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On a ring, a single Jordan-Wigner transformation between the Kitaev model and the spin model suffers
redundant degrees of freedom. However, we can establish an exact quaternary Jordan-Wigner mapping involving
two Kitaev rings and two spin rings with periodic or antiperiodic boundary conditions. This mapping allows us
to demonstrate exactly how a topological extended-kink (TEK) phase develops in the interacting Kitaev ring
with odd number of lattice sites. The emergence of this new phase is attributed to the effect of geometrical
ring frustration. Unlike the usual topological phases protected by an energy gap in noninteracting systems, the
TEK phase is gapless. And because the spectra of low-energy excitations are quadratic, the specific heat per
site approaches half of the Boltzmann constant near absolute zero temperature. More interestingly, the ground
state is unique, immune to spontaneous symmetry breaking. It exhibits a long-range correlation function with a
nonlocal factor, but no local order parameter can be defined. As a concomitant effect, a special kind of localized
kink zero mode (KZM) takes place if we introduce a type of bond defect. We also show that the KZM is robust
against moderate disorders.
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I. INTRODUCTION

The interacting Kitaev chain has attracted much attention
recently [1–5]. It was pointed out that the classification of
topological phases in noninteracting fermionic systems [6,7]
may not apply to the interacting ones [1]. At a symmetric
point, Miao et al. found the problem can be solved ex-
actly by a scheme of two-step Jordan-Wigner transformations
(JWTs) [8]. And plentiful phases have been uncovered in
the dimerized case [9–11]. On the other hand, geometrical
frustration first introduced in the classical Ising spin systems
plays an important role in quantum antiferromagnetism [12].
Usually the geometrical frustration does not stand out in a
pure fermionic system, although similar concepts of frustra-
tion can be introduced in some fermionic systems [4,5,13].

In this work, we demonstrate that a so-called geomet-
rical ring frustration (GRF) can play a vital role in the
interacting fermionic Kitaev chain with a closed boundary
condition [14–21]. A novel topologically nontrivial phase and
concomitant zero modes are uncovered as an effect of GRF.
One of our motivations comes from the fact that these kind
of models may be mimicked on manmade finite systems real-
ized by state-of-the-art experimental techniques with flexible
control methods [22–24].

The contents are arranged as follows. In Sec. II we demon-
strate that a quaternary Jordan-Wigner mapping holds among
our aimed interacting Kitaev ring and its relevant systems. In
Sec. III, we illustrate a novel topological extended-kink (TEK)
phase by a clear perturbative treatment first and then solve
the interacting Kitaev chain at its symmetric points to exactly
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demonstrate its existence. In Sec. IV, we list several intriguing
properties of the TEK phase, such as the gaplessness of low-
energy excitations, the ground state’s correlation function and
entanglement entropy, and the low-temperature specific heat.
In Sec. V, a kind of kink zero mode (KZM) is introduced as
a concomitant effect of the GRF. The robustness of the KZM
against moderate disorders is also discussed. At last, we give
a summary in Sec. VI.

II. THE MODEL

A. The aimed Hamiltonian

We aim at the interacting Kitaev ring,

HR(c) =
N∑

j=1

[(−tc†
j c j+1 + �c jc j+1 + H.c.)

+U (2nj − 1)(2n j+1 − 1)], (1)

where c = {c j, ( j = 1, 2, ..., N )} denotes all fermions resid-
ing on the lattice sites and nj = c†

j c j . The subscript R means
the periodic boundary condition (PBC), cN+1 = c1, i.e., the
“Ramond” sector [25]. In Eq. (1), U > 0 and N ∈ Odd is
demanded, which ensures the effect of GRF. We note that this
peculiar Hamiltonian possesses the translational symmetry
but does not the particle-hole symmetry.

B. Relevant Hamiltonians and quaternary
Jordan-Wigner mapping

First of all, one should keep in mind that the PBC case is
totally different from that with an open boundary condition
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(OBC), although the Jordan-Wigner transformation (JWT)
can be applied to both of them. A boundary term arises in
the PBC case, which imposes a strong parity constraint [26],
and by considering a chain with GRF, we have shown that the
difference becomes even more prominent [17]. In short, for
the OBC case, the fermionic Hamiltonian can be mapped to
a spin XY Z chain exactly and vice versa [26]. For the PBC
case we are focusing on here, the transformation suffers a
problem of redundant degrees of freedom (DOF). To fix this
problem and to solve the interacting Kitaev ring, we introduce
a complete quaternary Jordan-Wigner mapping (QJWM).

Let us see the application of JWT,

c†
j = 1

2

(
σ x

j + iσ y
j

) j−1∏
l=1

( − σ z
l

)
, (1 � j � N ), (2)

in detail. It leads to the spin XY Z ring with an extraordinary
boundary term [26],

HR(c) → H + HN , (3)

where

H =
N−1∑
j=1

(
− t + �

2
σ x

j σ
x
j+1 − t − �

2
σ

y
j σ

y
j+1 + Uσ z

j σ
z
j+1

)
,

(4)

HN = Pz

(
− t + �

2
σ x

Nσ x
1 − t − �

2
σ

y
Nσ

y
1

)
+ Uσ z

Nσ z
1 , (5)

with

Pz = exp(iπMz ), (6)

Mz =
N∑

j=1

c†
j c j =

N∑
j=1

1 + σ z
j

2
. (7)

The parity operator Pz imposes a strong constraint on the
mapping between the fermionic Hilbert space and the spin
Hilbert space. This means that the solution of HR(c) involves
two XY Z rings denoted by

HP(σ ) = H +
(

− t + �

2
σ x

Nσ x
1 − t − �

2
σ

y
Nσ

y
1

)
+ Uσ z

Nσ z
1 ,

(8)

HA(σ ) = H −
(

− t + �

2
σ x

Nσ x
1 − t − �

2
σ

y
Nσ

y
1

)
+ Uσ z

Nσ z
1 ,

(9)

where σ = {σ a
j , ( j = 1, 2, ..., N ; a = x, y, z)} denotes all

Pauli spins. The subscript P means PBC in transverse di-
rections, σ a

N+1 = σ a
1 (a = x, y), while the subscript A means

anti-PBC in the transverse directions, σ a
N+1 = −σ a

1 (a = x, y).
Please notice that both cases exhibit PBC in the longitudinal
direction, σ z

N+1 = σ z
1 . The total DOF of HP(σ ) and HA(σ ) are

twice as that of HR(c). To eliminate the redundant DOF, we
can apply the projection

HR(c) = P−
z HP(σ )P−

z + P+
z HA(σ )P+

z , (10)

FIG. 1. The quaternary Jordan-Wigner mapping among four rel-
evant Hamiltonians, as expressed by Eqs. (10), (13)–(15). Each arrow
represents a valid parity channel.

where the projectors are defined as

P±
z = 1

2 (1 ± Pz ). (11)

Such a procedure has been noticed by many researchers in
previous studies [26,27].

Now we may ask where the redundant DOFs go. If defining
a new fermionic Hamiltonian,

HNS(c) =
N−1∑
j=1

(−tc†
j c j+1 + �c jc j+1 + H.c.)

− (−tc†
N c1 + �cN c1 + H.c.)

+
N∑

j=1

U (2n j − 1)(2n j+1 − 1), (12)

where the subscript NS means the anti-PBC, cN+1 = −c1, i.e.,
the “Neveu-Schwarz” sector [25], then one finds it is easy to
verify another projection,

HNS(c) = P+
z HP(σ )P+

z + P−
z HA(σ )P−

z . (13)

We can also obtain the inverse projections of Eqs. (10)
and (13),

HP(σ ) = P−
z HR(c)P−

z + P+
z HNS(c)P+

z , (14)

HA(σ ) = P+
z HR(c)P+

z + P−
z HNS(c)P−

z . (15)

Thus the four involved Hamiltonians, HR/NS(c) and HP/A(σ ),
satisfy a quaternary mapping as illustrated in Fig. 1. The full
mapping runs out of all DOF of the four Hamiltonians without
any redundancy. We also notice that the two fermionic Kitaev
rings can be transformed to each other, C †HR(c)C = HNS(c),
by the particle-hole conjugation operator C = ∏N

j=1[c†
j +

(−1) jc j]. Both HR(c) and HNS(c) do not possess particle-hole
symmetry. This fact is in contrast to the case in the OBC
problem [8].

III. EMERGENCE OF THE TEK PHASE

The QJWM plays an important role in disclosing the
phases in HR(c). In this section, we first provide a clear
picture for the newly discovered TEK phase by a perturbative
treatment and then solve HR(c) at its symmetric points to
verify the TEK phase exactly.
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A. The effect of GRF: Perspective from a perturbative
treatment

For large U , we may take the interacting term as the
dominant part of HR(c),

H0(c) =
N∑

j=1

U (2n j − 1)(2n j+1 − 1). (16)

It is equivalent to the simple classical antiferromagnetic Ising
chain with GRF. Its solutions can be categorized as one-kink
states, three-kink states, etc. The 2N one-kink states serve as
the degenerate ground states. There is a big gap of magnitude
4U to the upper energy level. Noticing that the c fermion
number representation and the spin σ z representation are
identical, i.e., |0 j〉 = |↓ j〉 and |1 j〉 = |↑ j〉, we denote the 2N
one-kink states conveniently as

| j,↑〉 = | · · · ,↓ j−1, ↑ j,↑ j+1 ,↓ j+2, · · · 〉, (17)

| j,↓〉 = | · · · ,↑ j−1, ↓ j,↓ j+1 ,↑ j+2, · · · 〉, (18)

in which the boxes indicate where the classical kinks are. They
are also eigenstates of the parity operator Pz, which means
that the diagonalization of the problem can be performed in
the two subspaces with Pz = ±1 separately.

Then we may take the rest of the Hamiltonian as a per-
turbation, which arouses quantum fluctuations. According to
the projection Eq. (10), we can conveniently perform the
calculations on P−

z HPP−
z and P+

z HAP+
z and accomplish the

projection to get the solution. For P−
z HPP−

z , if we cut off
the Hilbert space in the subspace of one-kink states, we shall
arrive at the effective Hamiltonian

P−
z HP(σ )P−

z ≈ P−
z H eff

P (σ )P−
z

= P−
z

N∑
j,τ

{(2 − N )U | j, τ 〉〈 j, τ |

− t (| j, τ 〉〈 j + 2, τ | + H.c.)}P−
z . (19)

It is easy to check that the states

|EP(q)〉 = 1√
N

∑
j e−iq j | j, τ 〉, (20)

with τ =↑ for N = 4K + 1 and τ =↓ for N = 4K + 3, are
valid ones with odd parity for the effective Hamiltonian. The
energy spectrum of |EP(q)〉 reads

EP(q) = −(N − 2)U − 2t cos(2q), (21)

where

q ∈
{
−N − 1

N
π, . . . ,− 2

N
π, 0,

2

N
π, . . . ,

N − 1

N
π

}
. (22)

Likewise, for P+
z HAP+

z we can get the other N valid states
with even parity,

|EA(q)〉 = 1√
N

∑
j

e−iq j | j, τ 〉, (23)

with τ =↓ for N = 4K + 1 and τ =↑ for N = 4K + 3. The
corresponding energy spectrum reads

EA(q) = −(N − 2)U + 2t cos(2q). (24)

FIG. 2. The schematics of the emergence of the TEK phase in
the interacting Kitaev ring HR(c). The formation of the lowest band
of HR(c) can be attributed to the quantum fluctuations disturbing the
classical Ising ring H0(c) with GRF.

In Eqs. (21) and (24), the higher-order contributions up to
O(t/U )2 and O(�/U )2 are neglected due to the cutoff. For
any N ∈ Odd, the nondegenerate ground state in the one-kink
approximation reads

|E0〉 =
{|EP(0)〉, (for t > 0),

|EA(0)〉, (for t < 0).
(25)

Thus the degeneracy of the 2N Ising states is lifted and
a gapless band of width about 4|t | comes into being under
the condition of thermodynamic limit, N → ∞. The one-kink
states prevail in this lowest band, although the states with
more kinks will blend in if we include more above energy
states. However, the physical picture of energy-level splitting
will not change (Fig. 2). The lowest quasicontinuous energy
band forming by 2N levels can stay robust in a considerable
range of model parameters, at least for t,� � U .

Below, through the exact solution at a symmetric point,
we will see that the extended-kink states are topologically
nontrivial within the picture of the fermionic Kitaev ring. So
this novel phase induced mainly by the GRF and quantum
fluctuations is named a topological extended-kink phase.

B. Exact solution of HR(c) at the symmetric points t = ±�

Now let us aim at the interacting Kitaev ring HR(c) at
its symmetric line t = �. Another symmetric line t = −� is
almost the same. We will talk about it later. In this situation,
the system can be solved exactly by a scheme of two-step
JWTs, similar to the one for the OBC problem [8]. However,
the procedure is much more cumbersome here, because six
auxiliary Hamiltonians are involved. And because compli-
cated projections are imposed, the solution does not fit for a
conventional free fermion picture. According to the QJWM,
the scheme is designed as shown in Fig. 3. By the first step of
JWT, Eq. (2), the resulting Hamiltonians, HP(σ ) and HA(σ ),
are spin XZ rings in fact. Then in the second step we can
perform the JWT,

f †
j = 1

2

(
σ z

j + iσ x
j

) j−1∏
l=1

( − σ
y
l

)
, (26)
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FIG. 3. The scheme of two-step Jordan-Wigner transformations
for solving the Kitaev ring HR(c) at the symmetric point t = �. Six
auxiliary Hamiltonians are involved.

for HP(σ ) and another JWT,

f †
j = 1

2

[
σ z

j + i(−1) j+1σ x
j

] j−1∏
l=1

( − σ
y
l

)
, (27)

and for HA(σ ), respectively, so as to get four Hamiltonians,

H (P)
s ( f ) = H (s,−t + U, t + U ), (28)

H (A)
s ( f ) = H (s, t + U,−t + U ), (29)

where s refers to R or NS. Both Eqs. (28) and (29) fall into the
same general noninteracting Hamiltonian [28,29],

H (s, a, b) =
∑

q∈Qs,q �=qs

φ†
q (hyσ

y + hzσ
z )φq

+ a cos qs(2 f †
qs

fqs − 1), (30)

where σ y and σ z are Pauli matrices,

φ†
q = ( f †

q , f−q ), (31)

hy = −b sin q, hz = −a cos q, (32)

qR = 0, qNS = π, (33)

QR =
{
−N − 1

N
π, . . . ,− 2

N
π, 0,

2

N
π, . . . ,

N − 1

N
π

}
, (34)

QNS =
{
−N − 2

N
π, . . . ,− 1

N
π,

1

N
π, . . . ,

N − 2

N
π, π

}
.

(35)

The associated projectors are

P±
y = 1

2 (1 ± Py), (36)

where

Py = exp(iπMy), (37)

My =
N∑

j=1

f †
j f j =

N∑
j=1

1 + σ
y
j

2
. (38)

At last, the solution of HR(c) is retrieved by filtering out the
redundant DOF of the auxiliary Hamiltonians following the
scheme in Fig. 3. (Please see details in Appendix A.)

1

2

3

4
(E − E0)/t

U/t

CAT

−1

TSC

0 1

TEK

− π − π
2 0 π

2 π
0

1

2

3

4

q

(E
−

E
0)

/t

EP(q) EA(q)

FIG. 4. Left: Low-lying energy levels and ground-state phase
diagram of HR(c) along the symmetric line t = �. We choose N =
51 for demonstration. The red lines represent levels of odd parity,
while the blue ones even parity. All other levels distribute in the
shaded area above the dashed line. There are three phases: the
Schrödinger-cat-like (CAT), the topological superconducting (TSC),
and the topological extended-kink (TEK) phases. Critical points
occur at U = ±t . Right: The exact lowest two energy spectra in the
TEK phase at U/t = 2.

In the parameter range t > 0 and −∞ < U < ∞, the
ground state is of odd parity and reads

|E0〉 = 1√
2

(
f †
0

∣∣φ(P)
R

〉 − ∣∣φ(P)
NS

〉)
, (39)

where |φ(P)
R 〉 and |φ(P)

NS 〉 are BCS-type vacua of H (P)
R ( f ) and

H (P)
NS ( f ), respectively. In the thermodynamic limit, N → ∞,

there are two phase transition points occurring at U = ±t .
Three phases emerge (Fig. 4): the Schrödinger-cat-like (CAT),
topological superconductor (TSC), and topological extended-
kink (TEK) states. In the CAT phase, another energy level
with even parity approaches the ground state rapidly with N
increasing, so the ground state becomes doubly degenerate. In
the TSC and TEK phases, the ground state remains unique.
The CAT and TSC are gapped, while the TEK phase becomes
gapless surprisingly. 2N low-lying energy levels take charge
in the gapless TEK phase. We label them as {|EP/A(q)〉,∀q ∈
QR}, since they come from the two channels, HP/A(σ ), respec-
tively. Now the ground state read |E0〉 = |EP(0)〉 for t > 0.
As shown in Fig. 4, these low-energy excitations form two
interweaving true spectra,

EP(q) = 2ωP(q) + E0 − (U − t ), (40)

EA(q) = 2ωA(q) + E0 + |U + t | − 2U, (41)

where

ωP(q) =
√

U 2 + t2 − 2Ut cos(2q), (42)

ωA(q) =
√

U 2 + t2 + 2Ut cos(2q), (43)

E0 = (U − t ) −
∑
q∈QR

ωP(q). (44)

The exact results are in excellent agreement with the one-kink
approximations, Eqs. (21) and (24), by perturbative treatment.
It is easy to show that the latter can be obtained by setting
t/U → 0 in the former.
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FIG. 5. An alternative schematics of the emergence of the gap-
less TEK phase, which is different from that in Fig. 2. The lowest
gapless spectra HP(σ ) is constructed by retaining the energy states
with valid parity in H (P)

R ( f ) and H (P)
NS ( f ), whose ground states are

discarded in the projection.

The nontrivial topology of the TEK phase is embodied in
the four auxiliary Hamiltonians, H (P)/(A)

R/NS ( f ), whose param-
eters are located in the topologically nontrivial region [28].
Alternatively, we can work out the winding number as a
topological index [30] for H (P)

R/NS( f ),

w(P) =
∫ 2π

0

dq

2π

hy∂qhz − hz∂qhy

h2
y + h2

z

=
⎧⎨
⎩

−1, (U < −t ),
1, (|U | < t ),
−1, (U > t ).

(45)

And for H (A)
R/NS( f ), we obtain w(A) = −w(P). From the values

of the winding number, it seems all phases are topologically
nontrivial. But this is not necessarily the case, because the
CAT (U < −t) phase will become trivial due to spontaneous
symmetry breaking [8], while the TSC (|U | < t) and TEK
(U > t) phases maintain nontrivial topology since the ground
state is nondegenerate and immune to symmetry breaking. It is
noteworthy that, unlike the OBC case, the Majorana fermions
coming from adjacent sites are paired here [28].

Now one may ask why the gapless TEK phase can emerge
in the interacting Kitaev ring HR(c) while the four auxiliary
noninteracting Kitaev rings H (P)/(A)

R/NS ( f ) are gapped. We show
the answer by displaying an alternative schematics for the
emergence of the TEK phase in Fig. 5. When we reconstruct
the true energy levels of the original problem, the ground
states of H (P)/(A)

R/NS ( f ) should be discarded. Meanwhile, the
valid states in the upper band are kept, so the gapless TEK
phase comes into being. Figure 5 is for the case of spin
Hamiltonian HP(σ ), while the case of HA(σ ) is similar. The
TEK phase of HR(c) is obtained by the two results in a further
projection (Fig. 3).

C. Extended ground-phase diagram for the TEK phases

Besides the exactly solvable symmetric point t = �, there
is another one at t = −�. The former is linked to spin XZ
rings, the latter to spin Y Z rings. To distinguish the associated
TEK phases, we call them “y-TEK” and “x-TEK” phases,
respectively. For parameters apart from the symmetric points,
t �= ±�, we can resort to the perturbative treatment so as
to expand the phase diagram for the TEK phases in the
(t/U,�/U ) parameter plane (U > 0). The result is illustrated

FIG. 6. Extended ground-state phase diagram for the TEK
phases. Please see details in the text.

in Fig. 6. This phase diagram can also be verified by exact
diagonalization on small lattices of an odd total number of
lattice sites, say N = 13, which can help us to witness the
sign for TEK phases: the lowest band composed of 2N energy
levels [17]. Notice the ground state is of even parity and comes
from HA(σ ) when t < 0 according to Eq. (25).

IV. PROPERTIES OF THE TEK PHASE

The emergent TEK phase is quite different from the usual
phases of fermionic systems. Now we uncover some of its
ground-state properties and low-temperature thermodynam-
ics.

A. Correlation function of the ground state

The correlation function of the ground state is defined as

Cr,N = 〈E0|(2n j − 1)(2n j+r − 1)|E0〉. (46)

First let us see the approximate ground state for the TEK
phase, Eq. (25), that is valid for t,� � U . One can easily
get the result

Cr,N ≈ (−1)r (1 − 2α), (47)

where α = r/N (0 � α < 1/2). Since α can measure a non-
local distance r = Nα, we may call the term (1 − 2α) the
nonlocal factor [21]. The appearance of the nonlocal factor
in the TEK phase can be verified rigorously, as shown below.

For the exact ground state, Eq. (39), the correlation
function can be expressed by the Toeplitz determinants as
(Appendix B)

Cr,N = 1

2

(
det

[
D (R)

l−m + 2

N

]
+ det

[
D (NS)

l−m

])
, (48)

where 1 � l � r, 1 � m � r, and

D (s)
n = −e−iqs (n+1)

N
+

∑
q∈Qs,q �=qs

e−iqnD(eiq)

N
, (49)

D(eiq) = −(U − te−2iq )√
(U − te−2iq )(U − te2iq )

. (50)
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FIG. 7. Entanglement entropy (EE), S(N−1)/2, at the symmetric
point t = �. The black solid line is an extrapolation to the thermo-
dynamic limit, N → ∞. At the two critical points, U/t = ±1, the EE
becomes divergent and obeys the conformal field theory prediction,
Sc

(N−1)/2 ∼ 1
2 + 1

3 log2 N for large enough N .

The evaluation of the two Toeplitz determinants in Eq. (48)
is delicate. One should be very careful to keep the ratio
α = r/N before taking the thermodynamic limit N → ∞.
With the help of a generalized Szegö’s theorem [17,18], the
asymptotic results at the symmetric point are obtained and
read (Appendix B):

C(r, α) ≡ lim
N→∞

Cr,N

≈

⎧⎪⎪⎨
⎪⎪⎩

√
1 − t2

U 2 , (U < −t ),
0, (|U | < t ),

(−1)r
√

1 − t2

U 2 (1 − 2α), (U > t ).

(51)

The results for CAT and TSC states are like the ones in the
OBC problem [8]. However, the result for the TEK state
contains a nonlocal factor [21], (1 − 2α), in excellent agree-
ment with the result by one-kink approximation, Eq. (47). The
presence of the nonlocal factor signifies the absence of a local
order parameter of the charge density wave type, although
the correlation is long range. The spontaneous symmetry
breaking, occurring for the classical Ising Hamiltonian H0(c),
won’t occur any longer since the quantum fluctuations split
the lowest 2N states into a band of width ∼4t . Consequently,
in this peculiar situation, we ought not to define the local
order parameter by the square root of the correlation function
following the conventional way [31].

B. Entanglement entropy of the ground state

The nondegenerate ground state, Eq. (39), is highly en-
tangled. Its one-kink approximation, Eq. (25), is reminiscent
of the well-known generalized W state with somehow robust
entanglement [32]. To reveal its entangled nature, we work
out the entanglement entropy (EE) for the exact ground state
at the symmetric point t = � (see Fig. 7). The reduced density
matrix is defined as

ρl = trN−l |E0〉〈E0| (52)

and the EE as [33]

Sl = −tr(ρl log2 ρl ). (53)

The evaluation of EE is performed numerically [17]. The
results of S(N−1)/2 are illustrated in Fig. 3. We see, in the
TEK phase, that the EE of the ground state is not divergent,
although the energy excitations are gapless.

C. Density of states in the thermodynamics and specific heat at
low temperatures

The density of states (DOS) near the ground state can be
worked out by Eqs. (40) and (41) (see also Fig. 4, right)
exactly as

ρ(x) = 2{x + 2(U − t )}
π

√
x(x + 4U )(4t − x){x + 4(U − t )} , (54)

where x = E − E0. It is divergent at low energies,

ρ(x) ∼ ax−1/2 + bx1/2 + O(x3/2), (55)

a = (U − t )1/2

2π (Ut )1/2
, (56)

b = U 2 + Ut + t2

16π (Ut )3/2(U − t )1/2
, (57)

since the spectra are quadratic,

EP(q) ∼ q2 + (q − π )2, (58)

EA(q) ∼ (q − π/2)2 + (q + π/2)2. (59)

So one can find that the specific heat per site approaches a
constant when T � 4t/kB,

CM/N = kB

2
+ bk2

B

a
T + O(T 2), (60)

where kB is the Boltzmann constant. This exotic behavior
is in contrast to the linear law in temperature, CM/N ∼ T ,
which goes to zero when T → 0, no matter whether there are
interactions or not [34].

V. LOCALIZED KINK ZERO MODES

Now we display a peculiar type of zero modes within the
TEK phase—the localized kink zero modes (KZMs), or kink
bound states [35]. First of all, we cannot cut the ring because
the effect of GRF will be gone. So we introduce a bond defect
by altering the boundary term connecting site N and 1 in
HR(c) to

Hb = −tN (c†
N c1 + H.c.) + �N (cN c1 + H.c.)

+UN (2nN − 1)(2n1 − 1). (61)

We consider uniform interactions, UN = U , so that the low-
energy 2N Ising kink states are prepared and the effect of GRF
is maintained. We also consider the symmetric points, � = t
and �N = tN , so that the defect is controlled by the simple
ratio γ = tN/t .

A. Picture of the KZMs: Perturbative treatment

First, to get a clear picture, we dwell on the perturbative
theory based on the one-kink approximation, which is reliable
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FIG. 8. Left: The mechanism for the localized KZMs emerging
within the gapless TEK phase. An energy gap above the KZMs
develops when the bulk band is split by modulating the parameter
γ = tN/t to the range, γ > 1. Right: Visualization of the two KZMs,
|KZMP〉 and |KZMA〉. Here, we choose N = 51,U = 1, t = 0.1, and
γ = 2 for demonstration. The coefficients, ψ2, ψ4, . . . , ψN−2, ψN , χ2,
χ4, . . . , χN−2, χN , are not tagged because they are very small and can
be neglected.

as proved above. We perform the perturbative treatment on
the spin Hamiltonians HP(σ ) and HA(σ ) with corresponding
defects. Then the solution for HR(c) is obtained by projection
according to Eq. (10). As shown in Fig. 8, we found there
emerge two KZMs below the bulk states when γ > 1. They
come from HP(σ ) and HA(σ ), respectively, and read

|KZMP〉 = ∑
j ψ j | j, τ 〉, (62)

|KZMA〉 = ∑
j χ j | j, τ 〉, (63)

where

(τ, τ̄ ) =
{

(↑,↓), (for N = 4K + 1),

(↓,↑), (for N = 4K + 3),
(64)

to make sure that |KZMP〉 is of odd parity and |KZMA〉
even parity. For small N , |KZMA〉 has a little higher energy
than |KZMP〉. But with N increasing, they become degenerate
rapidly. There is an energy gap,

�g =
(

γ + 1

γ
− 2

)
t, (65)

from the two KZMs to the above bulk states. For large enough
N , the asymptotic solution reads

ψ j =
⎧⎨
⎩

√
γ 2−1

2 γ − j+1
2 , ( j ∈ odd),√

γ 2−1
2 γ − N− j+1

2 , ( j ∈ even),
(66)

for |KZMP〉 and

χ j =

⎧⎪⎪⎨
⎪⎪⎩

√
γ 2−1

2 γ − j+1
2 , ( j ∈ odd, j �= N ),

0, ( j = N ),

−
√

γ 2−1
2 γ − N− j+1

2 , ( j ∈ even),

(67)

for |KZMA〉, respectively. The solution is
symmetric/antisymmetric on the two sides of the defect,

ψN− j = ψ j, (68)

χN− j = −χ j . (69)

By taking the thermodynamic limit N → ∞, one can find that
the two KZMs are well localized near the defect, as illustrated
in Fig. 8.

It is even more clear to see the picture of the KZMs by
considering γ � 1. In this limit, we get two simpler KZMs:

|KZMP〉 ∼ (ψ1, ψN−1) = 1√
2

(1, 1), (70)

|KZMA〉 ∼ (χ1, χN−1) = 1√
2

(1,−1). (71)

B. The gap beyond perturbative treatment

In fact, we can calculate HR(c) with defects at the symmet-
ric point in a much more rigorous manner, because the QJWM
still holds at this moment and the calculating scheme in Fig. 3
is still applicable. By the auxiliary Hamiltonians with defects,
we have confirmed the emergence of the KZMs as depicted
above. And by working out numerically the gap of systems
as large as N = 1001 and extrapolating to the thermodynamic
limit, we are able to correct the approximated gap formula
Eq. (65) to a rigorous one,

�g =
(

γ + 1

γ
− 2

)
t f (t/U ), (72)

where the fitting function reads

f (t/U ) ≈ 1 − 1.517 26(t/U ) + 0.522 561(t/U )2. (73)

C. Influence of disorder

The newly discovered KZMs are protected by the gap
above them. However, the gap is proportional to the hopping
strength t , which should be small enough to validate the TEK
phase. So we may ask whether a small disorder can destroy
the gap and KZMs.

Let us consider the Hamiltonian at the symmetric point
with disordered hopping strength,

HR(c) =
N∑

j=1

[t j (−c†
j c j+1 + c jc j+1 + H.c.)

+U (2nj − 1)(2n j+1 − 1)], (74)

where t j ( j = 1, 2, ..., N − 1) is uniformly distributed in the
interval [t (1 − δτ/2), t (1 + δτ/2)] and tN takes values in the
interval [γ t (1 − δτ/2), γ t (1 + δτ/2)]. Here, γ = tN/t still
takes charge of the defect strength. We still consider the
uniform interactions.

It is also easy to verify that the QJWM still holds and
the calculating scheme in Fig. 3 is still applicable when the
disorder is present. For disorder strength δτ ranging from
10% to 40%, we perform calculations on systems with N =
501 and over 1000 random configurations. The results are
illustrated in Fig. 9. From this result, we see the energy gap
is stable for moderate disorder, which is important to protect
the KZMs against disturbance.

VI. SUMMARY AND DISCUSSION

In summary, a novel TEK phase and concomitant localized
KZMs can be realized in the interacting Kitaev ring HR(c)
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FIG. 9. The energy gap above KZMs with disorder strength δτ

ranging from 0% to 40%. Here we set U = 1 and t = 0.1. The
dashed and solid lines show the results by perturbative theory and
rigorous results for an infinite system without disorder (δτ = 0%),
i.e., Eqs. (65) and (72), respectively. The data for disorder strength
δτ ranging from 10% to 40% are obtained by performing calculations
on systems with N = 501 and over 1000 random configurations.

with GRF. Owing to the QJWM, this conclusion is also true
for the other three rings, HNS(c) and HP/A(σ ), with odd total
number of lattice sites N .

Usually, the nontrivial topology is protected by a gap
between the ground state and the bulk excitation spectra [36].
Here, the gapless TEK phase and concomitant KZMs do
not comply with the convention for noninteracting fermionic
systems. Also, the simultaneous occurrence of nondegeneracy
of the ground state and quadratic gapless spectra in a clean
ring seems odd in the ordinary field theory [19].
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APPENDIX A: EXACT SOLUTION OF HR(c)

According to the scheme depicted in Fig. 3, the solution
of the Kitaev ring HR(c) refers to the four free fermion
Hamiltonians:

H (P)
R ( f ) = H (1,−t + U, t + U ), (A1)

H (P)
NS ( f ) = H (−1,−t + U, t + U ), (A2)

H (A)
R ( f ) = H (1, t + U,−t + U ), (A3)

H (A)
NS ( f ) = H (−1, t + U,−t + U ). (A4)

They can be cast into a same general expression,

H (ξ, a, b) =
N−1∑
j=1

[a( f †
j f j+1 − f j f †

j+1) + b( f †
j f †

j+1 − f j f j+1)]

+ ξ [a( f †
N f1 − fN f †

1 ) + b( f †
N f †

1 − fN f1)]. (A5)

After Fourier transformation, we get

H (s, a, b) =
∑

q∈Qs,q �=qs

[2a cos q( f †
q fq − f−q f †

−q)

− 2ib sin q( f †
q f †

−q − H.c.)]

+ a cos qs(2 f †
qs

fqs − 1), (A6)

where s refers to R (or ξ = 1) or NS (or ξ = −1), qR =
0, qNS = π , and

QR =
{
−N − 1

N
π, . . . ,− 2

N
π, 0,

2

N
π, . . . ,

N − 1

N
π

}
, (A7)

QNS =
{
−N − 2

N
π, . . . ,− 1

N
π,

1

N
π, . . . ,

N − 2

N
π, π

}
.

(A8)

By Bogoliubov transformation,

ηq = uq fq − i vq f †
−q, (q �= 0, π ), (A9)

where

u2
q = 1

2

(
1 + ε(q)

ω(q)

)
, v2

q = 1

2

(
1 − ε(q)

ω(q)

)
,

2uqvq = D(q)

ω(q)
, (A10)

ε(q) = a cos q, D(q) = b sin q, (A11)

ω(q) =
√

ε(q)2 + D(q)2, (A12)

we can diagonalize the fermionic Hamiltonian by arriving at

H (s, a, b) = ε(qs)(2 f †
qs

fqs − 1) +
∑

q∈Qs,q �=qs

ω(q)(2η†
qηq − 1).

(A13)

There are four fermion vacua in BCS-type wave functions,∣∣φ(P)/(A)
R/NS

〉 =
∏

q ∈ QR/NS,

(0 < q < π )

(uq + i vq f †
q f †

−q)|0〉, (A14)

for H (P)/(A)
R/NS , respectively. The two channels, HP/A(σ ), provide

two quasiparticle spectra:

ωP(q) =
√

U 2 + t2 − 2Ut cos(2q), (A15)

ωA(q) =
√

U 2 + t2 + 2Ut cos(2q). (A16)

The solution of HR(c) is obtained by filtering out redundant
DOF by applying the scheme in Fig. 3 backwardly.

Of all the energy levels, we focus on the 2N extended-kink
(EK) states. Half of them are of odd parity and form the
spectrum

EP(q) = 2ωP(q) + E0 − (U − t ), (A17)

while another half of them are of even parity and form the
spectrum

EA(q) = 2ωA(q) + E0 + |U + t | − 2U, (A18)
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where

E0 = (U − t ) −
∑
q∈QR

ωP(q). (A19)

We should notice that the eigenstates of H (P)/(A)
R/NS are those

of the parity operator Py = exp(iπMy) with My = ∑N
j=1 f †

j f j ,
not those of the parity operator Pz. So further projections
by projectors P±

y = 1
2 (1̂ ± Py) are needed. The validity of

this route is ensued by the property ( f -fermion particle-hole
transformation):

C †
f H (P)/(A)

R ( f )C f = H (P)/(A)
NS ( f ), (A20)

C f =
N∏

j=1

[ f †
j + (−1) j f j]. (A21)

This property means the energy levels of H (P)/(A)
R ( f ) and

H (P)/(A)
NS ( f ) are the same. For example, in the HP(σ ) channel,

the ground states of H (P)
R ( f ) and H (P)

NS ( f ) are f †
0 |φ(P)

R 〉 and
|φ(P)

NS 〉, respectively, i.e., they have the same energy value E0:

H (P)
R ( f ) f †

0

∣∣φ(P)
R

〉 = E0 f †
0

∣∣φ(P)
R

〉
, (A22)

H (P)
NS ( f )

∣∣φ(P)
NS

〉 = E0

∣∣φ(P)
NS

〉
. (A23)

But their parities in y direction are opposite:

Py f †
0

∣∣φ(P)
R

〉 = − f †
0

∣∣φ(P)
R

〉
, (A24)

Py

∣∣φ(P)
NS

〉 = +∣∣φ(P)
NS

〉
. (A25)

Because {Py,Pz} = 0 and P2
y = P2

z = 1, we can find that

Pz
(

f †
0

∣∣φ(P)
R

〉 + ∣∣φ(P)
NS

〉) = +(
f †
0

∣∣φ(P)
R

〉 + ∣∣φ(P)
NS

〉)
, (A26)

Pz
(

f †
0

∣∣φ(P)
R

〉 − ∣∣φ(P)
NS

〉) = −(
f †
0

∣∣φ(P)
R

〉 − ∣∣φ(P)
NS

〉)
. (A27)

For finite N and in the range t > 0 and −∞ < U < ∞, the
nondegenerate ground state is of odd parity (Pz = −1) and
reads

|E0〉 = |EP(0)〉 = 1√
2

(
f †
0

∣∣φ(P)
R

〉 − ∣∣φ(P)
NS

〉)
. (A28)

The upper EK states can be treated in the subspaces of the
same energy value likewise.

APPENDIX B: CORRELATION FUNCTION OF THE
GROUND STATE

1. Toeplitz determinant representation

The correlation function is defined as

Cr,N = 〈E0|(2n j − 1)(2n j+r − 1)|E0〉
= 〈E0|σ z

j σ
z
j+r |E0〉. (B1)

Due to the parity, we have 〈φ(P)
R | f0σ

z
j σ

z
j+r |φ(P)

NS 〉 = 0. By intro-
ducing the Majorana fermions,

Al = f †
l + fl , Bl = f †

l − fl , (B2)

we can expand the product of two spin operators as

σ z
j σ

z
j+r = BjAj+1Bj+1 . . . Aj+r−1Bj+r−1Aj+r . (B3)

Then, by using Wick’s theorem based on the relations

〈 f0 f †
0 〉 = 1,

〈Aj f †
0 〉 = −〈Bj f †

0 〉 = 1√
N

,

〈AiAj〉 = −〈BiBj〉 = δi, j,

〈BiAi+r〉 = −〈Ai+rBi〉 = D (s)
r+1, (B4)

we get the Toeplitz determinant representation of the correla-
tion function,

Cr,N = 1

2

(
det

[
D (R)

l−m + 2

N

]
+ det

[
D (NS)

l−m

])
, (B5)

where

det

[
D (R)

l−m + 2

N

]

=

∣∣∣∣∣∣∣∣∣

D (R)
0 + 2

N D (R)
−1 + 2

N · · · D (R)
1−r + 2

N

D (R)
1 + 2

N D (R)
0 + 2

N · · · D (R)
2−r + 2

N

· · · · · · · · · · · ·
D (R)

r−1 + 2
N D (R)

r−2 + 2
N · · · D (R)

0 + 2
N

∣∣∣∣∣∣∣∣∣
, (B6)

det
[
D (NS)

l−m

] =

∣∣∣∣∣∣∣∣∣

D (NS)
0 D (NS)

−1 · · · D (NS)
1−r

D (NS)
1 D (NS)

0 · · · D (NS)
2−r

· · · · · · · · · · · ·
D (NS)

r−1 D (NS)
r−2 · · · D (NS)

0

∣∣∣∣∣∣∣∣∣
, (B7)

and

D (s)
n = −e−iqs

N
e−iqsn + 1

N

∑
q∈Qs,q �=qs

e−iqnD(eiq),

D(eiq) = − U − te2iq√
(U − te2iq )(U − te−2iq )

. (B8)

2. Evaluation of the Toeplitz determinants

In the thermodynamic limit, N → ∞, we can work out
the two Toeplitz determinants in Eq. (B5) by applying the
generalized Szegö’s theorem [17,18] and obtain

det

[
D (R)

l−m + 2

N

]
= det

[
D (NS)

l−m

] = �r

(
1 + xr

ND(eiq )

)
,

(B9)

where

�r = ur exp

( ∞∑
n=1

nd−ndn

)
, (B10)

u = exp

{∫ π

−π

dq

2π
ln D(eiq )

}
, (B11)

dn =
∫ π

−π

dq

2π
e−iqn ln D(eiq). (B12)
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Let us see the TEK phase (U > t) first. Noticing that

D(eiq) = − U − te2iq√
(U − te2iq )(U − te−2iq )

= −
√

1 − λe2iq

1 − λe−2iq
, (B13)

where

λ = t/U, (B14)

ln(1 − λeiq) = −
∞∑

n=1

1

n
(λeiq)n, (B15)

we can deduce in the following way,

ln D(eiq) = iπ − 1

2
ln(1 − λe−2iq ) + 1

2
ln(1 − λe2iq )

= iπ + 1

2

∞∑
n=1

λn

n
e−2iqn − 1

2

∞∑
n=1

λn

n
e2iqn, (B16)

so as to get

μ = exp

[∫ π

−π

dq

2π
ln D(eiq )

]
= −1 (B17)

and (d2k+1 = 0)

d2k = −λk

2k
, d−2k = λk

2k
, (B18)

∞∑
n=1

ndnd−n = −
∞∑

k=1

1

2k
λ2k = 1

2
ln(1 − λ2). (B19)

Thus the Toeplitz determinant is worked out as

�r

(
1 + xr

ND(eiq )

)
= (−1)r

√
1 − t2/U 2

(
1 − 2r

N

)
, (B20)

which means the correlation function of the TEK phase reads

C(r, α) = (−1)r
√

1 − t2/U 2

(
1 − 2r

N

)
. (B21)

For the CAT (U < −t) and TSC (|U | < t) phases, we can
apply similar analysis. Eventually, we obtain the correlation
function in the three phases:

C(r, α) ≡ lim
N→∞

Cr,N

≈

⎧⎪⎨
⎪⎩

√
1 − t2/U 2, (U < −t ),

0, (|U | < t ),

(−1)r
√

1 − t2/U 2(1 − 2α), (U > t ),
(B22)

where α = r
N .
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