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Effective model of one-dimensional extended Hubbard systems: Application to linear optical
spectrum calculations in large systems based on many-body Wannier functions
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We propose an effective model called the “charge model,” for the half-filled one-dimensional Hubbard and
extended Hubbard models. In this model, spin-charge separation, which has been justified from an infinite on-site
repulsion (U ) in the strict sense, is compatible with charge fluctuations. Our analyses based on the many-body
Wannier functions succeeded in determining the optical conductivity spectra in large systems. The obtained
spectra reproduce the spectra for the original models well even in the intermediate U region of U = 5–10T , with
T being the nearest-neighbor electron hopping energy. These results indicate that the spin-charge separation
works fairly well in this intermediate U region against the usual expectation and that the charge model is an
effective model that applies to actual quasi-one-dimensional materials classified as strongly correlated electron
systems.
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I. INTRODUCTION

The separation of spin and charge degrees of freedom
(spin-charge separation) is considered to be a basic con-
cept underpinning various properties of one-dimensional (1D)
Mott insulators. The spin-charge separation was first recog-
nized in Tomonaga-Luttinger liquids. In the weakly interact-
ing 1D electron systems, collective excitations of charge and
spin were shown to emerge instead of quasiparticles, and they
are decoupled at low energies [1–7]. A liquid exhibiting this
universal behavior is called a Tomonaga-Luttinger liquid. A
power-law singularity of the momentum distribution function
at the Fermi wave number and a power-law decay of the cor-
relation functions originate from the collective nature of ex-
citations, and they are characteristics of Tomonaga-Luttinger
liquids that distinguish them from Fermi liquids [1–7]. In the
strong interaction limit, on the other hand, these spin and
charge degrees of freedom were shown to separate in the

ground state for the 1D Hubbard model at any filling for
U/T → ∞, U being the on-site Coulomb interaction energy
and T > 0 the magnitude of the transfer integral [8]. The
origin of the spin-charge separation in the strong coupling
case is different from that in the weak coupling case. In spite
of the fact, the spin-charge-separated ground state has been
shown to have the characteristic features of a Tomonaga-
Luttinger liquid [8–10].

The ground state of the 1D Hubbard model is a Mott
insulator at half filling. In the Mott insulators, an empty site
(a holon, H) and a doubly occupied site (a doublon, D) are
mobile excitations that may carry a charge. The ground state
has neither Hs nor Ds in the limit U/T → ∞; H and/or D can
be generated though by chemical doping or photoexcitation.
However, because chemical doping of the 1D Mott insulator
materials is difficult, photoinduced phenomena are important
stages to investigate the properties of these charge carriers.
If the spin-charge degrees of freedom are separated, these
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charge carriers move freely without disturbing the spin state.
Holon and spinon branches with different energy scales have
been found in the angle-resolved photoemission spectrum,
and this provides direct evidence of spin-charge separation
[11]. Furthermore, spin-charge separation is considered to
be the origin of novel optical properties of the 1D Mott
insulators such as gigantic optical nonlinearity [12–15] and
the photoinduced transitions to metallic states [16,17].

The spin-charge separation has also been shown to hold
for the photoexcited state in the limit U/T → ∞ [18–21].
The density-density correlation function for the original ex-
tended Hubbard model, which is related to optical conduc-
tivity via the conservation of current, is reproduced well by
the spin-charge-separated photoexcited states [21,22]. Charge
fluctuations are completely suppressed and the number of Hs
and that of Ds are fixed to zero (one) in the ground state
(photoexcited states) in the limit of U/T → ∞. In the single
hole case, the dynamical properties of the 1D Hubbard model
are also known to originate from the spin-charge separation
even considering charge fluctuations [23–25]. In the optically
excited states after the irradiation of visible or near-infrared
light, on the other hand, charge fluctuations are expected to
play the main role. Furthermore, we think that the degree of
charge fluctuations will be substantial in 1D Mott insulator
materials with typical U/T values of 5–10.

To consider this problem, we introduce an effective model
for the 1D Hubbard and extended Hubbard models, where
spin-charge separation holds but charge fluctuations are not
suppressed. The effective model is hereon called the charge
model. By comparing the results obtained in the charge model
with those in the original models, we can distinguish spin-
charge coupling effects from charge fluctuation effects. We
have found that the optical conductivity in the original models
is reproduced quantitatively in the charge model despite the
charge fluctuations significantly contributing to the optical
conductivity in this realistic parameter range. The spin-charge
separation and charge fluctuations are compatible in the 1D
Mott insulators.

Femtosecond transient absorption spectroscopy has been a
powerful experimental tool to investigate the physical prop-
erties of strongly correlated systems. As there exists no re-
liable approximation that can describe photoexcited states
in the strongly correlated electron system, numerically exact
diagonalization on small clusters [26] and the density matrix
renormalization group (DMRG) [27–35] are reliable theoret-
ical methods to investigate transient absorption spectroscopy.
However, finite-size effects are considerable in the exact
diagonalization calculations. For example, because a band in
the absorption spectrum of a macroscopic system changes
to a few separated peaks in a small cluster, it is difficult
to compare the absorption spectrum obtained by the exact
diagonalization method with experimental results even if we
introduce broadening to each peak. For larger system sizes,
the absorption spectrum is calculated by the DMRG method,
where finite-size effects are not significant. However, the wave
functions of the ground state and photoexcited states are not
obtained, and therefore interpreting the numerical results is
difficult in this instance. As the dimension of the Hilbert space
of the charge model is much smaller than that of the original
Hubbard and extended Hubbard models, the charge model is a

very good effective model to calculate the optical conductivity
of a larger system. Furthermore, we propose a method to
calculate the absorption spectrum and optical conductivity
for these larger systems by introducing many-body “Wan-
nier functions” (MBWFs), which are generated from linear
combinations of energy eigenstates that have non-negligible
transition dipole moments from the ground state. We have
found that the optical conductivity calculated by the DMRG
method is reproduced well even in a sufficiently large system
in which finite-size effects are negligible.

The present paper is organized as follows. The charge
model is introduced in Sec. II. The optical conductivity spec-
tra calculated by the charge model is compared with that
by the original Hubbard and extended Hubbard models in
small clusters in Sec. III A. In Sec. III B, we introduce a
method using MBWFs to calculate the optical conductivity
for a much larger system, and the optical conductivity spectra
calculated by these two models are compared in sufficiently
large systems that can be effectively regarded as the thermo-
dynamic limit. In Sec. IV, we give a brief summary and a
discussion. Throughout this paper, we set h̄ = e = c = 1 and
lattice constant = 1.

II. CHARGE MODEL

The 1D extended Hubbard Hamiltonian describing the
interaction of N electrons at N sites coupled to a light field
is given by

H (t ) = K̂ (t ) + V̂

K̂ (t ) =
N∑

n=1

K̂n(t )

K̂n(t ) = −T
∑

σ

{c†
n,σ cn+1,σ exp[iA(t )] + H.c.}

V̂ = U
N∑

n=1

c†
n,↑cn,↑c†

n,↓cn,↓

+V
N∑

n=1

∑
σ,σ ′

c†
n,σ cn,σ c†

n+1,σ ′cn+1,σ ′ . (1)

The term K̂ (t ) describes the transfer of electrons, where c†
n,σ

(cn,σ ) creates (annihilates) an electron of spin σ (σ = ↑,↓)
at site n, and A(t ) is the dimensionless vector potential at
time t . The electron-field coupling has been introduced into
the transfer integral as a Peierls phase. The term V̂ describes
the Coulomb interaction, where V is the Coulomb interaction
energy between neighboring sites. A periodic boundary con-
dition is imposed in that cN+1,σ = c1,σ holds.

We construct an effective model for the half-filled 1D Hub-
bard and extended Hubbard models in a subspace S spanned
by the following basis states,

|{p1, p2, · · · , pM}, {q1, q2, · · · , qM}〉
= D†

p1
D†

p2
· · · D†

pM

×
∑

σ1,σ2,··· ,σN−2M

f (M )(σ1, σ2, · · · , σN−2M )

× c†
l1,σ1

c†
l2,σ2

· · · c†
lN−2M ,σN−2M

|0〉, (2)
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where M is the number of H-D pairs, p1 < p2 < · · · < pM ,
q1 < q2 < · · · < qM , and l1 < l2 < · · · < lN−2M show dou-
bly occupied, empty, and singly occupied sites, respectively,
D†

p = c†
p,↑c†

p,↓ creates D at site p, and |0〉 is the vacuum
state. The spin wave function f (M ) is independent of the
charge configuration {p1, p2, · · · , pM} and {q1, q2, · · · , qM},
and all the basis states with the same M have the same spin
wave function. The spin and charge degrees of freedom are
separated in all the states in S because of this property. The
spin wave function f (M ) is given by the ground state of the
Heisenberg Hamiltonian with N − 2M sites. The ground state
of the charge model is given by the spin wave function f (0) in
the limit T/(U − V ) → 0. Therefore, the ground state of the
original extended Hubbard Hamiltonian can be reproduced in
the charge model in the strong-coupling limit, which justifies
the choice of f (M ). The ground state of the Heisenberg Hamil-
tonian satisfies the cyclic condition,

f (M )(σ1, σ2, · · · , σN−2M )

= exp(−iθM ) f (M )(σ2, · · · , σN−2M , σ1), (3)

where a constant θM is given by

θM = π

2
mod(N − 2M, 4), (4)

and mod(N − 2M, 4) is the remainder of (N − 2M )/4. The
basis states are normalized and satisfy the condition:

〈{p′
1, p′

2, · · · , p′
M}, {q′

1, q′
2, · · · , q′

M}|
× {p1, p2, · · · , pM}, {q1, q2, · · · , qM}〉

= δp′
1,p1δp′

2,p2 · · · δp′
M ,pM δq′

1,q1δq′
2,q2 · · · δq′

M ,qM . (5)

We consider an effective Hamiltonian given by

H (C)(t ) = PH (t )P, (6)

where P is a projection operator onto the subspace S. The
model described by the effective Hamiltonian is termed as
a charge model. Since S is invariant under V̂ , the effective
Hamiltonian can be written as

H (C)(t ) = K̂ (C)(t ) + V̂ ,

K̂ (C)(t ) =
N∑

n=1

K̂ (C)
n (t ),

K̂ (C)
n (t ) = PK̂n(t )P. (7)

To derive K̂ (C)
n (t ), we show how the electronic configura-

tion at sites n and n + 1 changes by operating with K̂n(t ) on
states | · · · XnXn+1 · · · 〉 for which the electronic configuration
at site n is Xn and that at site n + 1 is Xn+1. Specifically,
Xn = σ indicates that site n is singly occupied with spin σ ,
and Xn = D (Xn = H) indicates that site n is doubly occupied
(empty). The explicit expressions are given in Appendix A.
The possible change patterns are as follows, and they are
schematically shown in Fig. 1.

(i) Transfer of an H or D:

K̂n(t )| · · · Dσ · · · 〉 = Te−iA(t )| · · · σD · · · 〉,
K̂n(t )| · · · σD · · · 〉 = TeiA(t )| · · · Dσ · · · 〉,
K̂n(t )| · · · Hσ · · · 〉 = −TeiA(t )| · · · σH · · · 〉,
K̂n(t )| · · · σH · · · 〉 = −Te−iA(t )| · · · Hσ · · · 〉. (8)

1
2

1
2

(a) (b)

(c)

: holon 

: doublon

FIG. 1. The possible change patterns of the electronic configu-
ration at sites n and n + 1 by operating with K̂n(t ). (a) An example
of the transfer of an H or D and (b) annihilation and creation of an
H-D pair involved with a singlet spin pair are permitted. In contrast,
in (c) annihilation and creation of an H-D pair involved with a triplet
spin pair are forbidden.

(ii) Annihilation of an H-D pair:

K̂n(t )| · · · DH · · · 〉 = −Te−iA(t )(| · · · ↑↓ · · · 〉 − | · · · ↓↑ · · · 〉),

K̂n(t )| · · · HD · · · 〉 = −TeiA(t )(| · · · ↑↓ · · · 〉 − | · · · ↓↑ · · · 〉),

(9)

where the spin states are expressed with the increasing or-
der of the site number, for instance, as | · · · ↑↓ · · · 〉 for
[· · · c†

n,↑c†
n+1,↓ · · · ]|0〉.

(iii) Creation of an H-D pair from a singlet spin pair:

K̂n(t )
1√
2

(| · · · ↑↓ · · · 〉 − | · · · ↓↑ · · · 〉)

= −
√

2T (eiA(t )| · · · DH · · · 〉 + e−iA(t )| · · · HD · · · 〉). (10)

For a triplet pair, the following relation holds,

K̂n(t )
1√
2

(| · · · ↑↓ · · · 〉 + | · · · ↓↑ · · · 〉)

= K̂n(t )| · · · ↑↑ · · · 〉 = K̂n(t )| · · · ↓↓ · · · 〉 = 0. (11)

In the case of transfer of an H or D, only the position of
an H or D is changed but the spin wave function is not.
The expressions of K̂ (C)

n (t ) in this case are explicitly given
in Appendix A as Eqs. (A1)–(A4) and (A8)–(A11). A phase
factor appears when an H or D crosses the boundary. This is
because the creation operators for the singly occupied sites are
rearranged from left to right in increasing order of lk .

In the case of the annihilation of an H-D pair, the
spin wave function is changed. We consider a state
|{p1, p2, · · · , pM}, {q1, q2, · · · , qM}〉 with M H-D pairs,
where an H and a D exist at sites n and n + 1, respectively,
and lk < q j = n and pi = n + 1 < lk+1 hold. The H-D pair
is converted to a singlet spin pair by operating with K̂n(t ).
Therefore, the transferred state

|�n〉 = K̂n(t )|{p1, p2, · · · , pM}, {q1, q2, · · · , qM}〉 (12)
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is given by

|�n〉 = −TeiA(t )D†
p1

· · · D†
pi−1

D†
pi+1

· · · D†
pM

×
∑

σ1,σ2,··· ,σN−2M

f (M )(σ1, σ2, · · · , σN−2M )

× c†
l1,σ1

· · · c†
lk ,σk

(c†
n,↑c†

n+1,↓ − c†
n,↓c†

n+1,↑)c†
lk+1,σk+1

· · · c†
lN−2M ,σN−2M

|0〉. (13)

The spin wave function of |�n〉 is obtained by inserting a
nearest-neighbor singlet pair of spins into the ground state
|ψ (H)

0 (N − 2M )〉 of the 1D Heisenberg Hamiltonian with N −
2M sites between sites lk and lk + 1. The singlet spin pair
(SSP) inserted state is denoted by |ψ (H)

0 (N − 2M ) + SSP〉.
The spin wave function |ψ (H)

0 (N − 2M ) + SSP〉 is different
from |ψ (H)

0 (N − 2M + 2)〉, showing that spin-charge coupling
is induced by the annihilation process of an H-D pair. The
overlap between |ψ (H)

0 (N − 2M + 2)〉 and |ψ (H)
0 (N − 2M ) +

SSP〉 can be written as〈
ψ

(H)
0 (N − 2M + 2)

∣∣ψ (H)
0 (N − 2M ) + SSP

〉
= cS(M ) exp[−i(θM − θM−1)k]. (14)

Note that the phases of these two states may be chosen inde-
pendently and that the overlap is multiplied by exp[i(θM−1 −
θM )] if the location of the singlet spin pair is shifted by one
site. We have chosen the phases so that the overlap is real and
positive when the singlet spin pair is inserted at the first two
sites in |ψ (H)

0 (N − 2M ) + SSP〉, and the overlap in this case
is denoted by cS(M ). The value c2

S(M ) shows the weight of
the singlet component of a spin pair at neighboring two sites
in |ψ (H)

0 (N − 2M + 2)〉. The system size dependence of the
overlap was calculated, and it has been shown that cS(M ) are
well fitted by the function 0.820 + 0.740(N − 2M )−2 [36].
We neglect the system size dependence and adopt the value
in the thermodynamic limit [cS(M ) = 0.82] for simplicity.

Using Eqs. (13) and (14), the only nonzero matrix el-
ement of K̂n(t ) within the subspace S with column index
|{p1, p2, · · · , pM}, {q1, q2, · · · , qM}〉 is given by

〈{p1, · · ·, pi−1, pi+1, · · · , pM}, {q1, · · · , q j−1, q j+1, · · · , qM}|
× K̂n(t )|{p1, p2, · · · , pM}, {q1, q2, · · · , qM}〉

= −
√

2TeiA(t )cS(M ) exp[−i(θM − θM−1)k]. (15)

When a D and an H exist at sites n and n + 1, respectively,
we can obtain the matrix elements from the same procedure.
The expressions of K̂ (C)

n (t ) in this case are explicitly given in
Eqs. (A5), (A6), (A12), and (A13).

Creation of an H-D pair is the inverse process of annihila-
tion of an H-D pair. Using this fact, K̂ (C)

n (t ) are obtained as
explicitly given in Eqs. (A7) and (A14). The absolute values
of the matrix elements are reduced by the factor cS(M ) when
the number of H-D pairs is changed.

The constants θM and cS(M ) depend on the spin wave func-
tion, and the optical properties in the charge model depend on
the spin wave function only through θM and cS(M ). Optical
properties have been investigated in the limit U/T → ∞,
where the charge fluctuations were neglected and only the
states with one H-D pair (M = 1) were considered [22]. They
considered different spin wave functions and the contribution

of the spin wave functions with various θ1 were considered
there. The spin wave function with θ1 = (π/2)mod(N − 2, 4)
has been shown to have dominant weight [22]. The adopted
θM is consistent with this previous study.

The part (1 − P)H (t )P of the original extended Hubbard
Hamiltonian neglected in the charge model changes the num-
ber of H-D pairs. Using strong-coupling perturbation theory,
it has been shown that the parts that change the number of
H-D pairs are the first order in the small parameter T/(U − V )
[20,22]. Furthermore, (1 − P)H (t )P originates from the con-
tribution of the components with a triplet-spin pair. Therefore,
the neglected part (1 − P)H (t )P is the first order of T/(U −
V )

√
1 − c2

S(M ). For the parameters used in this paper, this
quantity is as small as 0.11 at most to reproduce the optical
conductivity of the Hubbard and extended Hubbard models
(to be shown in Sec. III A) even quantitatively.

In the following, we consider the linear absorption spec-
trum assuming a small vector potential, A. We calculate
exactly the optical conductivity in the charge model and in the
1D Hubbard and extended Hubbard models for a small cluster.
A comparison of results is given in the following section. In a
system with N = 4n + 2 (N = 4n), with n integer, the ground
state of the 1D Hubbard model is a spin singlet (triplet). Since
the spin-triplet state may affect the optical conductivity in
the small-size system, we adopt a system size N = 14 for a
comparison. Furthermore, using the MBWFs, we also demon-
strate in the following section a newly developed approach
to calculate the optical conductivity of strongly correlated
electron systems of sufficiently large size, in which finite-size
effects are negligible. In this method, the Hamiltonian matrix
elements in the basis of MBWFs are obtained from the small
cluster calculations that are then extrapolated to those for the
larger systems. From Eq. (4), θM for a system with N = 4n
and that with N = 4n + 2 differ by π . For the extrapolation,
we adopt those θM for a system with N = 4n + 2 even for
a system with N = 4n, because we are interested in optical
excitations in the spin-singlet ground state. Note that the
lowest-energy spin-singlet state is almost degenerate with that
for the spin-triplet state for the one-dimensional Hubbard and
extended Hubbard models. Furthermore, because the matrix
elements for larger systems are needed as initial data for the
extrapolation, we adopted a maximum system size of N = 16
where exact diagonalization can be done practically. A twist
in the boundary condition is introduced by adopting different
θM . The effects of the twisted boundary condition on optical
properties are of order 1/N , and they are negligible in the limit
N → ∞.

III. RESULTS

A. Exact treatment

First, to validate our new model, we compare the optical
conductivity spectra calculated using the charge model with
that calculated using the 1D Hubbard and extended Hubbard
models. We use the translational symmetry and confine our
argument to the zero center-of-gravity momentum frame.
Under these circumstances, the dimension of the Hilbert
space of the charge model for N = 14 is 44 046, which
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is about 20 times smaller than that of the original models.
Unfortunately, however, the computational limit for N is about
26 even though the reduction of the dimension becomes more
significant as N increases.

To treat a larger system, we restrict the maximum number
of H-D pairs, Mmax, where 1 � Mmax � N/2. The effect of
this restriction on the spectra is discussed in this subsection.
However, even introducing this restriction, the practical upper
limit of N is 40, which is not sufficient to determine an overall
spectral shape in the thermodynamic limit. In this subsection,
the system size N is fixed at 14 to perform an exact diagonal-
ization of the Hubbard and extended Hubbard Hamiltonians.
A further extension of the system size is discussed in the next
subsection.

Under linear response, the electron-field coupling part of
the Hamiltonian He−A(t ) is given by the first-order perturba-
tion;

He−A(t ) = −A(t )Ĵ, (16)

where Ĵ is the current operator defined as

Ĵ = iT
∑
n,σ

(c†
n,σ cn+1,σ − H.c.). (17)

In both the extended Hubbard and the charge models, we
calculate the optical conductivity spectrum, which follows
from the definition,

σ (ω) = γ

ωN

∑
μ

|〈�μ|Ĵ|g〉|2 1

(ω − Eμ + Eg)2 + γ 2
, (18)

where |g〉 and Eg are the ground state and ground state energy,
respectively, and |�μ〉 is the energy eigenstate associated with
energy eigenvalue Eμ. Here, the artificial broadening γ is set
to 0.1T .

In Fig. 2(a), the optical conductivity spectra for
(U/T,V/T ) = (10, 0) are shown. Here, we do not restrict
the maximum number of H-D pairs (Mmax = N/2). As men-
tioned in the previous section, an H-D pair is created only
from a nearest-neighbor singlet spin pair and vice versa by
virtue of the transfer term. The contributions of triplet spin
pairs are included through the reduction factor cS(M ) in the
charge model; see Eq. (14). If the spin wave function of
the charge model f (M ) is approximated by the ground state
of the (N − 2M ) site 1D Heisenberg Hamiltonian, cS(M ) =
0.82 holds [36]. From Fig. 2(a), the spectrum for the charge
model with cS(M ) = 0.82 (red solid) is in good agreement
with that for the Hubbard model (black dotted), justifying
our assumption. Furthermore, the good agreement shows that
the spin-charge separation holds quite nicely. In contrast, all
the peaks of the charge model with cS(M ) = 1 for all M
(blue solid) are blueshifted about 0.5T in comparison with
the Hubbard model. This shift shows that the ground state is
stabilized more largely than the optically excited states due to
the overestimation of the transfer matrix elements related to
creation and annihilation of an H-D pair.

The optical conductivity spectra for (U/T,V/T ) =
(10, 2.5) are also shown in Fig. 2(b). The spectrum of the
charge model with cS(M ) = 0.82 is again in good agreement
with that of the exact spectrum. The spectral features of
the charge model with cS(M ) = 1 is almost the same as for

FIG. 2. Comparison of the optical conductivity spectra of the
Hubbard and extended Hubbard models and charge model for
(a) (U/T,V/T ) = (10, 0) and (b) (U/T,V/T ) = (10, 2.5), and N =
14. We set 〈g|Ĵ Ĵ|g〉 = 1 to compare the spectra for different cS(M )
values, and the intensity plots of each panel are normalized by their
maximum.

(U/T,V/T ) = (10, 0); that is, all peaks are blueshifted about
0.5T .

We therefore conclude that the charge model with cS(M ) =
0.82 is an effective model of the Hubbard and extended
Hubbard models to investigate linear optical properties in
small size clusters. Hence, cS(M ) is set to 0.82 from hereon.
Although the contributions of the spin-triplet components are
non-negligible, their effects are properly considered by the
renormalization of the value of cS(M ).

Next, we show the convergence of the optical conductivity
spectra of the charge model in terms of Mmax. In Fig. 3, the
spectra of the charge model for several Mmax values are shown.
The spectra for Mmax = 1 and 2 are apparently blueshifted in
comparison with that for Mmax = 7. This shows that charge
fluctuations (fluctuations in the number M of H-D pairs) are
significant and one- and two-H-D pair basis states cannot
be enough to stabilize optically excited states. We confirmed
the numerical convergence of the spectra at Mmax = 3 and 4
for (U/T,V/T ) = (10, 0) and (10,2.5), respectively; the red
(Mmax = 7) and blue (Mmax = 3) lines in Fig. 3(a) and the red
(Mmax = 7) and black dashed (Mmax = 4) lines in Fig. 3(b)
strongly coincide.

A larger Mmax value is required for V > 0 than for the
V = 0 to describe optically excited states of H (C) accurately.
The explanation is that, because the nearest-neighbor H-D
pairs are more stable for V > 0 than for V = 0 (the energy
of formation is roughly given by U − V ), multiple H-D pairs
are created more easily in the former circumstance than in the
latter. These results clearly show that charge fluctuations play
an essential role with realistic U (∼ 10T ).
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FIG. 3. Mmax dependence of the optical conductivity spectra
for (a) (U/T,V/T ) = (10, 0) and (b) (U/T,V/T ) = (10, 2.5), and
N = 14. The intensity plots of each panel are normalized by their
maximum. The red (Mmax = 7) and blue (Mmax = 3) lines in (a) and
the red (Mmax = 7) and black dashed (Mmax = 4) lines in (b) are
indistinguishable.

We mention here the difference between the charge model
and the so-called holon-doublon (HD) model [13]. The HD
model is an effective two-particle model, where the transfer of
the H and D, as well as their Coulomb interaction are included.
The essential difference between these two models is that the
number of H-D pairs is set to one, and the annihilation and
creation of H-D pairs do not occur in the HD model. The
ground state is stabilized by the charge fluctuation from the
annihilation and creation of an H-D pair in the charge model.
Comparison of the optical conductivity spectra for N = 14
calculated from the charge model and HD model are shown
in Figs. 4(a) and 4(b). We found that the center of gravity of
the spectra calculated using the HD model shows better agree-
ment with that calculated using the charge model with Mmax =
7 than that calculated using the charge model with Mmax = 1
for both V = 0 and V > 0 instances. This feature is easily
understood as arising from the difference in the stabilization
of the two involved states, specifically, the ground state and
the one-H-D-pair basis states with odd parity. The ground
state is stabilized even for Mmax = 1 in the charge model,
because the couplings between it and the even one H-D-pair
basis states work there as seen in Fig. 4(c). In more detail, the
ground state couples with one of the even states most strongly.
As a result of this, the center of gravity of the whole even
states does not change largely. The odd one-H-D-pair states
are, in contrast, not stabilized in the absence of couplings with
multiple H-D-pair basis states, as arises for Mmax = 1. This
imbalance yields an incorrect large gap in the spectrum of
Mmax = 1. Meanwhile, the cancellation of inaccuracies results
in the better optical gap for the HD model than for the charge
model with Mmax = 1 by chance. However, the HD model

FIG. 4. Comparison of the optical conductivity spectra of the
charge model and HD model for (a) (U/T,V/T ) = (10, 0) and
(b) (U/T,V/T ) = (10, 2.5), and N = 14. The intensity plots of
each panel are normalized by their maximum. (c) Schematic energy
diagram for Mmax = 1.

cannot reproduce the detailed distribution of spectral peaks of
the charge model with Mmax = 7. Furthermore, the HD model
gives incorrect optical gaps for smaller U (∼5T ) due to the
neglect of charge fluctuations, which will be shown in Fig. 9.

B. Many-body Wannier functions

In the preceding sections, we introduced the charge model
and demonstrated the optical conductivity spectra calculated
using the model with a small system size that can be treated
exactly. Even introducing a restriction to the maximum num-
ber of H-D pairs, the practical upper limit is N = 40, which
is not sufficient to determine an overall spectral shape in the
thermodynamic limit. We, therefore, try the calculation for
much larger system sizes and present the spectra in those cases
based on the newly developed many-body Wannier functions.

For conventional Wannier functions, the full Bloch func-
tions constitute a complete orthogonal set for the one-body
states. The Wannier functions are obtained from the former
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using a unitary transformation to make the latter as localized
as possible. The benefit of these functions is the direct de-
scriptions of the nature of the corresponding band dispersion,
which is independent of the assumed system size. They are
used to estimate the model parameters such as transfer energy
and on-site repulsion energy. The resultant models are well
known to play substantial roles in the investigation of much
more subtle aspects such as electron correlations beyond one-
body treatments.

We apply this “philosophy” of the Wannier functions to
the present charge model. What is essential is hence the
construction of the many-body counterpart, which is defined
locally, being almost free from the system size. Because of
this local nature, they provide a practically useful basis set in
the many-body problem.

These MBWFs have several advantages when compared
with the other methods to determine an overall spectral shape
in the thermodynamic limit. First, the dynamical DMRG
(DDMRG) method is known to provide numerically almost
exact results [28–35]. In spite of its accuracy, we often experi-
ence difficulty in knowing the nature of a spectral feature. This
difficulty arises from the repeated basis transformations per-
formed in the DDMRG. In contrast, the basis transformation
in the MBWF method is performed only once, and we easily
translate a result into that based on the original bare basis
states. Second, the technique of the quantum Monte Carlo
(MC) is one of the nonperturbative methods. In some cases,
it gives reliable spectral results [37,38], although the problem
of analytical continuation still requires careful treatment. In
addition to this demerit, the difficulty in knowing the nature of
a spectral feature also applies to this method. Lastly, analytical
methods are also compared with the method of MBWFs. The
method based on the Bethe ansatz leads to an analysis in
the large-U/T limit [22], while a field-theoretical method is
limited to the small-U/T region [28,29]. As will be shown in
this subsection, the method of MBWFs has a wide application
range with intermediate and strong U/T values.

Before entering into the actual construction of the MBWFs,
we discuss in more detail the optical conductivity spectrum
for H (C) in a small cluster, specifically to know the nature of
each peak. Here, we use a system with N = 16 as a starting
point of our construction. In principle, the initial system size is
required to be sufficiently large to contain the spatial extension
of MBWFs. For the present cases, we found that the choice of
16 sites is considered to be adequate. Furthermore, we use the
translational symmetry and restrict our argument within the
frame of zero center-of-gravity momentum. In Fig. 5(a), the
spectrum of the optical conductivity calculated with artificial
broadening γ = 0.1T is shown. The number of H-D pairs
has no restriction for the solid red curve, which means that
the maximum number of H-D pairs, Mmax, is 8. In contrast,
when Mmax is set to one (blue solid curve), then only the bare
ground state, namely, the charge vacuum, and one-H-D-pair
basis states are included. When we compare the two spectra,
the apparent difference is the larger optical gap in the latter,
which is the same feature as seen in Fig. 4(a).

In Fig. 5(b), the H-D distance (rHD) distributions are shown
for each eigenstate corresponding to the seven principal peaks
in the spectra [Fig. 5(a)]. Here, all the states are parity odd,
and the numbering is in increasing order of the eigenenergy.

Note that the sampling for Mmax = 8 is performed with respect
to the one-H-D-pair states and that the summation for all
the distances is normalized to unity. First, the curves for
Mmax = 1 obey the exact functions; that is, 1

4 sin2( π
(N/2) krHD)

[1 � k � (N/2 − 1)], as expected from their unperturbed na-
ture as Bloch states, whereas those for Mmax = 8 are slightly
deformed from those. We emphasize that this does not mean
necessarily weak renormalization because of multiple pair
excitations, as the ratio of one-H-D-pair basis states within the
whole weight is largely reduced to 70%–75% for Mmax = 8,
in contrast to 100% for Mmax = 1.

We next construct the MBWFs given the above eigenstates.
For Mmax = 1, this is trivial. Specifically, defining {|φ̃k〉} as
the odd one-H-D-pair basis state having the H-D distance
of k (k = 1, 2, ..., 7), such states constitute a complete or-
thogonal set for the optically active states. In other words,
they provide the whole transition moments from the ground
state, which assures that the optical conductivity spectrum is
described exactly by this subspace, that is, the above excited
states and the ground state. In Fig. 5(c), we illustrate some
of the actual |φ̃k〉’s. Note that the basis state with distance
k = 8 is parity even. The Bloch states corresponding to the
seven principal peaks defined as {|φk〉} are exactly expressed
as |φk〉 = ∑

k′ V
(tr)

kk′ |φ̃k′ 〉, where V (tr) is a unitary matrix. By a
simple analysis, we determine the unitary matrix to be

V (tr)
kk′ = 2√

N
sin

(
2π

N
kk′

)
(1 � k, k′ � 7). (19)

From these equations, we now see that the functions {|φ̃k′ 〉}
play the roles of MBWFs.

For Mmax = 8, we again choose seven principal peaks.
They dominate the whole transition moments and we expect
the optical conductivity spectrum to be described by the
ground state and the seven corresponding energy eigenstates
{|φk〉} very accurately. In this case, we try a reverse transfor-
mation as

|φ̃k〉 =
∑

k′
V (tr)

kk′ |φk′ 〉, (20)

using the same matrix V (tr), because the behavior of the Bloch
states confined in the one-H-D pair basis states is similar to
that for Mmax = 1; see Fig. 5(b). We emphasize that |φ̃k〉 is
expressed as a linear combination of many basis states, which
are separated into one-H-D pair basis states and multi-H-D
pair basis states. In this transformation, the former part is
localized, in the meaning that the one-H-D pair basis with the
H-D distance being k has a relative weight more than 94%
among all the one-H-D pair bases. In this sense, we regard
them as MBWFs. Meanwhile, the latter part, i.e., the part
composed by the multi-H-D pair basis states, is regarded as
a nontrivial fluctuation associated with this MBWF and plays
an essential role in the determination of the effective model
below.

The obtained MBWFs are used to evaluate the matrix
elements of H (C). In Fig. 6, we show the matrix elements,
hkk′ , which are defined as 〈φ̃k|H (C)|φ̃k′ 〉 with k and k′ being
1 ∼ 7, as specified within the dotted square of Fig. 6(a). In
each of Figs. 6(b)–6(d), we plot the matrix elements along
the diagonal lines. In Fig. 6(b), all the elements are diagonal
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FIG. 5. (a) Optical conductivity spectra for (U/T,V/T ) = (10, 0) and N = 16, with Mmax = 1 (blue line) and Mmax = 8 (red line).
(b) Normalized weight distributions as a function of rHD. The blue triangles (red circles) mark those for Mmax = 1 (Mmax = 8). The green
lines obey the sinusoidal functions defined in the text and the blue triangles are placed exactly on this line. (c) Schematics for the site-localized
basis states for Mmax = 1. For all the basis states, an odd H-D state is assumed. For example, | • •〉 is (|HD〉 − |DH〉)/

√
2, and |σ 〉 means a site

with an unpaired spin.

elements and are almost constant except for the slightly larger
values at the boundaries, i.e., k = 1 and 7. Among the off-
diagonal elements, hkk+1 in Fig. 6(c) take large values near
to −2T . For Mmax = 1, the corresponding values are exactly
−2T , which represents twice the transfer energy because the
HD distance changes with the movements of both H and D.
The values close to −2T are surprising because the states
are substantially renormalized due to multiple excitations, as
already mentioned. We attribute this peculiar property to a
coherent build up of the matrix elements in each subspace
of the M H-D pairs. Regarding the remaining off-diagonal
elements, we consider those up to hkk+3 plotted in Fig. 6(c).
As expected from their trends, the elements such as hkk+i with
i � 4 are very small, and we neglect them in the effective
hamiltonian, heff . heff is hence defined using hkk′ with k′ �
k + 3 and their transposed elements. Note that elements hkk+i

with i � 2 vanish completely for Mmax = 1, representing the
short-range nature of the charge model.

Figure 6(d) plots the matrix element of the current operator,
Jkg, which is defined as 〈φ̃k|Ĵ|g〉, with |g〉 being the ground
state for the 16 sites. We again remark that the same quantities
vanish except at k = 1 (rHD = 1), for Mmax = 1. Owing to

multiple excitations, the element for Mmax = 8 is no longer
localized at k = 1; instead, they decay smoothly at longer
distances. Here, it is crucial for the MBWF scheme that this
decay is contained within the system size. In this regard, we
find no serious problem for the present and other parameter
sets used in this paper.

We next enlarge the obtained effective Hamiltonian by
extrapolating the matrix elements [Fig. 6(a)]. Before entering
into the details, we explain the basic strategy of our extrap-
olation. In particular, we focus on the extrapolation of the
optical conductivity spectrum. Although the extrapolation of
the ground state itself will be an issue in other studies, the
purpose of this study is to predict the optical spectrum in
large systems. For this reason, we focus on the excitation
energies and redefine the effective model as h̃eff ≡ heff − Eg,
subtracting the ground state energy for the 16 sites. By this
substitution, we can determine the spectrum efficiently with-
out finding the ground state in large systems directly. The
actual extrapolation for k � 8 is rather straightforward for the
matrix elements of h̃kk+2 and h̃kk+3, that is, approximating all
of them as the averaged values in the present system size. The
matrix elements for the current operator are also extrapolated
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FIG. 6. (a) Structure of the matrix elements calculated using MBWFs (the part within the dotted square) and their extensions (outside the
square). In the actual extensions, h is replaced with h̃eff . Calculated (b) diagonal and (c) off-diagonal matrix elements of H (C). (d) Calculated
matrix elements of the current operator. (e) An example of extrapolation corresponding to (b).

straightforwardly, that is, padding the elements of k � 8 with
zeros and multiplying them by

√
Nex/N . Here, the enlarged

system size is Nex, which is expressed as Nex = 2I + 2, with I
being the maximum H-D distance of odd one-H-D-pair basis
states. This factor is required because the matrix element,
Jkg, is proportional to the square root of the system size in
the thermodynamic limit. The diagonal elements, by contrast,
need some care. As we have already mentioned, the diagonal
elements take slightly larger values at the boundaries. Based
on our inspection, the final results, i.e., the spectral shapes in
the enlarged systems, tend to depend on the boundary effect,
particularly at k = 1. We therefore keep this boundary effect
[Fig. 6(e)]. Meanwhile, we neglect the boundary effect at the
farthest point, i.e., at k = I , because its effect on the spectrum
is negligible, as readily expected from the behavior of the Ĵ
matrix elements.

Based on the enlarged effective model, we calculate the op-
tical conductivity spectrum, which follows a slightly changed
definition,

σ (ω) = γ

ωNex

I∑
μ=1

|〈�μ|Ĵ|g〉|2 1(
ω − E (eff )

μ

)2 + γ 2
, (21)

where |�μ〉 and E (eff )
μ denote, respectively, the μth eigenstate

and its eigenenergy of the enlarged effective model, h̃eff .
Using this definition, the spectra are calculated for several
Nex’s [Fig. 7(a)]. The spectral shape appears to have almost
completely converged with the system size around 200. To
confirm the validity of the present treatment of the MBWFs,
we also show the result for Nex = 40 as well as that by a direct
diagonalization with truncation [Fig. 7(b)]. For the latter, we
use a truncation of Mmax = 5, which is confirmed to converge
within a practical tolerance. Comparing the two spectra, we

conclude that they coincide with each other almost satisfacto-
rily and that the present treatment works successfully at least
for the present parameter set.

We next argue the significance of the charge model particu-
larly compared with the conventional HD model. In Fig. 8(a),

FIG. 7. Optical conductivity spectra in the charge model with
(U/T,V/T ) = (10, 0). (a) Results obtained using MBWFs for sev-
eral enlarged system sizes. (b) Comparison with the direct calculation
at N = 40. The red and green lines represent, respectively, the
result obtained using MBWFs and that by a direct calculation with
truncation. Each intensity plot is normalized by its maximum.
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FIG. 8. Comparison of the optical conductivity spectra obtained
by MBWF, t-DMRG, and the HD model using (U/T,V/T ) =
(10, 0). In both the graphs, the blue line represents the result
obtained using t-DMRG applied to the Hubbard model. The red
line in (a) represents the spectrum obtained using MBWF for the
charge model with Nex = 200. The green line in (b) represents the
spectrum obtained by the HD model with N = 200. Each intensity is
normalized by its maximum.

we again show the spectrum for the charge model with Nex =
200 and (U/T,V/T ) = (10, 0) (red line) as well as that for
the Hubbard model with the same parameter set. Note that
the latter spectrum is obtained by time-dependent-DMRG
(t-DMRG) for N = 80 (blue line). See Appendix B for the
explanation of t-DMRG. Although we find a discrepancy on
the high-energy side of the absorption band, both the high
and low energy edges are well reproduced. Of note is a small
hump seen around ω/T = 11 for the t-DMRG result, which is
associated with the spin degrees of freedom [28] and does not
appear in the spectrum for the charge model. If we exclude
this hump as shown by the dotted blue line, the discrepancy
can be considered to be rather small. In Fig. 8(b), we compare
the results obtained by the HD model (green line) and the
t-DMRG. As is mentioned already, the HD model gives a
moderately incorrect optical gap for this parameter set. For
instance, the optical gap is smaller by about T from that
determined by t-DMRG. Furthermore, we find a discrepancy
in the whole spectral shape. Note also that the asymmetry in
the HD model comes only from the factor of 1/ω included
in the expression for conductivity. The spectrum obtained by
t-DMRG, which is expected to be close to that of the charge
model, is more asymmetric than that from the HD model,
indicating an appreciable amount of renormalization inherent
in the spectrum. Regarding the nature of this renormalization,
we believe that multiple excitations of the H-D pairs that

we have already mentioned play an essential role. Indeed,
a comparison in Fig. 8(a) suggests that the spectrum for
the charge model reproduces the asymmetry existing in the
spectrum for the Hubbard model although the asymmetry
seems to be slightly exaggerated in the former.

From here on, we discuss the validity of the present method
for smaller U values. To make the argument transparent, we
confine the discussion to vanishing V . Although it depends on
the material, the actual U values associated with molecular
solids and metal oxides, in which strongly correlated electron
systems appear, range very roughly from U/T = 5 to 10
or much larger values. In this situation, we think that there
are at least two crucial points regarding the validity of the
present method. One is the validity of the charge model itself.
Whereas the charge model in the absence of V coincides
with the exact theory of the Hubbard model in the limit of
infinite U , situations with finite U values should be checked
by additional analyses. In this sense, the approximate coinci-
dence seen in Fig. 8(a) justifies the charge model at least for
U/T = 10, whereas a check for smaller U values remains.
The other point is the validity of the MBWF. The present
MBWF describes a photoexcited state as a renormalized one-
H-D-pair state. Although its extension is possible in principle,
for instance, MBWFs for two-pair states, at present, there are
drawbacks for small U because the nature of a one-pair state
is gradually lost as U decreases. For this reason, we think
that checks are required of the results down to U/T = 5. In
Fig. 9, we show the spectra calculated for U/T = 5 and 6
(red lines). Here, they are compared with the results obtained
using the Hubbard model with the corresponding parameters
using t-DMRG [Fig. 9(a)] and the dynamical DMRG [28]
[Fig. 9(b)]. In both cases, we see that the coincidences are
satisfactory at least for the purpose of determining the overall
spectral shape. On the basis of this result, we believe that the
region in which the validity of the present method is assured
extends at least down to U/T = 5. As added remarks, we
also show the results based on the other methods, that are
the HD model and the field theoretical method [28,29,39]
applied for the Hubbard model marked by the green line
and the dashed purple line, respectively. Regarding the HD
model, the discrepancies of the results from those by the
DMRG-derived methods are more conspicuous, as seen in
the red shift of the lower edge and the exaggerated feature
on the high-energy side. The field theoretical method, on the
other hand, reproduces the correct position of the lower edge,
although the high-energy side deviates largely from that of
the DMRG-derived method. We note that the spectrum for
U/T = 3 by the field theoretical method coincides almost
satisfactorily with that by the DDMRG [28]. Although we
do not show it explicitly, our method underestimates the tail
structure on the high-energy side.

As a final topic in this section, we argue the case of finite
V . To consider the effect of V , we treat it as a perturbation.
We first determine the MBWFs for vanishing V excluding the
term H (C) associated with V (hereafter called the V term). Af-
ter that, we take the matrix element of the whole H (C) includ-
ing the V term and diagonalize it. This treatment is somewhat
analogous to the so-called single-configurational-interaction
approximation, which also introduces the excitonic effect into
the one-electron excitations that are prepared appropriately.
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FIG. 9. Optical conductivity spectra for (a) (U/T,V/T ) = (5, 0)
and (b) (U/T,V/T ) = (6, 0). The red lines represent the results
obtained using MBWFs based on the charge model with Nex = 200.
The blue lines in (a) and (b) represent the results obtained based
on DMRG-derived methods applied for the Hubbard model, and
we used, respectively, t-DMRG with N = 80 and DDMRG with
N = 100. The results by the field theoretical method applied for
the Hubbard model (“Field Th”) are expressed by the dashed purple
lines, while those by the HD model by the green lines. Each intensity
profile has been normalized by its maximum. The DDMRG result is
reprinted from Ref. [28].

Here, we use the parameter set of (U/T,V/T ) = (10, 2.5). As
the upper limit for V with U/T = 10 is almost 5 in the Mott-
insulator phase, the present V value is intermediate. We avoid
larger V values, because the truncation of Mmax = 5, which
is the upper limit in the present direct calculation, becomes
insufficient for those V values and, therefore, confirming the
accuracy of the result with confidence is difficult. The actual
procedure is similar to the case of vanishing V . Namely,
we take the matrix elements considering the V term using
the MBWFs and extrapolate them, as described in detail in
Appendix C.

In Fig. 10(a), the calculated spectrum for Nex = 40 is
shown with the result from the direct calculation for N = 40,
which is obtained again with truncation of Mmax = 5. Even
with this combination of the parameter set and the degree of
truncation, the spectrum still does not converge completely,
although the position of the largest peak differs by only 0.2 T
from that for the extended Hubbard model calculated by the
t-DMRG. We find good agreement in the spectral shapes,
which justifies the treatment of MBWFs even in the presence
of V . Figure 10(b) shows the result obtained using MBWFs
for Nex = 200 and a comparison with the result obtained using

FIG. 10. Optical conductivity spectra for (U/T,V/T ) =
(10, 2.5). (a) Spectrum obtained with MBWFs (red line) and its
comparison with that by direct calculation with truncation (green
line). Both are based on the charge model with N(or Nex)=40 and
γ = 0.1T . (b) Spectrum obtained with MBWFs for the charge
model with Nex = 200. (c) Spectrum obtained using t-DMRG for
the extended Hubbard model with N = 80. γ is 0.10T and 0.14T
for MBWF and t-DMRG, respectively. Each intensity is normalized
using its maximum.

t-DMRG applied to the extended Hubbard model with N = 80
[Fig. 10(c)]. Here, the width of the artificial broadening γ is
0.1T for the former, whereas it increases slightly to 0.14T for
the latter, to give almost the same main peak width. This is
because a different definition of broadening is used in the for-
malism of t-DMRG, one that is not based on an expression like
Eq. (21). Because there is no established way to convert the
value of γ at present, we have adjusted γ of t-DMRG by fit-
ting. This adjusted γ provides almost the same peak width for
the sharpest part of each spectrum. Apart from this similarity,
we also notice several other common features, for example,
the width of the high-energy tail and the position of the lower
edge. Based on this consistency, we also conclude that the
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charge model is a good approximation to the extended Hub-
bard model from the viewpoint of optical conductivity spectra.

IV. SUMMARY AND DISCUSSIONS

We have introduced an effective model, called the charge
model, for the 1D Hubbard and extended Hubbard models,
where spin-charge separation holds but charge fluctuations
are not suppressed. Based on numerical calculations of both
exact diagonalization and MBWFs, we found that the charge
model reproduces the optical conductivity of the latter models
satisfactorily in the intermediate and strong U/T range. This
shows that spin-charge separation holds quite nicely despite
the significant charge fluctuation in the energy eigenstates that
dominate the optical conductivity in the 1D Mott insulators
of realistic correlation strength, and that this is the origin of
their characteristic optical conductivity spectra. Regarding the
MBWFs, we succeeded in calculating an almost-converged
optical conductivity with respect to the system size. The
optical conductivity spectra calculated using DDMRG and
t-DMRG methods are reproduced well by the present method
for sufficiently large systems in which finite-size effects are
not significant. The optical conductivity in the thermodynamic
limit can be calculated effectively by the present method.

This enables us to compare the theoretical and experimen-
tal results directly even discussing a spectral shape. In contrast
to DDMRG and t-DMRG methods, the present method yields
the wave functions of the photoexcited states. The analysis
of the calculated wave functions combined with the direct
comparison with experiments provides a new viewpoint to un-
derstand the optical properties of strongly correlated electron
systems. This problem is to be investigated in a forthcoming
paper.

Only linear absorption spectra were considered, assuming
a small vector potential, A, although quite interesting phenom-
ena have been observed when strong excitations are present.
For example, in experiments, the Mott gap was observed to
be destroyed under intense photoexcitation [16]. This annihi-
lation of the Mott gap was shown to result from spin-charge
coupling induced by intense photoexcitation [40]. The spin-
charge coupling in the intensely photoexcited states is the key

to understand the origin of the photoinduced transition. It can
be investigated by comparing the transient absorption spectra
calculated from two models, namely, the original Hubbard and
extended Hubbard, as well as the charge model, because the
latter lacks the spin degrees of freedom. This problem is also
investigated in a forthcoming paper.

The present extrapolation method is applicable also to the
Hubbard and extended Hubbard models and to the strong
excitation case. MBWFs in these models can have explicitly
spin structures different from those assumed in the charge
model, and the analysis of the spin structures helps in under-
standing the spin-charge interaction in the 1D Mott insulators
especially in the strong excitation case. Indeed, in this case,
we need to consider not only states with multiple H-D pairs
but also spin-charge coupled states, and it is indispensable to
incorporate both of them into MBWFs. Construction of such
more sophisticated MBWFs is also underway.
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APPENDIX A: TRANSFER TERMS OF THE CHARGE
MODEL

In this Appendix, we present the transfer terms
K̂ (C)

n (t ) of the charge model. The state |�(C)
n 〉 =

K̂ (C)
n (t )|{p1, p2, · · · , pM}, {q1, q2, · · · , qM}〉 for 1 � n �

N − 1 is given by the following equations:
(i) Transfer of an H or D.
For pi = n and lk = n + 1,

∣∣�(C)
n

〉 = Te−iA(t )|{p1, p2, · · · , pi−1, pi + 1, pi+1, · · · , pM}{q1, q2, · · · , qM}〉, (A1)

for lk = n and pi = n + 1,
∣∣�(C)

n

〉 = TeiA(t )|{p1, p2, · · · , pi−1, pi − 1, pi+1, · · · , pM}{q1, q2, · · · , qM}〉, (A2)

for q j = n and lk = n + 1,
∣∣�(C)

n

〉 = −TeiA(t )|{p1, p2, · · · , pM}{q1, q2, · · · , q j−1, q j + 1, q j+1, · · · , qM}〉, (A3)

for lk = n and q j = n + 1,
∣∣�(C)

n

〉 = −Te−iA(t )|{p1, p2, · · · , pM}{q1, q2, · · · , q j−1, q j − 1, q j+1, · · · , qM}〉. (A4)

(ii) Annihilation of an H-D pair.
For pi = n, q j = n + 1, lk < pi, and q j < lk+1,

∣∣�(C)
n

〉 = −
√

2T cS(M )e−iA(t )e−ik(θM−θM−1 )|{p1, p2, · · · , pi−1, pi+1, · · · , pM}{q1, q2, · · · , q j−1, q j+1, · · · , qM}〉, (A5)
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for q j = n, pi = n + 1, lk < q j , and pi < lk+1,∣∣�(C)
n

〉 = −
√

2T cS(M )eiA(t )e−ik(θM−θM−1 )|{p1, p2, · · · , pi−1, pi+1, · · · , pM}{q1, q2, · · · , q j−1, q j+1, · · · , qM}〉. (A6)

(iii) Creation of an H-D pair.
For lk = n, lk+1 = n + 1, pi < n, n + 1 < pi+1, q j < n, and n + 1 < q j+1,∣∣�(C)

n

〉 = −
√

2T cS(M + 1)e−i(k−1)(θM−θM+1 )[eiA(t )|{p1, p2, · · · , pi, lk, pi+1, · · · , pM}{q1, q2, · · · , q j, lk+1, q j+1, · · · , qM}〉
+ e−iA(t )|{p1, p2, · · · , pi, lk+1, pi+1, · · · , pM}{q1, q2, · · · , q j, lk, q j+1, · · · , qM}〉]. (A7)

The state |�(C)
N 〉 = K̂ (C)

N (t )|{p1, p2, · · · , pM}, {q1, q2, · · · , qM}〉 is given by the following equations:
(i) Transfer of an H or D.
For pM = N and l1 = 1, ∣∣�(C)

N

〉 = −Te−iA(t )e−iθM |{1, p1, · · · , pM−1}{q1, q2, · · · , qM}〉, (A8)

for lN−2M = N and p1 = 1, ∣∣�(C)
N

〉 = −TeiA(t )eiθM |{p2, · · · , pM , N}{q1, q2, · · · , qM}〉, (A9)

for qM = N and l1 = 1, ∣∣�(C)
N

〉 = TeiA(t )e−iθM |{p1, p2, · · · , pM}{1, q1, · · · , qM−1}〉, (A10)

for lN−2M = N and q1 = 1, ∣∣�(C)
N

〉 = Te−iA(t )eiθM |{p1, p2, · · · , pM}{q2, · · · , qM , N}〉. (A11)

(ii) Annihilation of an H-D pair.
for pM = N and q1 = 1, ∣∣�(C)

N

〉 =
√

2T cS(M )e−iA(t )e−iθM−1 |{p1, p2, · · · , pM−1}{q2, q3, · · · , qM}〉, (A12)

for qM = N and p1 = 1, ∣∣�(C)
N

〉 =
√

2T cS(M )eiA(t )e−iθM−1 |{p2, p3, · · · , pM}{q1, q2, · · · , qM−1}〉. (A13)

(iii) Creation of an H-D pair.
For lN−2M = N and l1 = 1,∣∣�(C)

N

〉 =
√

2T cS(M + 1)eiθM [eiA(t )|{p1, · · · , pM , N}{1, q1, · · · , qM}〉 + e−iA(t )|{1, p1, · · · , pM}{q1, · · · , qM , N}〉]. (A14)

APPENDIX B: TIME-DEPENDENT DMRG

We briefly explain the time-dependent density matrix
renormalization group (t-DMRG), which is used for the
benchmark calculation of our new model. The dynamics of
wave function |ψ (t )〉 of quantum systems is described by the
time-dependent Schrödinger equation, whose solution is given
by

|ψ (t )〉 = U (t, 0)|ψ (0)〉, (B1)

where |ψ (0)〉 is the wave function at initial time t = 0. Here,

U (t, 0) = T exp

[
−i

∫ t

0
dsH (s)

]
(B2)

is the time-evolution operator with the time-ordering operator
T and the time-dependent Hamiltonian H (t ). For small time
step dt , we can approximate

U (t + dt, t ) � exp[−idtH (t )]. (B3)

To obtain |ψ (t )〉 accurately, we need to calculate U (t + dt, t )
as precise as possible. One of the efficient approximations
for U (t + dt, t ) is given by using the Suzuki-Trotter decom-
position [41]. However, this approach is basically restricted

to the one-dimensional case. Another approach is the use of
the kernel polynomial method to approximate U (t + dt, t ) as
follows [42].

U (t + dt, t ) =
∞∑

l=0

(−i)l (2l + 1) jl (dt )Pl (H (t )) (B4)

�
L∑

l=0

(−i)l (2l + 1) jl (dt )Pl (H (t )), (B5)

where jl (s) is the spherical Bessel function of the first kind
and Pl (s) is the lth Legendre polynomial. They can be effec-
tively obtained by the recurrence relations

jl+1(x) = (2l + 1)x−1 jl (x) − jl−1(x) (B6)

with j0(x) = x−1 sin x and j1(x) = x−1[− cos x + x−1 sin x]
and

Pl+1(x) = 2l + 1

l + 1
xPl (x) − l

l + 1
Pl−1(x) (B7)

with P0(x) = 1 and P1(x) = x. The calculation of the t-DMRG
in the present study is performed by using the kernel poly-
nomial method with the truncation number L, practically for
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L ≈ 10, which gives a sufficiently converging result. Further-
more, we use two target states |ψ (t )〉 and |ψ (t + dt )〉 in
the t-DMRG procedure to effectively construct a basis that
can express wave functions in time-dependent Hilbert space.
With the two-target t-DMRG procedure, we can calculate
time-dependent physical quantities with high accuracy even
when the Hamiltonian varies rapidly with time.

Calculating the time evolution of the current J (t ) induced
by probe pulse by using t-DMRG, we obtained the optical
conductivity σ (ω) = J̃ (ω)

i(ω+iγ )NÃ(ω)
, where N is the system size,

γ is a broadening factor, J̃ (ω) is the Fourier transform of J (t ),
and Ã(ω) is the Fourier transform of the vector potential of
the probe pulse A(t ) = A0e−(t−t0 )2/2t2

d cos[�(t − t0)] [43,44].
Here, the parameters of the probe pulse were A0 = 0.001,
td T = 0.02, �/T = 10, and t0T = 1. We employed open
boundary conditions and kept 1000 density-matrix eigen-
states.

APPENDIX C: MATRIX ELEMENTS AND THEIR
EXTRAPOLATION IN THE CASE OF FINITE V

In Fig. 11, we summarize the calculated matrix ele-
ments for (U/T,V/T ) = (10, 2.5). For comparison, those for
(U/T,V/T ) = (10, 0) are also shown. Among the matrix el-
ements, the most transparent effect due to the V term appears
as a sudden decrease at k = 1 for the diagonal elements
[Fig. 11(a)], which is naturally interpreted as an exciton effect.
We also notice significant deviations from the V = 0 case in
the off-diagonal terms, particularly in those of hkk+2.

In the extrapolation to larger distances (k � 8), all such de-
viations are considered. As actual procedures, we first replace
hkk′ with an augmented matrix (heff )kk′ defined as

(heff )11 = h11, (heff )kk = m0 (2 � k � I ), (C1)

(heff )12 = h12, (heff )kk+1 = m1 (2 � k � I − 1), (C2)

(heff )13 = h13, (heff )kk+2 = m2 (2 � k � I − 2), (C3)

and

(heff )14 = h14, (heff )kk+3 = m3 (2 � k � I − 3), (C4)

where the constants are averages defined as

m0 = 1

5

6∑
k=2

hkk

m1 = 1

5

6∑
k=2

hkk+1

m2 = 1

4

5∑
k=2

hkk+2

m3 = 1

3

4∑
k=2

hkk+3. (C5)

Note that the undefined elements follow their symmetric
counterparts if the latter are defined and zero otherwise. Next,
we redefine the effective model as h̃eff ≡ heff − EV

g . This is

FIG. 11. Matrix elements of H (C) defined by the MBWFs, for (U/T,V/T ) = (10, 2.5) (green triangles) and for (U/T,V/T ) = (10, 0) (red
circles).
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almost the same step as that taken in the absence of
V , although the change in the ground state energy aris-
ing from the V term is considered by replacing Eg

with EV
g ≡ Eg + 〈g|V̂V |g〉, where V̂V is the V term. Us-

ing this enlarged model, we calculated the optical con-
ductivity spectrum based on the expression in Eq. (21).
Regarding the matrix elements of the current opera-
tor, we assume those elements defined in the absence
of V , that is, those in Fig. 6(d).
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