± 0.004, α2 = 1.558 ± 0.015, α3 = 3.37 ± 0.03, and
α4 = 5.20 ± 0.04. Equation (40) allows one to check the con-
sistency and accuracy of the cumulant exponents αi’s. Using

235140-8



CUMULANTS AND SCALING FUNCTIONS OF INFINITE … PHYSICAL REVIEW B 100, 235140 (2019)

(b)

(d)

(a)

(c)

FIG. 4. 1D TFI model. Cumulants scaled according to Eq. (54)
for several values of m. (a) The order parameter, (b) variance,
(c) skewness, and (d) kurtosis. Bc, κ , and αi used in the scaling
function are those obtained from the Binder cumulant and the linear
fits of ln(ξ ) and ln(κi ) versus ln(m), respectively. ν is tuned such that
the cumulants’ sum of residual of the different values of m at Bc is
minimized, this gives ν = 1.000 ± 0.005.

the obtained values of α1 and α2, one gets α3 = −α1 + 2α2 =
0.257 + 2(1.558) = 3.373, which differs from value obtained
via linear fit in Fig. 3(b) by ∼0.15%. This difference stems
from the uncertainty in the linear fit used to determine the val-
ues of αi in Fig. 3(b). Similarly, for the fourth cumulant, α4 =
−2α1 + 3α2 = 2(0.257) + 3(1.558) = 5.188, which differs
from the value obtained via linear fit by ∼0.25%.

The final exponent left to obtain now is ν. By plotting the
cumulants according to the scaling function Eqs. (52) and (54)
with the obtained values of Bc, κ and the cumulant exponents
αi, ν can be tuned to obtain the best data collapse, e.g., by
minimizing the cumulants’ sum of residual of the different
values of m at Bc. This is shown in Fig. 4 with the result ν =
1.000 ± 0.005.

Using Eqs. (52) and (55), the correlation length ξ can
also be used to determine ν. Using the obtained values of
Bc and κ , ν is tuned so that the correlation length’s sum
of residual of the different values of m at Bc is minimized.
This is shown in Fig. 5 with ν = 1.000 ± 0.005, which is
in agreement with that obtained from the data collapse of
the cumulants. Equations (52), (54), and (55) allows one to
additionally fine-tune Bc to obtain a better data collapse. Since
the value of Bc = 1 gave a sufficiently good data collapse, no
further fine-tuning of Bc was needed.

In order to make a connection between the more familiar
magnetization order parameter exponent β, one can compare
the term mα1 from the cumulant scaling function Eq. (54), to
that of the conventional scaling function of the magnetization
order parameter used in iMPS, m−βκ/ν [3]. This comparison
implies that α1 = −βκ/ν. Using the obtained values of α1,
κ , and ν gives β = −α1ν/κ = 0.1234, which differs from
the known value of β = 1/8 by ∼1.3%. Proceeding in the
same way, the second cumulant’s exponent α2 is related to
the exponent of the variance γ ∗ by α2 = γ ∗κ/ν. Using the
obtained values of α2, κ , and ν gives γ ∗ = α2ν/κ = 0.748 ∼
3/4. It is important to note that the second cumulant here is the

FIG. 5. 1D TFI model. Correlation length versus B (top) and
correlation length scaled according to Eq. (55) (bottom) for several
values of m. Bc and κ used in the scaling function are those obtained
from the Binder cumulant and the linear fit of ln(ξ ) versus ln(m),
respectively. ν is tuned such that the correlation length’s sum of
residual of the different values of m at Bc is minimized, this gives
ν = 1.000 ± 0.005.

variance of the order parameter but it has no direct relation to
the susceptibility as in the case of the 2D classical Ising model
in a longitudinal field. This is because there is no quantum
analog of the fluctuation-dissipation theorem that relates the
variance to the susceptibility as in the classical case. In the 2D
classical Ising model, the susceptibility/variance exponent is
γ = 7/4 which can be related to the 1D quantum Ising model
with an applied longitudinal field. The exponent γ ∗ = 3/4
obtained in this work is consistent with that found in Ref. [18].

B. One-dimensional topological Kondo insulator

The 1D topological Kondo insulator (TKI) is an effective
model introduced in Ref. [19] to study the effects of the strong
electron interaction on the topological properties of a 3D bulk
insulator. The 1D model consists of a Hubbard chain coupled
to a spin- 1

2 Heisenberg chain by a nonlocal coupling as shown
in Fig. 6. The Hamiltonian of this system is given by

H = Hc + HH + HK + H⊥, (59)

FIG. 6. Depiction of a segment of the 1D p-wave Kondo-
Heisenberg lattice. The lattice consists a Hubbard chain (top) and an
S = 1

2 antiferromagnetic Heisenberg chain (bottom). The nonlocal
Kondo exchange JK > 0 couples a spin Sj at site j in the Heisenberg
chain to its nearest-neighbor p-wave spin density π j in the Hubbard
chain. (Figure taken from Ref. [20].)
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where

Hc = −t
∑
j,σ

(c†
j+1,σ c j,σ + c†

j,σ c j+1,σ ) + U
∑

j

n j,↑n j,↓ (60)

is the 1D Hubbard Hamiltonian (top chain in Fig. 6) de-
scribing fermions hopping between sites j and j + 1 with
amplitude t , and a Hubbard repulsion U between fermions of
opposite spins at site j. The second term

HH = JH

∑
j

�S j · �S j+1 (61)

is the 1D Heisenberg Hamiltonian (bottom chain in Fig. 6)
that describes the spin exchange between nearest-neighbor
S = 1

2 localized spins. The third term HK represents a nonlocal
Kondo coupling between the Heisenberg and Hubbard chains:

HK = JK

∑
j

[
1

2
(S+

j π−
j + S−

j π+
j ) + Sz

jπ
z
j

]
, (62)

where S±
j and π±

j (Sz
j and π z

j ) are the ladder operators (z

components) of the spin �S j in the Heisenberg chain and the
p-wave spin density �π j in the Hubbard chain. The �π j operator
is given as

�π j = 1

2

∑
α,β

p†
j,α �σα,β p j,β , (63)

where �σ is the vector of Pauli matrices and

p j,σ = 1√
2

(c j+1,σ − c j−1,σ ). (64)

The last term in Eq. (59) is the conventional Kondo coupling
between a fermion and a localized spin at site j,

H⊥ = J⊥
∑

j

[
1

2
(S+

j s−
j + S−

j s+
j ) + Sz

js
z
j

]
. (65)

In this work, the system is set at half-filling and Hamiltonian
parameters that are held fixed are U = 0, t = JH = 1, and
JK = 2. The iMPS ground state generated here is enforced
with U (1) particle number symmetry to conserve particle
number and SU(2) spin rotation symmetry.

When J⊥ < Jc
⊥, the ground state is in a symmetry-protected

topological (SPT) phase protected by inversion symmetry and
undergoes a topological phase transition into a topologically
trivial state consisting of local Kondo singlets when J⊥ > Jc

⊥
[20]. This phase transition occurs with the vanishing of the
charge excitation gap while the spin excitation gap remains
nonzero and finite. This coincides with the presence of a
spinless two-particle excitation which is detected with the
string order parameter

O2
string = lim

| j−k|→∞

〈
1 jexp

⎡
⎣ iπ

2

k∑
l= j

(n̂l − 1)

⎤
⎦1k

〉
, (66)

where n̂ = ∑
σ c†

l,σ cl,σ , which is shown in the Fig. 7(a) as a
function of J⊥. As shown in Ref. [20], O2

string can be expressed
as a correlation function O2

string = lim| j−k|→∞ 〈p( j)p(k)〉,
where p( j) = ∏

i< j (−1)
ni−1

2 is the “kink operator,” and

(a) (b)

(c) (d)

FIG. 7. 1D TKI. First four cumulants of the string order param-
eter O2

string as a function of J⊥ for several values of m. (a) First
cumulant κ1 is the order parameter which is zero only when the
charge gap vanishes. (b) Second cumulant κ2 is the variance of
the order parameter, (c) the third cumulant κ3, and (d) the fourth
cumulant κ4 all diverge at the critical point. The cumulants do not
shift horizontally with increasing m, signifying the critical point is
located in a narrow region of parameter space.

〈p( j)p(k)〉 = 〈∏i< j 1i
∏k

i= j (−1)
ni−1

2
∏

i>k 1i〉. O2
string thus ap-

pears similar to a local order parameter, e.g., 〈M2〉, where M is
the magnetization operator. The calculation of O2

string is done
by constructing an extensive order parameter P = ∑

i p(i),
which is written in the matrix product operator (MPO) form
as

Pi =
[

(−1)
ni−1

2 I
0 I

]
. (67)

The square 〈P2〉 is then taken and related to O2
string via O2

string =
〈P2〉 /L2, where L = bξ , ξ is the correlation length and b is a
scaling factor. As shown in Sec. II, the expectation value of
an nth power of an operator Pn in an iMPS is obtained as a
degree n polynomial of the lattice size L, which is exact in the
asymptotic large-L limit. Thus O2

string = 〈P2〉 /L2 is evaluated
as the coefficient of the degree 2 component of 〈P2〉. The
example of the evaluation of this second degree polynomial
is shown in Appendix A.

Figure 7 shows the cumulants of O2
string as a function of

J⊥. From these figures, O2
string vanishes, while its variance,

skewness, and curtosis diverge at Jc
⊥ ∼ 2.21, consistent with

previous results of Jc
⊥ = 2.214 [20]. Unlike the case of the 1D

TFI model where the magnetization order parameter 〈M〉 is
finite in the ordered phase and zero in the disordered phase,
O2

string remains finite in both SPT and topologically trivial
phases and only vanishes at the critical point. This happens
because O2

string is not an order parameter in the traditional
sense where it discerns an ordered phase from a disordered
one. On the contrary, O2

string was constructed specifically to
detect a spinless even number-particle excitation. In the TKI
model, this excitation is gapped in both phases but vanishes at
the critical point. Compared to the cumulants of the 1D TFI
model, the cumulants of the TKI in Fig. 7 appear to only shift
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FIG. 8. 1D TKI. The Binder cumulant with s = 2 (top) and s =
s∗ = 5.29 (bottom) as a function of J⊥ for several values of m. An
order parameter that does not vanish in one of the two phases it
separates can still be used in the Binder cumulant to locate the critical
point by finding the intersecting point of U4(m, J⊥) for the different
values of m. This can be seen in the bottom figure at J⊥ = 2.21. Inset
of top figure: Binder cumulant in the vicinity of J⊥ = 2.16 shows that
not all U4(m, J⊥) of the different values of m cross simultaneously,
thus it is a spurious crossing point. Inset of bottom figure: Closeup of
J⊥ = 2.22 reveals that it is not an intersection between the different
values of m. A larger version of these two insets are shown in Figs. 26
and 27, respectively.

vertically and not horizontally with increasing m. This occurs
because the critical point is located within a range of J⊥ that
is much narrower than the range of J⊥ shown in Fig. 7. One
can thus expect to see this horizontal shift if one were to use a
finer J⊥ grid and zoom-in closer around J⊥ ≈ 2.20–2.22.

Even though O2
string does not vanish in one of the phases

being separated by the critical point, it can still be used in the
Binder cumulant to locate the critical point. The only draw-
back to this is that the Binder cumulant formed out of O2

string
does not form a crossing point between the different values
of m for any s. Nonetheless, an intersecting point between the
different m’s still forms and this suffices in locating the critical
point. To illustrate this, U4(m, J⊥) is tabulated in Fig. 8 for
s = 2 (top) and s = s∗ = 5.29 (bottom), where the latter was
obtained using a linear solver. While it is noticeable that the
top figure appears to have a crossing point at J⊥ ∼ 2.16, this
point is far from the critical point that one would expect from
observing the cumulants in Fig. 7. Upon close inspection of
the vicinity J⊥ ∼ 2.16, one sees that this is in fact not a good
crossing point since not all the different values m cross each
other simultaneously as shown in the inset of the top figure.
The peak however coincides with the critical point Jc

⊥ = 2.21,
but the separation between the different m’s does not make
it a good indicator of the critical point. By increasing s, this
peak gradually vanishes as can be seen by comparing the top
and bottom figures. When s = s∗, as in the bottom figure,
U4(m, J⊥)∀m intersect at J⊥ = 2.21, which is taken as the
critical point Jc

⊥, in agreement with Ref. [20]. Since s = s∗,
this intersection point satisfies ∂U4(m,B)

∂m = 0, which is unlike
the top figure of Fig. 2 of the 1D TFI model where the point

(a) (b)

FIG. 9. 1D TKI. Log-log plot of the (a) charge excitation corre-
lation length ξ and (b) cumulants κi, at the critical point J⊥ = 2.21
with respect to m. The symbols are the data points and the lines are
the linear fit. The gradient of the linear fit is equal to the critical
exponent.

at B = 1 was not a true intersection. The point J⊥ = 2.22
appears to be an intersection point, but upon close inspection,
it is not since at that point ∂U4(m,B)

∂m = 0 as can be seen in the
inset of the bottom figure.

Using the critical point Jc
⊥ = 2.21 obtained from the

Binder cumulant, the critical exponents κ and αi are obtained
by scaling the correlation length of the charge excitation ξ

and the cumulants of O2
string with respect to m as shown

in Figs. 9(a) and 9(b), respectively. This gives κ ∼ 1.027 ±
0.005, α1 = −0.1056 ± 0.0005, α2 = 0.701 ± 0.003, α3 =
1.552 ± 0.008, and α4 = 2.46 ± 0.01. The central charge c of
this phase transition has been shown to be c ∼ 1 [20] which
was obtained through the relation of the entanglement entropy
S and ξ given by [21]

S = c

6
ln ξ . (68)

The gradient of the linear plot of S versus ln ξ is thus equal
to c/6 which can be obtained by a linear fit through the data.
Alternatively, Eq. (51) can also be used to determine κ from
the handful of known values of c and vice versa. Using c = 1,
one obtains κ = 1.3441, which significantly differs from the
value obtained from the linear fit in Fig. 9(a) by 24%. This
demonstrates the difficulty and inaccuracy in determining c
from κ . The cumulant exponents obtained from the linear fits
in Fig. 9(b) can once again be checked using Eq. (40). Using
the obtained values of α1 and α2, one gets α3 = −α1 + 2α2 =
0.106 + 2(0.701) = 1.508, which differs from value obtained
via linear fit in Fig. 9(b) by ∼2.9%. Similarly, α4 = −2α1 +
3α2 = 2(0.106) + 3(0.701) = 2.315, which differs from the
value obtained via linear fit by ∼5.6%. As before, this dif-
ference of the exponents stem from the uncertainty of the
linear fit used. In addition to that, the larger contributor to this
difference is the narrow region of J⊥ parameter space that the
critical point is located in. This affects the chosen value of
the critical point Jc

⊥ to which ξ and κi have their respective
exponents extracted from. In other words, one would get
a smaller difference between the calculated value cumulant
exponent and that obtained directly from the linear fit if a finer
grid of J⊥ was used in detecting the critical point, or if the
critical point Jc

⊥ = 2.214 obtained in [20] was used directly.
The inability to use a finer grid size to zoom-in closer to the
location of Jc

⊥ is due to numerical instabilities that plague the
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(b)(a)

(c) (d)

FIG. 10. 1D TKI. Cumulants scaled according to Eq. (54) for
several values of m. (a) The order parameter, (b) variance, (c) skew-
ness, and (d) kurtosis. Jc

⊥, κ , and αi used in the scaling function
are those obtained from the Binder cumulant and the linear fits of
ln(ξ ) and ln(κi ) versus ln(m), respectively. ν is tuned such that the
cumulants’ sum of residual of the different values of m at Jc

⊥ is
minimized, this gives ν = 0.710 ± 0.001.

cumulant data when the grid size is smaller than 5 × 10−4 for
this particular model.

Using the exponents κ and αi obtained from the linear
fits in Figs. 9(a) and 9(b), and the respective cumulant and
correlation length scaling functions Eqs. (54) and (55), the
value of the correlation length’s critical exponent ν can be
obtained. As before, this is done by tuning ν such that the
respective sum of residual of the cumulants and correlation
length of different values of m at Jc

⊥ are minimized. This gives
the data collapse plotted in Figs. 10 and 11 with the obtained

FIG. 11. 1D TKI. Charge excitation correlation length versus J⊥
(top) and charge excitation correlation length scaled according to
Eq. (55) (bottom) for several values of m. Jc

⊥ and κ used in the
scaling function are those obtained from the Binder cumulant and
the linear fit of ln(ξ ) versus ln(m), respectively. ν is tuned such that
the correlation length’s sum of residual of the different values of m
at Jc

⊥ is minimized, this gives ν = 0.710 ± 0.001.

value ν = 0.710 ± 0.001. This value of ν is within the range
of previously obtained values in Ref. [20] of ν− = 0.666 and
ν+ = 0.742, where ν− (ν+) is the exponent obtained from
fitting from below (above) the critical point.

C. S = 1 Heisenberg chain with single-ion anisotropy

The S = 1 Heisenberg chain is a minimal quantum-
magnetic model that demonstrates Haldane’s conjecture of the
existence of a spectrum gap in integer-spin antiferromagnetic
chains [22,23]. The Hamiltonian of this model is

H =
∑

i

J
(
Sx

i Sx
i+1 + Sy

i Sy
i+1

) + JzS
z
i Sz

i+1 + D
∑

i

(
Sz

i

)2
, (69)

where D is the single-ion anisotropy term. This model is
known to have several phases in the (D, Jz ) parameter space,
namely Néel, Haldane, large-D, ferromagnetic, and two XY
phases [24–26].

In this work, the Hamiltonian parameters held fixed are
J = Jz = 1. This reduces the available phases to three. When
D = 0, the ground state is in the Néel phase which possesses
a Z2 symmetry. When D < J , it is in the Haldane phase with
an incomplete Z2 × Z2 symmetry. This phase is known to be
an SPT phase protected by time-reversal (T ) or inversion
(I) symmetry [dihedral (D2) symmetry is broken by the
single-ion anisotropy]. When D > J , the ground state is in
a topologically trivial large-D phase. The transition point
between the Haldane and large-D phases has been determined
to high precision to be Dc/J = 0.96845(8) via finite DMRG
with system size up to L = 10 000 and m = 1000 [27].

The key distinction between the two nonzero D phases
is how their ground states transform under the symmetry
operation of the above mentioned symmetries. To appreciate
this, one has to first look at how the iMPS transforms under
symmetry operations. When an iMPS Eq. (1) is in its canon-
ical form, each local tensor Aj can be written as a product
of m × m complex matrices � j and positive, real, diagonal
matrices � [28] which satisfies the canonical condition∑

j

�
†
j �

2� j = 1. (70)

In the canonical form, the transfer matrix

Tαα′;ββ ′ =
∑

j

� j,αβ (� j,α′β ′ )∗�β�β ′ (71)

has a right eigenvector δββ ′ with eigenvalue 1. Similarly, the
transfer matrix

T̃αα′;ββ ′ =
∑

j

�α�α′� j,αβ (� j,α′β ′ )∗ (72)

has a left eigenvector δαα′ with eigenvalue 1. If this iMPS is
invariant under a local symmetry g ∈ G which is represented
in the local basis as a unitary matrix ug, then the � j ma-
trices must transform under (ug) j j′ such that the product in
Eq. (1) does not change (up to a phase). This means that the
transformed matrices satisfy [29]∑

j′
(ug) j j′� j′ = eiθgU †

g � jUg, (73)
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where eiθg is a phase factor and Ug is a unitary matrix that
commutes with the � matrices. Ug forms an m-dimensional
projective representation of the symmetry group

UgUh = eρ(g,h)Ug,h, (74)

where ρ(g, h) is the factor set of the representation which
can be used to differentiate an SPT phase from a trivial one.
Taking time-reversal symmetry as an example, uT = UT K ,
where UT is a basis-dependent unitary, e.g., UT = eiπSy

for
the spin basis, and K is the complex conjugation operation.
As such, � j transforms as

�∗
j = eiθT U †

T � jUT . (75)

Relating this to the canonical condition Eq. (70), one finds∑
j

�
†
j �UT U ∗

T �� j = UT U ∗
T . (76)

Thus UT U ∗
T is an eigenvector of the transfer matrix T Eq. (71)

with eigenvalue 1. Since the only unimodular eigenvalue of T
is unity and this eigenvalue is unique, one gets UT U ∗

T = eiφT .
Using the unitary property 1 = UT U †

T and its transpose 1 =
(UT U †

T )
T = U ∗

T U T
T , one can eliminate the UT ’s in UT U ∗

T =
eiφT to get e−2iφT = 1. The latter sets the restriction φT =
0, π . If φT = π , then UT is an antisymmetric matrix which
causes the entanglement spectrum to be strictly even-fold
degenerate, i.e., the ground state is in an SPT phase [30].
Whereas if φT = 0, UT is symmetric and there is no restriction
on the degeneracy of the entanglement spectrum, i.e., the
ground state is topologically trivial. UT U ∗

T = ±1 thus acts
as a tool to distinguish the SPT phase from the trivial one.
However, in order to evaluate the cumulants, one would need
an order parameter that differentiates the two phases based on
their phase eiφT . This can be achieved through a nonlocal order
parameter [31]

O2
T = lim

| j−k|→∞

〈
1 j

k∏
l= j

Klexp
(
iπSy

l

)
1k

〉
. (77)

The complex conjugation operator Kl acts on the local MPS
tensor at site l by complex conjugating it. Unlike UT U ∗

T which
obtains the phase of the projective representation from the
ancillary states of the iMPS, O2

T obtains it from the physical
degrees of freedom. Analogous to the evaluation of O2

string

Eq. (66), O2
T is evaluated as the coefficient of the degree 2

component of 〈P2〉, where P = ∑
i pτ (i) but with the kink

operator pτ ( j) = ∏
i< j uT (i). The MPO form of P is given

as

Pi =
[

eiπSy K I
0 I

]
. (78)

Following the derivation in Appendix A, this results in O2
T =

Tr(UT ρR), where ρR is the reduced density matrix of the right
bipartition. In the limit where | j − k| → ∞, UT is the left
eigenvector of the generalized transfer matrix corresponding
to T :

T uT
αα′;ββ ′ =

∑
j

⎛
⎝∑

j′
(uT ) j j′ �̃ j′,αβ

⎞
⎠(� j,α′β ′ )∗�β�β ′ , (79)

(a) (b)

(c) (d)

FIG. 12. S = 1 Heisenberg chain with single-ion anisotropy.
First four cumulants of the string order parameter O2

T as a function of
D for several values of m. (a) First cumulant κ1 is the order parameter.
(b) Second cumulant κ2 is the variance of the order parameter, which
diverges at the critical point. (c) Third cumulant κ3 is the skewness.
(d) Fourth cumulant κ4 is the kurtosis. The cumulants do not shift
with increasing m, signifying the critical point is located in a narrow
region of parameter space.

with eigenvalue 1. Since ρR is chosen from the SVD procedure
to be a diagonal matrix, and that UT is antisymmetric in the
SPT phase, the diagonal elements of the product UT ρR is
zero, ergo O2

T = Tr(UT ρR) = 0. In the trivial phase, UT is
symmetric. Hence the diagonal elements of UT ρR is nonzero,
resulting in O2

T = Tr(UT ρR) = 0. Figure 12 shows the first
four cumulants of O2

T . The first cumulant κ1 is the nonlocal
order parameter O2

T itself which is zero when D � 0.96, i.e.,
in the SPT Haldane phase protected by T . On the other
hand, κ1 = 0 when D > 0.96 which is the topologically trivial
large-D phase. The variation with respect to m of κ1 is minute,
but this is more apparent in the other cumulants κ2–κ4, which
all diverge at the critical point. Just as in the case of the
cumulants O2

string of TKI in Fig. 7, the cumulants of O2
T do not

shift horizontally with increasing m, indicating that the critical
point is located in a narrow region of D compared to the range
of D shown in Fig. 12. The sharp transition in the cumulants
makes identifying the critical point an easy task which is taken
to be Dc = 0.96.

Even though the critical point has already been located
through the use of the cumulants, the Binder cumulant can still
be used as a consistency check of this critical point’s location.
Figure 13 shows U4 of O2

T for several values of s. As s is in-
creased, U4 in the region D < Dc (D > Dc) shifts downwards
(upwards), as can be seen in Figs. 13(a) to 13(d). The optimum
s∗ that gives a crossing point U4(m, D)∀m occurs at D = 0.96
when s∗ = 3.12 as shown in Fig. 13(c). This value of s∗ was
obtained using a linear solver to solve ∂U4(m,D)

∂m = 0 for s. The
critical point is therefore taken to be Dc = 0.96, in agreement
with that obtained from the cumulants.

Since κ1 and κ3 vanish when D � 0.96, it is not possible
to use them to obtain their critical exponents at D = Dc.
However, it is still possible to use the data in the vicinity
of the critical point to obtain the critical exponents. Here,
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(a) (b)

(d)(c)

FIG. 13. S = 1 Heisenberg chain with single-ion anisotropy. The
Binder cumulant with (a) s = 2, (b) s = 3, (c) s = s∗ = 3.12, and
(d) s = 4. Increasing s from (a)–(d) shifts U4 until a maximum
number of crossings occur between U4 for the different values of
m. This maximum number of crossings occurs in (c) where s = 3.12,
marking the critical point Dc = 0.96.

using the data at D = 0.97, ξ and κi are plotted against m
in Fig. 14. By fitting these data with a linear fit and extract-
ing their gradients, the critical exponents are obtained: κ ∼
1.341 ± 0.015, α1 = −0.133 ± 0.001, α2 = 0.7987 ± 0.005,
α3 = 1.737 ± 0.008, and α4 = 2.53 ± 0.02. From Eq. (51),
the closest value of κ to the one obtained here that gives a
known value of c is κ = 1.3441, corresponding to c = 1, in
good agreement with Refs. [24–27]. The cumulant exponents
can also be checked using Eq. (40). Using the obtained
values of α1 and α2, one gets α3 = −α1 + 2α2 = 0.133 +
2(0.7987) = 1.7304, which differs from value obtained via
linear fit in Fig. 14(b) by ∼0.4%. Similarly, α4 = −2α1 +
3α2 = 2(0.133) + 3(0.7987) = 2.662, which differs from the
value obtained via linear fit by ∼5%.

The obtained values of the exponents κ and αi are now used
in the scaling functions of the cumulants and the correlation
length Eqs. (54) and (55), respectively, to determine the value
of the exponent ν. By tuning ν such that the sum of residual
of the cumulants and correlation length of different values of
m at Dc is minimized, the best data collapse is obtained which

(a) (b)

FIG. 14. S = 1 Heisenberg chain with single-ion anisotropy.
Log-log plot of the (a) correlation length ξ and (b) cumulants, at the
critical point D = 0.97 with respect to m. The symbols are the data
points and the lines are the linear fit. The linear fit’s gradient is equal
to the critical exponent.

(a) (b)

(c) (d)

FIG. 15. S = 1 Heisenberg chain with single-ion anisotropy. Cu-
mulants scaled according to Eq. (54) for several values of m. (a) The
order parameter, (b) variance, (c) skewness, and (d) kurtosis. D =
0.97, κ , and αi used in the scaling function are those obtained from
the Binder cumulant and the linear fits of ln(ξ ) and ln(κi ) versus
ln(m), respectively. ν is tuned such that the cumulants’ sum of
residual of the different values of m at Dc is minimized, this gives
ν = 1.470 ± 0.001.

marks the optimum value of ν. For the sake of consistency, the
same value D = 0.97 used to obtain the exponents κ and αi’s
is used here. The data collapse of the cumulants are displayed
in Fig. 15 and that of the correlation length is displayed in
Fig. 16 where the best data collapse occurs when ν = 1.470 ±
0.001. This differs with the value ν = 1.472(4) obtained in
Ref. [27] by ∼0.16%.

FIG. 16. S = 1 Heisenberg chain with single-ion anisotropy.
Correlation length versus D (top) and correlation length scaled
according to Eq. (55) (bottom) for several values of m. D = 0.97 and
κ used in the scaling function are those obtained from the Binder
cumulant and the linear fit of ln(ξ ) versus ln(m), respectively. ν

is tuned such that the correlation length’s sum of residual of the
different values of m at Dc is minimized, this gives ν = 1.470 ±
0.001.
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(b)

(d)

(a)

(c)

FIG. 17. 2D TFI model on an infinite cylinder of circumference
w = 12. First four cumulants of the order parameter 〈M〉 = ∑

i, j σ
z
i, j

as a function of transverse field B for several values of m. (a) First
cumulant κ1 is the order parameter itself which is nonzero when B <

Bc and zero when B > Bc. (b) Second cumulant κ2 is the variance
of the order parameter, which diverges at the critical point. (c) Third
cumulant κ3 is the skewness. (d) Fourth cumulant κ4 is the kurtosis.
The vanishing of κ1 and the peaks of κ2, κ3, and κ4 shift towards the
critical point as m is increased.

D. Two-dimensional square lattice transverse field Ising model
on an infinite cylinder

The 2D square lattice transverse field Ising model on an
infinite cylinder is given by the Hamiltonian

H = −
∑

i

w∑
j

σ z
i, j

(
σ z

i+1, j + σ z
i, j+1

) + B
∑

i

w∑
j

σ x
i, j, (80)

where B is the transverse field strength. This is a semi-infinite
cylinder, i.e., its length is infinite but possesses a finite cir-
cumference w that the index j sums over. The circumference
chosen for this work is 12 sites. Just like in the 1D case, the
order parameter is the magnetization 〈M〉 = ∑

i, j σ
z
i, j , which

is now summed over two indices i and j since the system
is two dimensional. Another similarity shared between the
1D and 2D TFI models is the behavior of 〈M〉. When B <

Bc, the ground state is ordered and thus 〈M〉 = 0. Whereas
when B > Bc, the ground state is disordered, hence 〈M〉 = 0.
Figures 17(a)–17(d) show the first four cumulants of 〈M〉
as a function of B. The behavior of the cumulants closely
resemble that of the 1D TFI in Fig. 1 where κ1 vanishes
upon approaching the critical point while the other cumulants
diverge. The cumulants shift significantly with increasing m,
where their vanishing/divergence approach the critical point
as m is increased.

Since the cumulants do not easily locate the critical point,
the Binder cumulant is used to do so. U4 as a function of B
is shown in Fig. 18 for three different values of s. Just as
in the previous examples, varying s shifts U4(m) at different
rates for the different m above and below the critical point.
When s < s∗, for example in Fig. 18(a) where s = 2, there
are multiple spurious crossing points formed between pairs
of different m’s. This is analogous to the Binder cumulant

(c)

(b)

(a)

FIG. 18. 2D TFI model on an infinite cylinder of circumference
w = 12. The Binder cumulant for (a) s = 2, (b) s = s∗ = 3.27, and
(c) s = 20. Varying s shifts U4(m) thus changes the value of B where
they cross. The value s∗ corresponds to s where U4(m, B)∀m cross.
This is taken as the critical point. In this case, it is in (b) where s =
s∗ = 3.27 and Bc = 3.01. When s < s∗ and s > s∗ as in (a) and (c),
there is no point B where U4(m, B)∀m cross simultaneously.

for s = 2 in the top figure of Fig. 2 for the 1D Ising model.
Increasing s shifts the values of U4(m) such that U4(m) in the
region below the critical point shift upwards while the values
above the critical point shifts downwards—again, analogous
to the increasing s in the bottom figure of Fig. 2. As a results,
nearby spurious crossing points merge to form U4(m)∗. This
can be seen in Fig. 18(b) where s = s∗ = 3.27 and U4(m)∗
occurs at B = 3.01 which is taken as the critical point Bc.
As before, s∗ was obtained by solving ∂U4(m,B)

∂m = 0 for s
using a linear solver. In the region of 3.015 < B < 3.018, the
U4(m = 500) (black inverted triangles) cross the other values
of m, forming multiple spurious crossing points between pairs
of m’s. When s is further increased beyond s∗, U4(m) shift
at different rates, thus once again forming multiple spurious
crossing points between pairs of different m’s as can be seen
in Fig. 18(c) where the exaggerated value of s = 20 is chosen
to clearly demonstrate this. As before, these spurious crossing
points can be disregarded as candidates of the critical point.

Using Bc = 3.01 obtained from the Binder cumulant, the
exponents of the correlation length and cumulants are now
extracted by plotting ξ and κi against m. Figure 19(a) shows
the log-log plot of correlation length vs m for B = 3.01. The
gradient of this linear fit gives the critical exponents κ =
1.024 ± 0.006. Figure 19(b), on the other hand, is the log-log
plot of the cumulants with their respective linear fits. By com-
paring the cumulants in this figure, one notices that the higher
the cumulant order, the larger the fluctuation with respect to m.
This makes the error in the linear fit for the higher cumulants
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(a) (b)

FIG. 19. 2D TFI model on an infinite cylinder of circumference
w = 12. Log-log plot of the (a) correlation length ξ and (b) cu-
mulants, at B = 3.01 with respect to m. The symbols are the data
points and the lines are the linear fit. The gradient of the linear fit
corresponds to the critical exponent.

larger, and thus the gradient of the higher cumulants is more
prone to error. The gradient of the linear fits give the cumulant
exponents α1 = −0.276 ± 0.002, α2 = 0.904 ± 0.006, α3 =
2.11 ± 0.01, α4 = 3.110 ± 0.012. The quality of the linear fit
can be checked from the cumulant exponent relation Eq. (40).
Using the obtained values of α1 and α2, one gets α3 = −α1 +
2α2 = 0.276 + 2(0.904) = 2.084, which differs from value
obtained via linear fit in Fig. 19(b) by ∼1.2%. Similarly, α4 =
−2α1 + 3α2 = 2(0.276) + 3(0.904) = 3.264, which differs
from the value obtained via linear fit by ∼5%. As stated
earlier, this large difference between the calculated and fitted
values of the higher order cumulants’ exponents stem from the
fact that the higher order cumulants tend to fluctuate more. As
a result, their fitted exponents are more susceptible to errors.

Using the values of Bc, κ , and αi obtained, together with
the scaling function of the cumulants Eq. (54) and correlation
length Eq. (55), the value of ν can now be obtained. This
is done by tuning ν such that the respective sum of resid-
ual of the cumulants and correlation length of the different
values of m at Bc are minimized. This gives the value ν =
0.750 ± 0.008 and the data collapse of the cumulant shown in
Fig. 20 and that of the correlation length shown in Fig. 21.
This value of ν sits in between the value of the 1D TFI
obtained in Sec. V A where ν = 1, and the full 3D classical
(or equivalently 2D quantum) Ising model in Ref. [32] where
ν = 0.629970(4). This is expected since the infinite cylinder
sits geometrically in between the infinite chain (full 1D) and
the infinite plane (full 2D).

E. One-dimensional Bose-Hubbard model

The 1D Bose-Hubbard (BH) model is given by the Hamil-
tonian

H = −J
∑

j

(b†
j+1b j + b†

jb j+1) + U

2

∑
j

n j (n j − 1), (81)

where b†
j (b j) is the boson creation (annihilation) operator at

site j, n j = b†
jb j is the number operator at site j, and U is the

Hubbard repulsion term that penalizes double occupancy. For
one particle per site, and fixing the energy scale U = 1, pre-
vious studies based on a variety of methods such as finite and
infinite DMRG, quantum Monte Carlo, exact diagonalization,
and Bethe ansatz have shown to undergo a phase transition
from the Mott insulator to a superfluid phase at Jc ≈ 0.26–0.3

(b)

(d)

(a)

(c)

FIG. 20. 2D TFI model on an infinite cylinder of circumference
w = 12. Cumulants scaled according to Eq. (54) for several values
of m. (a) The order parameter, (b) variance, (c) skewness, and
(d) kurtosis. Bc, κ , and αi used in the scaling function are those
obtained from the Binder cumulant and the linear fits of ln(ξ ) and
ln(κi ) vs ln(m), respectively. ν is tuned such that the cumulants’ sum
of residual of the different values of m at Bc is minimized, this gives
ν = 0.750 ± 0.008.

[33–38] (and references therein). The latest work is that of
Ref. [38] where Jc = 0.3048(3) was obtained by using a maxi-
mum bond dimension of m = 4000 and an extrapolation of the
correlation length with respect to the first two eigenvalues of
the transfer matrix. This transition belongs to the Berezinskii-
Kosterlitz-Thouless (BKT) universality class [33,36]. Unlike
other classes of phase transitions where the correlation length
diverges algebraically as a power law as the critical point is
approached, the BKT transition is known for its exponentially

FIG. 21. 2D TFI model on an infinite cylinder of circumference
w = 12. Correlation length versus B (top) and correlation length
scaled according to Eq. (55) (bottom) for several values of m. Bc

and κ used in the scaling function are those obtained from the Binder
cumulant and the linear fit of ln(ξ ) vs ln(m), respectively. ν is tuned
such that the correlation length’s sum of residual of the different
values of m at Bc is minimized, this gives ν = 0.750 ± 0.008.
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diverging correlation length [34,39]

ξ ∝ exp

(
1

|J − Jc|ν
)

, (82)

which causes all data of the critical point to be strongly
plagued by finite-size effects.

In this work, the Hubbard repulsion U is set to unity and
the system is at half-filling. In addition, U (1) particle number
symmetry is enforced so that the total particle number per
site is conserved. Even though the Mermin-Wagner theorem
forbids the spontaneous breaking of a continuous symmetry
in 1D, an iMPS formulated without explicitly preserving U (1)
will spontaneously break this symmetry. For example, con-
sider the m = 1 limit where the iMPS reproduces the mean-
field solution, i.e., the iMPS ground state is the exact solution
of a mean-field Hamiltonian. In this limit, the iMPS explicitly
breaks U (1) symmetry. When J > Jc, this ground state is
comprised of a superfluid where the number of particles at
each site is a superposition of all possible particle numbers,
i.e., |ψ〉 = (a0 |0〉 + a1 |1〉 + a2 |2〉 + · · · )⊗L. In the large-m
limit the U (1) symmetry is restored, and the superfluid order
parameter vanishes as required by the Mermin-Wagner theo-
rem. By explicitly preserving U (1) symmetry, the superfluid
order parameter is always zero and thus is not a good choice
of an order parameter. In contrast, the Mott string order
parameter is zero in the superfluid phase but nonzero in the
Mott-insulating phase. The latter is the region J < Jc where
the ground state is dominated by the Hubbard repulsion term,
therefore, double occupancy is energetically expensive and the
ground state is comprised of a one-particle-per-site insulator.
The Mott string order parameter is given as

O2
Mott = lim

| j−k|→∞

〈
1 jexp

⎡
⎣iπ

k∑
l= j

(n̂l − 1)

⎤
⎦1k

〉
, (83)

where n̂l = b†
l bl measures the number of bosons at site l .

In the Mott insulator phase, the strong repulsion between
bosons causes long-range correlations of single-site occu-
pancy (alternatively, fluctuations in the density are short-
range correlated), thus O2

Mott = 0. On the other hand, in the
gapless phase, long-range (power-law) fluctuations in the
density causes O2

Mott = 0. Figures 22(a)–22(d) show the first
four cumulants of O2

Mott. All the cumulants shift towards the
critical point as m is increased. As can be seen in Fig. 22(a),
κ1 decreases but does not vanish completely in the gapless
superfluid phase. However, κ1 in this phase decreases with
increasing m, indicating that it would vanish completely in the
m → ∞ limit. This corresponds to the power-law fluctuations
in density being restricted to a finite correlation length by the
finite m.

The Binder cumulant in finite system studies has been
known to be cumbersome in locating the critical point of a
BKT transition because one does not simply obtain a single
crossing point between the different system sizes [39]. In-
stead, multiple crossing points between each system size is
observed. As a results, one has to compare each crossing point
and extrapolate them to get the final crossing point which
marks the critical point. Even so, this extrapolation is not
straightforward and can give a very different critical point if

(b)(a)

(c)
(d)

FIG. 22. 1D BH model. First four cumulants of the string order
parameter O2

Mott as a function of J for several values of m. (a) First
cumulant κ1 is the order parameter which is zero only when the
charge gap vanishes. (b) Second cumulant κ2 is the variance of
the order parameter, (c) the third cumulant κ3, and (d) the fourth
cumulant κ4 all diverge at the critical point. The critical point is
reached asymptotically with m as in the BKT universality class.

one is not careful to do the correct comparison between many
different system sizes. Because of this, a large number of sys-
tem sizes and comparisons are required to locate the correct
critical point. Projecting this fact onto the consideration of an
infinite system described in this work, the additional length
scaling parameter s would add an extra degree of difficulty
since there is no clear way to determine its optimum value s∗
which is defined as the crossing point of the Binder cumulant
for all values of m. As such, the deployment of the Binder cu-
mulant to determine the critical point is deemed impractical.
Instead, the scaling functions of the cumulants and correlation
length are used directly to determine the critical point and
critical exponents simultaneously.

Since ξ in Eq. (82) scales as an exponential instead of a
power law as in Eq. (43), a new form of the scaled parameter
Eq. (46) has to be obtained. Starting from Eq. (82) for a finite
system and following the same steps to obtain Eq. (46) from
Eq. (43), one gets

ξ (L, J∗(L)) ∝ exp

(
1

|J∗(L) − Jc|ν
)

,

L = exp

(
g

|J∗(L) − Jc|ν
)

,

|J∗(L) − Jc|[ln(L)]1/ν = g′. (84)

Converting this to an infinite system described by an iMPS by
the substitution L → ξ ∝ mκ , gives

|J∗(m) − Jc|[κ ln(m)]1/ν = g′, (85)

where g is a proportionality constant and g′ = g1/ν . Us-
ing this together with the cumulant scaling function of the
form Eq. (54) and the correlation length scaling function
Eq. (55), the data collapse of the cumulants and correla-
tion length can be obtained, respectively. The data collapse
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(b)(a)

(c)
(d)

FIG. 23. 1D BH model. Cumulants scaled according to Eq. (54)
for several values of m. (a) The order parameter, (b) variance,
(c) skewness, and (d) kurtosis. Jc, κ , ν, and αi are tuned un-
til the cumulants’ sum of residual of the different values of m
over a range of J is minimized. The values of these parameters
are Jc = 0.2850 ± 0.0005, κ = 1.275 ± 0.001, ν = 0.500 ± 0.001,
α1 = −0.375 ± 0.001, α2 = 0.350 ± 0.005, α3 = 1.10 ± 0.02, and
α4 = 1.80 ± 0.05.

of the four cumulants are plotted in Fig. 23. By tuning
each cumulant exponents αi simultaneously with the crit-
ical point Jc and exponents κ and ν, the best data col-
lapse, i.e., the collapse corresponding to the cumulants’
minimized sum of residual of the different values of m
over a range of J , is obtained with the critical point Jc =
0.2850 ± 0.0005, and exponents κ = 1.275 ± 0.001, ν =
0.500 ± 0.001, α1 = −0.375 ± 0.001, α2 = 0.350 ± 0.005,
α3 = 1.10 ± 0.02, α4 = 1.80 ± 0.05. Using Eq. (40) to check
the consistency of the cumulant exponents, one finds that
α3 = −α1 + 2α2 = 0.375 + 2(0.35) = 1.075, which differs
by ∼2.3% from the value obtained by directly tuning α3 in
the data collapse scaling function. Similarly, α4 = −2α1 +
3α2 = 2(0.375) + 3(0.35) = 1.80, which is exactly the value
obtained from the data collapse of the scaling function. The
critical point obtained here however differs from the value
obtained in Refs. [36–38] of Jc ≈ 0.3 by 5%. The exponent
ν agrees exactly with that in Ref. [33].

The data collapse of the correlation length scaling function
Eq. (55) is now used to check whether the critical point
and exponents κ and ν obtained from the cumulant scaling
function were correct. By minimizing the correlation length’s
sum of residual of the different values of m over a range of
J , the data collapse obtained is shown in Fig. 24 with the
values Jc = 0.295 ± 0.001, ν = 0.500 ± 0.001, κ = 1.275 ±
0.001. The critical point here is closer to that obtained in
Refs. [36–38] of Jc ≈ 0.3, differing by ∼1.7%. The superfluid
phase, comprising of free bosons, is described by central
charge c = 1 [36]. Using this, Eq. (51) gives κ = 1.344 which
differs from the obtained value κ = 1.275 by ∼5.1%.

VI. SUMMARY

The order parameter cumulants were studied across the
second order and BKT transition classes for several 1D and

FIG. 24. 1D BH model. Correlation length versus J (top) and
correlation length scaled according to Eq. (55) (bottom) for several
values of m. Jc, ν, and κ are tuned until correlation length’s sum of
residual of the different values of m over a range of J is minimized.
The values of these parameters are Jc = 0.295 ± 0.001, κ = 1.275 ±
0.001, and ν = 0.500 ± 0.001.

2D exemplary systems. These cumulants were obtained using
the recursive formula Eq. (7) which offers an efficient way of
computing operators of any order and unifies the procedure of
calculating both local and string operators. Using the Binder
cumulant, finite-entanglement scaling, and scaling functions,
the critical point and exponents were determined with a rela-
tively smaller bond dimension compared to previously known
data. The procedure to obtain the critical point and exponents
are summarized here:

(1) Obtain the first four cumulants of the order param-
eter and correlation length ξ as a function of Hamiltonian
parameter B across the critical point for several values of bond
dimension m.

(2) Using the four cumulants, compute the Binder cumu-
lant U4(m, B) as a function of B for all values of m.

(3) Tune the length scale parameter s relating the system
size L to the correlation length ξ in Eq. (58) to obtain
the crossing/intersection point of U4(m, B) for all m. This
crossing point is taken as the critical point Bc. Alternatively,
use a linear solver to solve ∂U4(m,B)

∂m = 0 ∀m over a range of
parameter B. This will give Bc at the optimum value s = s∗.

(4) Using Bc, employ finite-entanglement scaling to ex-
tract the finite-entanglement scaling exponent κ and the cu-
mulant exponents αi. This is done by plotting log ξ (Bc) and
log κi(Bc) against log m, respectively. Fit a linear function
through these data. The critical exponent is the gradient of the
linear fit. Check the consistency of the cumulant exponents
by using the cumulant exponent relation Eq. (40). If the expo-
nents disagree significantly, adjust the linear fit parameters.

(5) Use the cumulant scaling function Eq. (54), the cor-
relation length scaling function Eq. (55), and the scaled pa-
rameter Eq. (52) to obtain the data collapse of the cumulants
and correlation length, respectively. Tune the exponent ν to
obtain the best data collapse. Fine-tune the critical point Bc if
necessary.
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(6) If Bc is significantly different from that obtained in step
3, go back to step 4, adjust the linear fit parameters, and repeat.

Where the Binder cumulant is cumbersome in producing
the critical point, such as in the case of the BKT transition
class, the scaling function can be directly employed to obtain
the critical point and exponents simultaneously. The consis-
tency of the exponents can be then checked with the cumulant
exponent relation.
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APPENDIX A: DERIVATION OF 〈M2〉
This Appendix shows the derivation of the second order

moment 〈M2〉 for the operator M given in Eq. (10). This is an
extension of the procedure used in the calculation of the order
parameter shown in Sec. II and can be easily generalized to
any higher order moments.

The operator M2 is given by

M2 = M ⊗ M =
(

I Z
I

)
⊗

(
I Z

I

)

=

⎛
⎜⎝

I Z Z Z2

I 0 Z
I Z

I

⎞
⎟⎠. (A1)

As stated in Sec. II, the expectation value of an operator in the
form of an upper triangular MPO is calculated by the fixed-
point equation of the environment matrix E :

Ei(L + 1) = TWii [Ei(L)] +
∑
j<i

TWji [Ej (L)]. (A2)

For the upper triangular MPO, the operator representing
the observable is E4(L) which has the expectation value of
〈M2〉 = Tr[E4(L)ρR]. The goal here is to show that the correct
polynomial degree matrix-valued coefficient Eq. (9):

Ei(L) =
p∑

m=0

Ei,mLm (A3)

is related to Tr{TZ2 [E4(L)]ρR}—this is done as follows. Writ-
ing out each term Ei(L + 1),

E1(L + 1) = TI [E1(L)], (A4)

E2(L + 1) = TI [E2(L)] + TZ [E1(L)], (A5)

E3(L + 1) = TI [E3(L)] + T0[E2(L)] + TZ [E1(L)]

= TI [E3(L)] + TZ [E1(L)], (A6)
E4(L + 1) = TI [E4(L)] + TZ [E3(L)] + TZ [E2(L)]

+ TZ2 [E1(L)]. (A7)

The expectation value of interest Tr[E4(L)ρR] is in Eq. (A7).
To obtain this, one has to solve the Eqs. (A4), (A5), and (A6)
sequentially in order to obtain terms that will be substituted
into the final Eq. (A7).

Starting from E1(L + 1), Eq. (A4) only contains the oper-
ator TI , which acts trivially on E1(L) and is therefore inde-
pendent of L. Hence the polynomial expansion of E1(L) is of
polynomial order p = 0:

E1(L) = E1,0 L0 = E1,0. (A8)

Inserting this into Eq. (A4) gives

E1,0 = TI (E1,0), (A9)

which implies that E1,0 is an eigenvector of TI with eigenvalue
unity, and hence E1,0 ∝ Ĩ , where Ĩ is an m × m matrix. This
result will be used in subsequent equations where E1 is
needed.

The next equation is Eq. (A5) which contains operators TI

and TZ . Following the same reasoning to obtain the ansatz
of E2(L) via Eq. (17) leading to Eq. (18), one finds that the
polynomial order of E2(L) is thus p = 1 and its polynomial
expansion is

E2(L) = E2,0 + E2,1L. (A10)

Inserting this and E1,0 ∝ Ĩ into Eq. (A5) gives

E2,0 + E2,1 × (L + 1) = TI (E2,0 + E2,1L) + TZ (Ĩ )

E2,0 + E2,1 + E2,1L = TI (E2,0) + TI (E2,1)L + CZ , (A11)

where CZ ≡ TZ (Ĩ ) is a constant matrix, i.e., it has no de-
pendence on any Ei’s and thus its value can be calculated
beforehand. Equating powers of L gives

L0 : E2,0 + E2,1 = TI (E2,0) + CZ , (A12)

L1 : E2,1 = TI (E2,1). (A13)

Equation (A13) implies E2,1 ∝ Ĩ = e2,1,1 Ĩ , where e2,1,1 is a
proportionality constant. Inserting this into Eq. (A12) gives

E2,0 + e2,1,1 Ĩ = TI (E2,0) + CZ . (A14)

By decomposing E2,0 = ∑m2

i=1 e2,0,i |λi〉, TI =∑m2

i=1 λi |λi〉 〈λi|, and CZ ≡ TZ (Ĩ ) = ∑m2

i=1 CZ,i |λi〉, where
CZ,i are elements of the constant matrix CZ , Eq. (A14)
becomes

m2∑
i=1

e2,0,i |λi〉 + e2,1,1 Ĩ

=
m2∑
i=1

λi |λi〉 〈λi|
⎛
⎝ m2∑

i′=1

e2,0,i′ |λi′ 〉
⎞
⎠ +

m2∑
i=1

CZ,i |λi〉

=
m2∑

ii′=1

λie2,0,i′ |λi〉 〈λi|λi′ 〉 +
m2∑
i=1

CZ,i |λi〉

=
m2∑
i=1

λie2,0,i |λi〉 +
m2∑
i=1

CZ,i |λi〉 , (A15)

where the orthogonality relation
∑

i′ 〈λi|λ′
i〉 = δii′ was used

in the last step. Further decomposing Eq. (A15) into a
term parallel to the identity and terms perpendicular to the
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identity,

e2,0,1 Ĩ +
m2∑
i=2

e2,0,i |λi〉 + e2,1,1 Ĩ

= e2,0,1 Ĩ +
m2∑
i=2

λie2,0,i |λi〉 + CZ,1 Ĩ +
m2∑
i=2

CZ,i |λi〉 ,

m2∑
i=2

e2,0,i |λi〉 + e2,1,1 Ĩ

=
m2∑
i=2

λie2,0,i |λi〉 + CZ,1 Ĩ +
m2∑
i=2

CZ,i |λi〉 . (A16)

The parts that are parallel to the identity in Eq. (A16) are

e2,1,1 Ĩ = CZ,1 Ĩ. (A17)

Multiplying both sides of Eq. (A17) by ρR and taking the trace
gives

Tr
(
e2,1,1 ĨρR

) = Tr
(
CZ,1 ĨρR

)
, e2,1,1 = CZ,1, (A18)

where ĨρR = 1 was used. The terms that are perpendicular to
the identity in Eq. (A16) will be used in the later part for
calculating E1(L) where the value of e2,0,i will be needed.
Since there is no explicit way of determining e2,0,i, it has to
be solved with a numerical solver. This is done be rewriting
the parts of Eq. (A16) that are perpendicular to the identity,
i.e.,

m2∑
i=2

(1 − λi)e2,0,i |λi〉 =
m2∑
i=2

CZ,i |λi〉 , (A19)

as a set of linear equations

(1 − λi )e2,0,i = CZ,i. (A20)

Equation (A20) can now be solved for e2,0,i with a lin-
ear solver such as the generalized minimal residual solver
(GMRES).

Equation (A6) is similar to that of Eq. (A5). Applying the
same procedure gives

e3,1,1 = CZ,1 (A21)

and

(1 − λi )e3,0,i = CZ,i. (A22)

This implies

e3,1,i = e2,1,i ∀i. (A23)

One can now look for the ansatz for the final term E4(L) in
Eq. (A7) in the asymptotic large-L limit. To do so, the similar
reasoning to obtain the ansatz of E2(L) via Eq. (17) leading to
Eq. (18) is applied here to obtain the ansatz for E4(L). In this
case, E4(L) is the form of a geometric series, and the large-L
limit depends on the nature of the spectral decomposition
of CZ and CZ2 . Since TI only has a single eigenvalue equal
to 1 and all other eigenvalues are strictly less than 1, E4(L)
can diverge at most quadratically with L, hence E4(L) has
polynomial order p = 2 and its polynomial expansion is

E4(L) = E4,0 + E4,1L + E4,2L2. (A24)

Inserting this, together with E1(L), E2(L) and E3(L), into
Eq. (A7) gives

E4,0 + E4,1 × (L + 1) + E4,2 × (L + 1)2

= TI (E4,0 + E4,1L + E4,2L2) + TZ (E3,0 + E3,1L)

+ TZ (E2,0 + E2,1L) + TZ2 (E1,0),

E4,0 + E4,1 + E4,2 + (E4,1 + 2E4,2)L + E4,2L2

= TI (E4,0) + TZ (E3,0) + TZ (E2,0) + TZ2 (E1,0)

+ [TI (E4,1) + TZ (E3,1) + TZ (E2,1)]L + TI (E4,2)L2.

(A25)

Equating powers of L,

L0 : E4,0 + E4,1 + E4,2

= TI (E4,0) + TZ (E3,0) + TZ (E2,0) + TZ2 (E1,0)

= TI (E4,0) + TZ (E3,0) + TZ (E2,0) + CZ2 , (A26)

L1 : E4,1 + 2E4,2 = TI (E4,1) + TZ (E3,1) + TZ (E2,1), (A27)

L2 : E4,2 = TI (E4,2), (A28)

where the last term on the right-hand side of Eq. (A26) was
TZ2 (E1,0) = TZ2 (Ĩ ) ≡ CZ2 . Analogous to CZ , CZ2 is a constant
matrix, i.e., it has no dependence on any Ei’s, and thus its
value can be calculated beforehand. Equation (A28) implies
E4,2 ∝ Ĩ = e4,2,1 Ĩ , where e4,2,1 is a proportionality constant.
Substituting this into Eq. (A27) gives

E4,1 + 2e4,2,1 Ĩ = TI (E4,1) + TZ (E3,1) + TZ (E2,1). (A29)

By decomposing TI = ∑m2

i=1 λi |λi〉 〈λi|, E4,1 =∑m2

i=1 e4,1,i |λi〉, TZ = ∑m2

i=1 CZ,i |λi〉 〈λi|, E3,1 =∑m2

i=1 e3,1,i |λi〉, and E2,1 = ∑m2

i=1 e2,1,i |λi〉, Eq. (A29)
becomes

m2∑
i=1

e4,1,i |λi〉 + 2e4,2,1 Ĩ

=
m2∑
i=1

λi |λi〉 〈λi|
⎛
⎝ m2∑

i′=1

e4,1,i′ |λi′ 〉
⎞
⎠

+
m2∑
i=1

CZ,i |λi〉 〈λi|
⎛
⎝ m2∑

i′=1

e3,1,i′ |λi′ 〉
⎞
⎠

+
m2∑
i=1

CZ,i |λi〉 〈λi|
⎛
⎝ m2∑

i′=1

e2,1,i′ |λi′ 〉
⎞
⎠. (A30)

Using Eq. (A23), Eq. (A30) becomes

m2∑
i=1

e4,1,i |λi〉 + 2e4,2,1 Ĩ

=
m2∑
i=1

λi |λi〉 〈λi|
⎛
⎝ m2∑

i′=1

e4,1,i′ |λi′ 〉
⎞
⎠
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+ 2
m2∑
i=1

CZ,i |λi〉 〈λi|
⎛
⎝ m2∑

i′=1

e3,1,i′ |λi′ 〉
⎞
⎠

=
m2∑

ii′=1

λie4,1,i′ |λi〉 〈λi|λi′ 〉

+ 2
m2∑

ii′=1

CZ,ie3,1,i′ |λi〉 〈λi|λi′ 〉

=
m2∑
i=1

λie4,1,i |λi〉 + 2
m2∑
i=1

CZ,ie3,1,i |λi〉 , (A31)

where the orthogonality relation
∑

i′ 〈λi|λi′ 〉 = δii′ was used
in the last step. Further decomposing Eq. (A31) into a term
parallel to the identity and terms perpendicular to the identity,

e4,1,1 Ĩ +
m2∑
i=2

e4,1,i |λi〉 + 2e4,2,1 Ĩ

= e4,1,1 Ĩ +
m2∑
i=2

λie4,1,i |λi〉 + 2CZ,1e3,1,1 Ĩ

+ 2
m2∑
i=2

CZ,ie3,1,i |λi〉 ,

m2∑
i=2

e4,1,i |λi〉 + 2e4,2,1 Ĩ

=
m2∑
i=2

λie4,1,i |λi〉 + 2CZ,1e3,1,1 Ĩ

+ 2
m2∑
i=2

CZ,ie3,1,i |λi〉 . (A32)

The terms parallel to the identity in Eq. (A32) are

e4,2,1 Ĩ = CZ,1e3,1,1 Ĩ. (A33)

Multiplying both sides of Eq. (A33) by ρR and taking the trace
gives

Tr(e4,2,1 ĨρR) = Tr(CZ,1e3,1,1 ĨρR),

e4,2,1 = CZ,1e3,1,1. (A34)

Substituting in Eq. (A21) gives

e4,2,1 = C2
Z,1. (A35)

Equation (A35) is the contribution to the expectation value per
site coming from polynomial degree p = 2, i.e., the degree of
L2 with coefficient E4,2, cf. the last term on the right-hand side
of Eq. (A24). Comparing this result with the right-hand side
of Eq. (28) reveals that e4,2,1 is κ2

1 . The terms perpendicular
to the identity in Eq. (A32) are not needed for the subsequent
calculation of the L0 terms. Thus there is no need to determine
them.

The same procedure to obtain Eq. (A35) is now applied to
Eq. (A26) to obtain the contribution to the expectation value

from the L0 term. Using E4,2 = e4,2,1 Ĩ , Eq. (A26) becomes

E4,0 + E4,1 + e4,2,1 Ĩ = TI (E4,0) + TZ (E3,0)

+ TZ (E2,0) + CZ2 . (A36)

Using the eigenvalue decomposition above in addition to
CZ2 ≡ TZ2 (Ĩ ) = ∑m2

i=1 CZ2,i |λi〉 where CZ2,i are the elements of
the constant matrix CZ2 , Eq. (A36) becomes

m2∑
i=1

e4,0,i |λi〉 +
m2∑
i=1

e4,1,i |λi〉 + e4,2,1 Ĩ

=
m2∑

ii′=1

λie4,0,i′ |λi〉 〈λi|λi′ 〉

+
m2∑

ii′=1

CZ,ie3,0,i′ |λi〉 〈λi|λi′ 〉

+
m2∑

ii′=1

CZ,ie2,0,i′ |λi〉 〈λi|λi′ 〉 +
m2∑
i=1

CZ2,i |λi〉

=
m2∑
i=1

λie4,0,i |λi〉 +
m2∑
i=1

CZ,ie3,0,i |λi〉

+
m2∑
i=1

CZ,ie2,0,i |λi〉 +
m2∑
i=1

CZ2,i |λi〉 . (A37)

Using Eq. (A23), Eq. (A37) becomes
m2∑
i=1

e4,0,i |λi〉 +
m2∑
i=1

e4,1,i |λi〉 + e4,2,1 Ĩ

=
m2∑
i=1

λie4,0,i |λi〉 + 2
m2∑
i=1

CZ,ie3,0,i |λi〉 +
m2∑
i=1

CZ2,i |λi〉 .

(A38)

Separating the term parallel to the identity from terms perpen-
dicular to it,

e4,0,1 Ĩ +
m2∑
i=2

e4,0,i |λi〉 + e4,1,1 Ĩ +
m2∑
i=2

e4,1,i |λi〉 + e4,2,1 Ĩ

= e4,0,1 Ĩ +
m2∑
i=2

λie4,0,i |λi〉 + 2CZ,1e3,0,1 Ĩ

+ 2
m2∑
i=2

CZ,ie3,0,i |λi〉 + CZ2,1 Ĩ +
m2∑
i=2

CZ2,i |λi〉 ,

m2∑
i=2

e4,0,i |λi〉 + e4,1,1 Ĩ +
m2∑
i=2

e4,1,i |λi〉 + e4,2,1 Ĩ

=
m2∑
i=2

λie4,0,i |λi〉 + 2CZ,1e3,0,1 Ĩ

+ 2
m2∑
i=2

CZ,ie3,0,i |λi〉 + CZ2,1 Ĩ +
m2∑
i=2

CZ2,i |λi〉 . (A39)
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Multiplying both sides of Eq. (A39) by ρR and taking the
trace,

Tr

⎛
⎝ m2∑

i=2

e4,0,i |λi〉 ρR

⎞
⎠ + Tr(e4,1,1 ĨρR)

+ Tr

⎛
⎝ m2∑

i=2

e4,1,i |λi〉 ρR

⎞
⎠ + Tr(e4,2,1 ĨρR)

= Tr

⎛
⎝ m2∑

i=2

λie4,0,i |λi〉 ρR

⎞
⎠ + 2Tr(CZ,1e3,0,1 ĨρR)

+ 2Tr

⎛
⎝ m2∑

i=2

CZ,ie3,0,i |λi〉 ρR

⎞
⎠ + Tr(CZ2,1 ĨρR)

+ Tr

⎛
⎝ m2∑

i=2

CZ2,i |λi〉 ρR

⎞
⎠. (A40)

Using |λi〉 ρR = 0 for the terms perpendicular to the identity
and ĨρR = 1 for the terms parallel to the identity, Eq. (A40)
becomes

e4,1,1 + e4,2,1 = 2CZ,1e3,0,1 + CZ2,1. (A41)

Substituting in Eq. (A35) gives

e4,1,1 = −C2
Z,1 + 2CZ,1e3,0,1 + CZ2,1. (A42)

The elements e3,0,1 are to be obtained from the linear solver
in Eq. (A22). Equation (A42) is the contribution coming
from polynomial degree p = 1, i.e., the degree of L1 with
coefficient E4,1, cf. Eq. (A24). Comparing this result with the
right-hand side of Eq. (28) reveals that e4,1,1 is κ2.

FIG. 25. 1D TFI model. Larger version of the inset in the top
figure of Fig. 2 corresponding s = 2. An imperfect intersection at
B = 1 is formed between U4 of different values of m, i.e., ∂U4(m,B)

∂m is
a small but nonzero value.

FIG. 26. 1D TKI. Larger version of the inset in the top figure of
Fig. 8 corresponding s = 2. Not all U4(m, J⊥) of the different values
of m cross simultaneously, thus it is a spurious crossing point.

APPENDIX B: INSET FIGURES OF THE
BINDER CUMULANT

This Appendix displays the larger version of the three
inset figures corresponding to the Binder cumulant U4 of the
1D TFI model and the 1D TKI for the purpose of clearly
seeing the imperfect intersection of U4 between the different
values of m. Figure 25 corresponds to the inset in the top
figure of Fig. 2 corresponding to the 1D TFI model when
s = 2 = s∗. At B = 1, an imperfect intersection of U4 between
the different values of m is apparent.

Figures 26 and 27 correspond to the inset in the top and
bottoms figures of Fig. 8, respectively, for the 1D TKI. When
s = 2 = s∗, multiple spurious crossing points occur in Fig. 26.
When s = s∗ = 5.29, the point at J⊥ = 2.22 appears to be a
crossing point, however, upon closer inspection as shown in
Fig. 27, it is not—there is only one crossing point at J⊥ = 2.21
as shown in the bottom figure of Fig. 8.

FIG. 27. 1D TKI. Larger version of the inset in the bottom figure
of Fig. 8 corresponding s = s∗ = 5.29. Close up of J⊥ = 2.22 reveals
that U4 does not intersect there.
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