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Self-duality of the integer quantum Hall to insulator transition: Composite fermion description
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The integer quantum Hall to insulator transition (IQHIT) is a paradigmatic quantum critical point. Key aspects
of this transition, however, remain mysterious, due to the simultaneous effects of quenched disorder and strong
interactions. We study this transition using a composite fermion (CF) representation, which incorporates some
of the effects of interactions. As we describe, the transition also marks an IQHIT of CFs: this suggests that
the transition may exhibit “self-duality.” We show the explicit equivalence of the electron and CF Lagrangians
at the critical point via the corresponding nonlinear sigma models, revealing the self-dual nature of the transition.
We show analytically that the resistivity tensor at the critical point is ρc

xx = ρc
xy = h

e2 , which are consistent with
the expectations of self-duality, and in rough agreement with experiments.

DOI: 10.1103/PhysRevB.100.235124

I. INTRODUCTION

In two dimensions, the dc electrical resistivity can be
universal at a continuous transition between two distinct elec-
tronic phases of matter. An example occurs at the transition
from an integer quantum Hall state at filling fraction ν = 1,
to insulator in a disordered two-dimensional electron gas in
a strong perpendicular magnetic field. Experimental studies
have confirmed that the resistivity tensor at this critical point
is ρc

xx ≈ ρc
xy ≈ h

e2 [1–4]. While both the integer quantum Hall
and insulating phases can be adiabatically deformed to free
fermions, the critical point separating them necessarily in-
volves strong interactions. It therefore remains a fundamental
and open challenge to construct a quantum theory of electrical
transport at the transition.

Often, however, strongly interacting systems can have al-
ternate “dual” descriptions in terms of degrees of freedom
that provide a nearly free quasiparticle framework. In the
quantum Hall context, interacting electrons in a partially
filled Landau level can be mapped, via flux attachment,
to particles carrying charge and flux known as composite
fermions (CFs) [5–8]. While CFs are coupled to a dynamical
gauge field, they are described in terms of a filled Fermi sea,
which acts to mitigate much of the strong gauge fluctuation
effects and to allow for physically motivated, mean-field
Fermi liquid like descriptions. The latter, with the inclusion of
quenched disorder effects, provide us with an alternate view
of the quantum Hall to insulator transition, one which, as
we shall see, is amenable to explicit calculation of transport
quantities.

In this paper, we study the integer quantum Hall to insu-
lator transition (IQHIT) from such a CF viewpoint. As we
explain, a careful treatment of quenched disorder effects near
the IQHIT, in the CF language, leads to the conclusion that
the CFs themselves sit at an integer quantum Hall transition.
Since the transition corresponds to an IQHIT in both electron
and CF representations, it has two identical manifestations
involving very different degrees of freedom, suggestive of an
underlying self-duality.

At a self-dual critical point, the electron and composite
fermion Lagrangians must take the same form. Previous stud-
ies of the IQHIT transition in electron coordinates led to the
conclusion that the effective theory is a nonlinear sigma model
(NLSM) with a nonzero theta term [9–11]. Further evidence
suggesting such a theory came from the analysis of network
models of quantum Hall transitions, which can in turn be
mapped onto spin-Pierels transitions of coset models; the theta
term required for the spin-Pierels transition is identified with
the theta term associated with the IQHIT [12,13].

In this paper, we explicitly construct the effective theory
for the IQHIT in the CF representation. We show that up
to an important sign, it has the same form as the electron
Lagrangian. Thus we establish the self-dual nature of the
transition, as seen from electron and CF theories. We provide
further evidence of self-duality by considering CF network
models for the transition, and show that they are in the
same universality class as the electron network model for the
IQHIT. We then conclude from this self-duality that at the
transition, the critical dc resistivity tensor is ρc

xx = ρc
xy = h/e2,

which is nearly consistent with experimental observations.
In previous approaches to this problem, which studied the
transition in electron coordinates, it was argued that σ c

xy =
e2/2h. However, the longitudinal conductivity was left un-
specified. Our key result here is that by studying the transition
in CF as well as electron coordinates, both components of the
conductivity tensor are uniquely determined at criticality.

This paper is organized as follows. In Sec. II, we present
the IQHIT from the perspective of CF mean-field theory.
Section III describes the CF nonlinear sigma model. In
Sec. IV, we construct CF network models and contrast them
with the original network model of the IQHIT described in
terms of electrons. We discuss the implications of self-duality
in Sec. V. In Appendix A, we present a self-contained deriva-
tion of the nonlinear sigma model, including the topological
term. In Appendix B, we discuss the self-duality from the
complementary (and as we show, equivalent) perspective of
Dirac composite fermion theory [14].
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II. MOTIVATION: COMPOSITE FERMIONS WITH
QUENCHED DISORDER

In the vicinity of the IQHIT, the low-energy electron
degrees of freedom are governed by

Z[A] =
∫

Dψ̄Dψ ei
∫

L [A], (1)

L [A] = ψ̄[K̂A + μ + V (r)]ψ + · · · , (2)

where K̂A = iDA
t + 1

2m DA
j DA

j , DA
μ = ∂μ − iAμ, Aμ is an ex-

ternal vector potential with ∇ × A = B, with B a uniform
external magnetic field. The chemical potential μ sets the
density of electrons to be at filling fraction ν = 1/2, and
V (r) is a quenched random potential taken from a probability
distribution with variance

V (r)V (r′) = � f (|r − r′|), (3)

where f (r) is some smooth function of position. In GaAs,
modulation doping introduces impurities in a different layer
than that of the 2d electron gas. As a consequence, the
disorder potential varies slowly compared to the magnetic
length. Below, it will be convenient to allow for a nonzero
uniform component of V (r), which simply corresponds to a
uniform chemical potential shift away from ν = 1/2.

To formulate the problem in composite fermion coordi-
nates, we introduce composite fermion fields f̄ , f , a dynam-
ical U(1) gauge field aμ and express the same Z[A] above in
terms of these fields as [8]

Z[A] =
∫

D f̄ D f Da ei
∫

Lc f [A], (4)

Lc f [A] = f̄ [K̂a+A + μ + V (r)] f + 1

8π
εμνλaμ∂νaλ + · · ·

(5)

In the simplest mean-field approach, the composite fermion
fields have the same mass as the electrons, their covariant
derivatives involve the sum of the background field A and
dynamical field a, and the last term above is a Chern-Simons
term that acts to attach two units of flux. In what follows, we
will employ the following shorthand:

εμνλaμ∂νbλ → adb. (6)

Note in particular that the composite fermions encounter the
same potential V (r) as do the electrons. For later convenience,
let’s shift a → a − A:

Lcf [A] = f̄ [K̂a + μ + V (r)] f + 1

8π
(a − A)d (a − A) + · · · .

(7)

Since the disorder is long-wavelength in character, we can
use linear response theory to obtain the density variation in
terms of a long-wavelength compressibility:

f̄ f (r) = n̄ + δn(r) = n̄ + χV (r), (8)

where n̄ is the average density set by the chemical potential μ,
and χ is the compressibility. For a two-dimensional electron
gas, χ = m

2π
. As shown in Ref. [15], the long-wavelength limit

of χ does not suffer from mass renormalization due to gauge
fluctuations and is expressible in terms of the bare mass. This
is certainly true of the mean-field treatment employed in the

present analysis. Furthermore, the equation of motion of a0

leads to the flux attachment constraint:

b(r) = ∇ × a(r) = B − 4π f̄ f (r), (9)

Using Eqs. (8) and (9), the disorder potential can be related to
the effective magnetic field:

V (r) = −b(r)

2m
. (10)

As we noted before, V (r) can have a uniform component,
which corresponds to a deviation from ν = 1/2. The above
equation shows that such a deviation corresponds to a uni-
form component to the magnetic field b(r) felt by composite
fermions. The mean-field Hamiltonian obtained from this
constraint is

Hcf = (p − a)2

2m
− V (r)

= (p − a)2

2m
+ g

2

b(r)

2m
, (11)

where g = 2. This Hamiltonian describes a free particle in
a random magnetic field and random potential. Importantly,
both disorder fields are obtained from a single quenched
random field, namely aμ(r); the random magnetic field and
electric potential are not uncorrelated. This slaving between
the two disorders occurs due to flux attachment, and g = 2
follows from both flux attachment, and the use of the bare
mass in the long-wavelength compressibility.

Notice that the discussion above neglects the Coulomb
interaction between electrons in the original problem. When
the Coulomb interaction between electrons is explicitly taken
into account, the mass of the composite fermion would be set
by such interaction energy scale near ν = 1/2. On the other
hand, as long as the compressibility of the composite fermion
is set by the same mass, as suggested by earlier studies of
gauge field fluctuations, Eq. (11) with proper replacement of
the mass would remain valid. In the subsequent analyses, we
use the bare mass for simplicity.

The inclusion of slaved disorder in Eq. (11) has singu-
lar consequences [16–18]: an infinitesimal amount of slaved
disorder has a nonperturbative effect in inducing an order
one Hall conductivity. To see this, consider the effect of
spatial inhomogeneity in Fig. 1. The regions where composite
fermions move counter-clockwise do not completely cancel
out the regions where they move clockwise. As a heuristic
estimate, we can average over the filling fractions of these two
regions and obtain the Hall conductivity:

σ cf
xy � − 1

2π
νcf

eff ≈ δn

δb
= − 1

4π
. (12)

Note that the zero disorder limit (δn, δb → 0) is singular in the
CF representation: we resolve the singularity using the flux
attachment constraint to find an order one σ cf

xy . As shown in
Ref. [18], this heuristic estimate for σ cf

xy is exact in the long-
wavelength limit.

The fact that σ cf
xy is a half-integer multiple of 1

2π
takes

a special significance: states at the Fermi level must be
extended, as follows from a corollary of Laughlin’s gauge
argument [19]. Extended states at the Fermi level, along
with two-dimensionality, and the fact that interactions are
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FIG. 1. (Taken from Ref. [17].) (a) A cartoon of a typical spatial
configuration with pure flux disorder. The system has an average
density n̄. For every region with magnetic flux δb, there is an equal
region with the opposite flux −δb, and hence the Hall conductivity in
this system vanishes. (b) By contrast, when fermion density and flux
disorder are correlated, as in Eq. (9), an analogous cartoon shows that
the Hall conductivity need not vanish. This is so because the filling
fractions of the two regions do not completely cancel each other. As
shown in Eq. (12), this imbalance can induce to an order one Hall
conductivity.

neglected in CF mean-field theory, indicate that the fermions
must be at a critical point between two integer Quantum Hall
states, in this case νcf = −1 and 0.

To see this more directly, note that Hcf in Eq. (11) with
g = 2, can have exact zero-energy modes even for arbitrary
disorder [20]. The zero-energy modes will play a crucial role
in the remainder of the paper. For now, we show how they
ensure that the CFs sit at an IQHIT. A typical density of
states of Hcf is plotted in Fig. 2. Without loss of generality,
consider the case where all finite energy states are localized
due to disorder. The uniform component of b(r), denoted b0,
which detunes the system from ν = 1/2, will act as the tuning
parameter for the IQHIT:

b(r) = b0 + b̃(r) (13)

where, 〈b̃(r)〉 = 0. When b0 < 0, there are exact zero modes,
the number of which is equal to the total number of flux quanta
passing through the system. The zero modes therefore act as
a Landau level: for any nonzero Fermi level, they provide
an integer Hall conductance: σ cf

xy = −1/2π , where the minus
sign occurs due to the fact that b0 < 0. However, when b0 > 0,
there are no zero energy states: the system therefore has zero
Hall conductance for b0 > 0. Therefore we see that

σ cf
xy =

{− 1
2π

, b0 < 0

0, b0 > 0

and the IQHIT maps on to an IQHIT νcf = −1 → 0 of CFs as
b0 is tuned through zero. At the critical point itself, when b0 =
0, the Hall conductance is σ cf

xy = −1/4π if all odd moments of
disorder vanish. This conclusion holds for arbitrary disorder
strength provided that the condition g = 2 is satisfied [18].

To summarize this section, the ν = 1 → 0 IQHIT of elec-
trons is encapsulated as a νcf = −1 → 0 IQHIT of CFs.
The only difference between the two representations arises in
the sign of the Hall conductance at criticality. This strongly

FIG. 2. (Taken from Ref. [18].) A schematic for the density
of states of composite-fermion Hamiltonian Hcf in Eq. (11) for
(a) b0 < 0 and (b) b0 > 0. Zero-energy states are present only for
b0 < 0 (represented by the Dirac delta-function) and contribute a
Hall conductance σ cf

xy = − e2

h . All positive energy extended states
are assumed to have levitated up for |b0| → 0. Therefore b0 = 0
corresponds to a critical point between two integer quantum Hall
states with σ cf

xy = − e2

h and σ cf
xy = 0.

suggests that the IQHIT exhibits self-duality. In the following
two sections, we establish the self-dual nature of the transi-
tion.

III. COMPOSITE FERMION NLSM AND SELF-DUALITY

Armed with the intuition in the previous section, we now
construct the low-energy effective theory that governs the
behavior of diffusive modes at length scales large compared
to the mean-free path. We start with the following mean-field
Lagrangian of disordered composite fermions:

L = ψ†

(
iDt + μ − g

2

b(r)

2m
+ 1

2m
D2

j

)
ψ, (14)

where Dμ = ∂μ − iaμ and g = 2.
For simplicity, we take the vector potential to have a

spatially uncorrelated Gaussian random distribution:

P[a j (r)] ∝ exp

[
− 1

2�

∫
d2r a2

j (r)

]
. (15)

Since the g = 2 theory is the “square” of a Dirac Lagrangian,
we can map the composite-fermion Lagrangian at g = 2 to
a Dirac fermion through a fermionic Hubbard-Stratonovic
transformation:

L = iψ†Dtψ + μψ†ψ + μχ†χ

+ ivψ†(Dx − iDy)χ + ivχ†(Dx − iDy)ψ, (16)

where v =
√

μ

2m .
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Defining  = (ψχ ) and ̄ = †σz, we can rewrite the La-
grangian as that of a Dirac fermion with a random vector
potential:

L = iψ†Dtψ + iv̄γ jD j + μ̄γ 0 + O(g − 2), (17)

where γ 0 = σz, γ 1 = iσy and γ 2 = −iσx, and the O(g − 2)
terms arise from g − 2 corrections. We shall estimate the
leading order effect of g − 2 terms below.

Note that χ fields do not have a time derivative. However,
within composite fermion mean-field theory, this lack of time
derivative for χ has no consequence: when interactions are
ignored, only spatial variations need to be considered, and
frequency acts as a “parameter” of the theory [21,22]. The
disorder problem can be analyzed one frequency at a time,
and for the dc limit of interest, the system for all intensive
purposes behaves as a two-component Dirac fermion in d =
2 + 0 dimensions, in a random vector potential.

To construct the effective field theory, we follow the stan-
dard procedure described in Refs. [21,22]. The idea is to con-
sider disordered averaged products of retarded and advanced
Green functions, which are immune to dephasing and capture
the low-energy diffusive physics. We do so for a Dirac fermion
in a random vector potential, and perform disorder averaging
using the replica trick. With n copies of retarded and advanced
fermions (with n → 0), the theory naively has a U(2n) sym-
metry. However, due to a finite density of states, the imaginary
parts of the retarded and advanced functions differ in sign, and
the U(2n) theory is actually broken down to U(n) × U(n). The
diffusive modes correspond to the Goldstone modes living in
the Grassmannian manifold U(2n)/U(n) × U(n).1 They are
related to the longitudinal conductivity. However, as we ex-
plicitly derive in Appendix A, there is in addition a topological
term present, which arises from the Chiral anomaly of the
Dirac fermion. This term reflects the fact that the CF theory
at g = 2 has a Hall conductivity of −1/4π , as described in
the previous section. For a detailed derivation of the theory,
we invite the reader to study the Appendix. For the reader
interested in the summary, we state here the resulting theory:

Z =
∫ ∏

DQ†DQ e− ∫
d2r Leff ,

Leff = πσ cf
xx

4
Tr[∂Q]2 + πσ cf

xy

4
εi jTr[Q∂iQ∂ jQ], (18)

where σ cf
xx = 1

4π�
and σ cf

xy = − 1
4π

. Q ≡ Qαβ;σσ ′ , which repre-
sents the long-wavelength diffusive modes, is a Hermitian ma-
trix with replica indices α, β and retarded/advanced indices
σ, σ ′. Also, Q = u†�u, where

� ≡ �αβ;σσ ′ = δαβσ z
σσ ′,

σ z is the z component of Pauli matrix and u is a 2n × 2n
unitary operator in the replica and retarded/advanced space.

1The U(2n)/U(n) × U(n) manifold is equivalent to the unitary
class of random matrix theory, which corresponds to the case where
both spin-rotation and time-reversal symmetry are broken, and the
fermion density is the only conserved mode that exhibits diffusion.

The NLSM for composite fermions should be contrasted
with the effective description of electrons undergoing an
IQHIT [11]:

LPruisken = πσxx

4
Tr(∂Q)2 + πσxy

4
εi jTr[Q∂iQ∂ jQ], (19)

where σxy = 1
4π

. The electron NLSM is identical to the com-
posite fermion NLSM with one important difference: the two
theories have relative opposite signs for the topological term,
proportional to their Hall conductivities at the critical point.

The equivalence of electron and CF effective field theories
shows that the IQHIT is a self-dual critical point. Thus the
universal quantities such as the dc conductivity tensor and
the critical exponents must also be equivalent, up to signs of
the Hall conductivity, in the two theories.

An important question to ask is whether the theory pre-
sented in this section is stable under perturbations that can
arise, for example, from short range or stronger disorder. To
analyze this, let’s consider a small deviation from g = 2. The
most relevant term at the g = 2 free d = 2 + 0-dimensional
Dirac fermion fixed point is a combination of random chemi-
cal potential and mass for the Dirac fermions:

�L = −g − 2

4m
b(r)(̄γ 0 + ̄). (20)

A naive dimensional analysis, holding the kinetic term of a
d = 2 + 0-dimensional free fermion fixed, resulting in [ψ] =
1/2 suggests that this term is irrelevant in the RG sense:
[g − 2] = −1. However, the naive power counting estimate
is valid only for weak disorder; g − 2 corrections could be
dangerously irrelevant as they lead to a shift in the Hall
conductivity.

IV. SELF-DUALITY AND COMPOSITE FERMION
NETWORK MODELS

In this section, we describe an alternate and more vivid
manifestation of the self-duality in terms of network models.
Network models [23] have played a pivotal role in the study
of integer quantum Hall transitions. They have been applied
to case of a random magnetic field in Ref. [24]. Generalizing
their approach, we construct a network model for composite
fermions where the additional zero mode plays a crucial role.
This will provide a complementary insight into the self-dual
nature of the IQHIT, corroborating the analysis of the previous
section.

For fermions with a smooth random magnetic field, the
b(r) = 0 contour percolates throughout the system. The edge
states on these contours form the channels of the network
model, where each channel hosts a number of co-propagating
edge modes. We can construct the network model by counting
the number of edge modes in each channel. To this end, let’s
consider two adjacent regions 1 and 2 such that in region
1, b = |b0| and in region 2, b = −|b0|. The Landau level
energies for CFs at g = 2 are given by

En =
{

(n + 1)h̄ω0, region 1
nh̄ω0, region 2 , (21)

where ω0 = e|b0|
m .
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FIG. 3. The network model for three chiral edge modes. The
counter-propagating channels are shown using green and yellow
colors. Each channel hosts Nem number of copropagating edge modes
and is mapped to a single site of the one-dimensional spin chain of
Eq. (22) [12,13,25]. On the other hand, the edge modes are mapped to
the SU(2n) spins at each site (with n → 0 denoting the replica limit).
In the figure, the x direction labels the sites while the y direction acts
as the imaginary time axis for the spins. The disordered-averaged
tunneling amplitudes between the edge modes at the nodes of the
network model (the vertices of the plaquettes) translate to the inter-
and intrasite couplings of the spin chain.

Thus there is a filled Landau level at zero energy present
in only the region 2. This is precisely the extra zero mode
discussed in Sec. II. Additionally, the energy of pth Landau
level in region 1 matches with the energy of (p + 1)th Landau
level in region 2. Each Landau level from either region con-
tributes one edge state at the b = 0 boundary [25]. Therefore,
if the Fermi energy lies in between two bulk Landau levels, the
number of edge states in each channel in the network model
will generically be an odd number Nem = 2M + 1.

An obvious special case of such a class of network models
is when Nem = 1. This is identical to the original Chalker-
Coddington model of electrons in the lowest Landau level.
Thus, at least for the special case of Nem = 1, the IQHIT of
CFs and electrons are both in the same universality class.

To study the general case of the network model with
odd number of edge states in each channel, we utilize the
mapping of the network model to coupled one-dimensional
spin chains [25]. As shown in Fig. 3, the transport in the
network model is described by random tunneling between
the edge states, where Nem number of chiral edge modes are
moving in the same direction in the given channel while the
direction of chiral edge states is alternating between nearby
channels. Representing the motions of alternating chiral edge
modes as the 1+1-dimensional world lines of fermions and
after taking the average over the random tunneling amplitude
via the replica trick, the resulting interacting fermion model
is mapped to the one-dimensional spin chain model, where
Nem = 2M + 1 number of SU(2n) spins reside at each site x
with n → 0, denoting the replica limit. Here, the site x repre-
sents the “spacelike” positions of the chiral edge modes in the
world line representation mentioned above. The Hamiltonian
of the spin chain is

Hspins =−
∑
x, j,k

Jjk

2
Tr[S j (x)Sk (x)] +

∑
x, j

J j Tr[S j (x + 1)S j (x)]

−
∑

x

(−1)xηTr[�S j (x)], (22)

where S j (x) denotes the jth spin on site x and j =
1, . . . , Nem. η → 0+ and � is a 2n × 2n diagonal matrix: � =
Diag[1, 1, . . . , 1,−1,−1, . . . ,−1]. Within each site x, the
spins are ferromagnetically coupled via Jjk . This corresponds
to the intrachannel scattering between the chiral edge modes
propagating in the same direction. On the other hand, they
are antiferromagnetically coupled between nearest neighbors,
x and x + 1, via Jj . This term represents the interchannel
tunneling between the edge states in nearby channels, which
propagate in opposite directions. This model can be regarded
as the Nem number of coupled SU(2n) spin chains, where the
index j labels different spin chain. Hence the SU(2n) spins are
aniferromagnetically coupled (Jj) within the same chain while
the interchain coupling (Jjk) is ferromagnetic. In this way, the
quantum Hall transition maps onto a spin-Peierls transition of
the spin system.

Notice that the ferromagnetic coupling, between different
chains for each x, comes from the tunneling between the
edge modes propagating in the same direction in the given
channel. While the motion along the channel is ballistic, the
tunneling between the copropagating chiral edge modes leads
to diffusive motion in the transverse direction. This transverse
diffusive mode is akin to the Goldstone mode of ferromagnet.
On the other hand, the antiferromagnetic coupling between
nearby sites in each chain is the result of the tunneling
between counter-propagating edge modes (allowing backscat-
tering) in nearby channels. This antiferromagnetic coupling
is the manifestation that ultimately the current is not sepa-
rately conserved in each channel due to the coupling between
counter-propagating edge modes in nearby channels. This is
akin to nonconserved order parameter in antiferromagnets.

To gain some insight into this system, let us consider the
case where the ferromagnetic couplings are large compared to
the antiferromagnetic couplings. Here, we may view the Nem-
leg ladder as a single spin-Nem/2 chain with antiferromagnetic
nearest neighbor exchange (for example, in the case of n =
1). Crucially, since Nem is odd, a spin-Peierls transition still
persists in this system and is in the same universality class
as the spin-1/2 chain. By contrast for Nem an even integer, as
is the case for flux disorder without the zero energy Landau
level, the resulting spin chain remains in the Haldane gap
phase, and the transition is lost! Thus the zero mode plays
a key role not only in enabling a CF transition to occur, but
also for the CF transition to be in the same universality class
as the transition with Nem = 1.

For general Nem and n, it was argued in Ref. [25] that for
large Nem, the spins form a completely symmetric represen-
tation of SU(2n) at each site. The intersite couplings are still
antiferromagnetic. In this case, the spin model is equivalent to
the following nonlinear sigma model:

L = πσ cf
xx

4
Tr[∂Q]2 + Nem

16
εi jTr[Q∂iQ∂ jQ], (23)

where Q = u†(r)�u(r) and u(r) ∈ U(2n). The symmetry of
the nonlinear sigma model is U(2n)/U(n) × U(n).

The second term is topological and
∫

d2r Tr[Q∂iQ∂ jQ] =
16π i�, where � is an integer. Therefore all values of Nem

modulo 2 are equivalent. Since we have an odd number of
chiral edge modes in general, we find that the composite
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πσxx

4
Tr [∂Q]2 +

π|σxy|
4

εijTr [Q∂iQ∂jQ]

�

Attach 2
flux-quanta.

πσcf
xx

4
Tr [∂Q]2 − π|σcf

xy|
4

εijTr [Q∂iQ∂jQ]

FIG. 4. Self-duality of IQHIT in terms of the effective field
theory. The theory at the top describes IQHIT at the half-filled
Landau level. Upon attaching two flux quanta to the electron theory,
the bottom theory of IQHIT in the CF-representation is obtained
within mean-field approximation. Since it just changes the sign of
the Hall conductivity, the critical point is self-dual.

fermions are described by

L = πσ cf
xx

4
Tr[∂Q]2 − 1

16
εi jTr[Q∂iQ∂ jQ]. (24)

This suggests a duality in the class of the composite-fermion
network models. Moreover, the integer quantum Hall transi-
tion described by the network models of composite fermions
with an odd number of edge modes is equivalent to that of
electrons.

V. CONSEQUENCES OF SELF-DUALITY

In the previous two sections, we have provided two distinct
lines of reasoning for the IQHIT to be self-dual (see Fig. 4).
We now study its consequences. The self-duality imposes the
following constraint on the conductivity tensors of electrons
and composite fermions at the critical point:

σi j = σ cf
ji . (25)

In addition, the flux attachment procedure leads to the follow-
ing relation between the corresponding resistivities:

ρcf
i j = ρi j + 4πεi j . (26)

In terms of the conductance, i.e., σi j = (ρ−1)i j , it gives

σ cf
xx = 1

16π2

σxx

(σxx )2 + (
σxy − 1

4π

)2 . (27)

From Eq. (25), we get σxx = σ cf
xx . This alongside the constraint

from particle-hole symmetry at ν = 1/2, i.e., σxy = 1
4π

, and
Eq. (27) leads to

σxx = 1

4π
. (28)

This is precisely the universal value of conductivity hinted
at by both experiments and numerics [26,27]. To emphasize
the importance of this result, we note that while particle-
hole symmetry fixes σxy = 1

4π
, there is no such symmetry

argument for why σxx = 1
4π

. Its physical origin has been an
open problem in the theory of quantum Hall transitions. Our
work strongly suggests that such a universal conductivity
arises from the presence of self-duality at the critical point
under flux attachment.

VI. DISCUSSION

Previous work based on a composite boson description
have also argued that the IQHIT is self-dual. In the semi-
nal work of Kivelson, Lee, and Zhang (Ref. [28]) and oth-
ers [29,30], the IQHIT was mapped onto a composite-boson
superconductor-insulator transition. If the latter transition ex-
hibited self-duality with a vanishing composite boson Hall
conductance, the universal resistance at the IQHIT could
be accounted for. However, while such an argument seems
plausible, the self-dual nature of the transition was never
explicitly established.2 By contrast, here we have worked with
composite fermions where self-duality can be derived at least
within a mean-field approximation.

The particular value of universal resistance, ρxx = 2π , has
significance beyond the IQHIT. The law of corresponding
states proposed in Ref. [28] implies that the resistivity tensor
at all plateau-plateau transitions can be predicted using the
universal resistivity tensor at IQHIT. In fact, experiments at
ν = 1/3 to ν = 0 transition have measured ρxx ≈ 2π consis-
tent with the value found in this paper [29]. The extent to
which superuniversality is manifested in our present frame-
work, remains an interesting open problem for future work.

For the noninteracting description of electrons undergoing
an IQHIT, there is only one energy at which the energy
eigenstates are extended. As a consequence, at any finite
temperature, the conductivity would remain zero at the critical
point [34]. The experimentally observed nonzero conductivity
is usually explained by invoking inelastic scattering due to
interactions. On the other hand, for composite fermions, we
found that the states at all Fermi energies are extended at
the critical point and therefore the conductivity is finite at
nonzero temperatures. Therefore we believe that the self-
duality should be thought of as being a statement at the full
disordered and interacting quantum critical point.

Let us mention some important caveats in our work. We
have ignored the effects of gauge fluctuations on the compos-
ite fermions and the Coulomb interactions on the electrons.
While the mean-field theory of composite fermions is valid for
interactions longer ranged than Coulomb, it is unclear how the
gauge fluctuations and disorder play out with each other in the
presence of Coulomb interactions. In addition, the Coulomb
interactions in the electron theory can change the universality
class of electron’s critical point. Experiments have found
that the dynamical exponent takes the value z = 1 at ν =
1 → 0 transition. This is inconsistent with the prediction of
noninteracting electron theory, i.e., z = 2, due to the finite
density of states at the transition. While this discrepancy has
been alluded to the effect of long-range Coulomb interaction
in literature [35,36], it still remains as an open question.
The extent to which these caveats affect the self-duality of
integer quantum Hall transition is an outstanding question
for future studies. The composite fermion approach studied
here appears to have considerable promise in addressing these
open questions. It is possible that such theories may also
have implications for related transitions, such as the magnetic

2In addition, classical studies of percolation also suggested a simi-
lar self-dual behavior [31–33].
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field tuned superconductor to insulator transition; consider-
able experimental evidence points to the self-dual nature of
this transition [37,38]. While some preliminary theoretical
work has been done in this direction [39,40], much remains
to be explored.
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APPENDIX A: NONLINEAR SIGMA MODEL FROM 2D
NON-ABELIAN ANOMALY

In this Appendix, we explicitly derive the nonlinear sigma
model for Dirac fermions with vector potential disorder in
2+1 dimensions. We will find a kinetic energy term for the
diffusive modes representing the longitudinal conductivity
and a topological theta term representing the physics of Hall
conductivity. The latter term reflects the fact that the Dirac
fermions are at a critical point between two integer quan-
tum Hall states. We derive the topological term explicitly
by making use of chiral rotations, which are anomalous,
and lead to purely imaginary Jacobians of the path integral
measure [41,42].

The theory consists of a single, two-component Dirac
fermion in d = 2 + 1 space-time dimensions in the presence
of a random vector potential, and a nonzero uniform chemical
potential. The Hamiltonian in two-dimensional space in the
presence of disorder is

H = H0 + Hdis, (A1)

H0 =
∫

d2x ψ†[−iτ j∂ j − μ]ψ, (A2)

Hdis =
∫

d2x a jψ
†τ jψ, (A3)

where j = 1, 2, τ j = (σ x, σ y) are the Pauli matrices. For con-
venience, let’s also define τ 0 = 12 and τ3 = σ z. The spatial
components of the vector potential a, are quenched random
variables chosen from the following probability distribution:

P[a] = 1

N e− 1
2g

∫
d2x a2

j . (A4)

This implies that (defining the random magnetic field b =
εi jaia j)

aμ(k)aν (k′) = (2π )2gδμνδ
2(k + k′), (A5)

b(k)b(k′) = (2π )2�k2δ2(k + k′). (A6)

Note that there is zero uniform (k = 0) piece to b. The Grass-
mannian manifold arises when studying the conductivity of
this system. We will only be interested in the dc limit in what
follows, and the dc conductivity involves disorder averaged

products of retarded and advanced Green functions evaluated
at the chemical potential. In a functional integral approach,
the generator of such correlation functions is

Z =
∫ ∏

σ=±1

Dψ†
σ Dψσ e−S,

S =
∫

d2x

{ ∑
σ,σ ′=±1

ψ†
σ

[
(E − H0)δσσ ′ + iησ z

σσ ′
]
ψσ ′

− a j ·
∑

σ=±1

ψ†
σ τ jψσ

}
. (A7)

The discrete index σ = ±1 labels retarded and advanced cor-
relation functions, E is the energy above the Fermi level, and η

is a positive infinitesimal. Observe that since interactions are
ignored, the action arises only from the spatial components
and time is no longer present: the theory to be derived “lives”
in one lower dimension than the original degrees of freedom.
From this point onwards, it will be helpful to think of this
theory as living entirely in 2 + 0 dimensions.

The disorder averaging over the quenched random vector
potentials is done using the replica trick. We introduce n
copies of fermions of both retarded and advanced species, and
performing the disorder average, we obtain

Zn =
∫ ∏

σ=±1

n∏
α=1

Dψ†
σαDψσα e−S1−S2 ,

S1 =
∫

d2x
∑

σ,σ ′=±1

n∑
α=1

ψ†
σα

[
(E + iτ j∂ j )δσσ ′ + iησ z

σσ ′
]
ψσ ′α,

S2 = −�

2

∫
d2x

∑
σ,σ ′=±1

n∑
α,β=1

(ψ†
σατ jψσα )(ψ†

iσ ′βτ jψiσ ′β )

≡ −�

2

∫
d2x

∑
σ,σ ′=±1

n∑
α,β=1

jσα · jσ ′β, (A8)

we have absorbed μ inside E by redefining E → E − μ. First
we treat the interaction between different replicas at saddle-
point level. We seek an order parameter that is off-diagonal
in retarded/advanced space. For this, it proves useful to make
use of the following Pauli-matrix identity:

−�

2
jσα · jσ ′β = −�

2
(ψ†

σατ 3ψσ ′β )(ψ†
σ ′βτ 3ψσα )

+ �

2
(ψ†

σατ 0ψσ ′β )(ψ†
σ ′βτ 0ψσα ). (A9)

Decoupling the first term through a Hubbard-Stratonovic
transformation will correspond to the diffusion of the z com-
ponent of the spin. Since, the Dirac Hamiltonian breaks spin-
conservation, it does not diffuse in space. Thus we can ignore
this disorder term. So, let’s decouple only the second term via
the identity:

e− �
2 (ψ†

σατ 0ψσ ′β )(ψ†
σ ′βτ 0ψσα )

∫
dQαβ;σσ ′

× e−[κTr(Q†Q)+iγ Qαβ;σσ ′ ψ†
ασ τ 0ψβσ ′ ], (A10)
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where κ = πρF

4τ
, γ = 1

2τ
, 1

τ
= 2π�ρF , and ρF is the density

of states of the Dirac fermion at the chemical potential. We
have chosen Q to be Hermitian, i.e., Q† = Q.

The full action reads

S(rep) =
∫

d2x ψ†[E + iτ j∂ j + iη�z + iγ Q]ψ

+ κ

∫
d2x Tr[Q†Q], (A11)

where we have suppressed the retarded/advanced and replica
indices for brevity.

Q fields are the long-wavelength degrees of freedom for
this theory. So, let’s integrate out fermions and find the
effective action in terms of Q:

Seff [Q] =
∫

d2x [κTr[Q†Q]

− Tr ln[E + iτ j∂ j + iη�z + iγ Q]], (A12)

where �z ≡ σ z
σσ ′δαβ . The saddle-point equation from varying

the action with respect to Q is

πρF Q = Trτ

[
i
∫

d2q

(2π )2

1

E − /q + iη�z + iγ Q

]
, (A13)

where Trτ represents trace over τ -matrix indices. We have
assumed a translationally-invariant replica-diagonal saddle.
The integrals can be done by introducing the density of states
and integrating over energy. Then we find the saddle-point
solution to be

Q = �z. (A14)

Except for the infinitesimal η term, the action in Eq. (A11) is
invariant under unitary transformation of the fermion fields
in replica and retarded/advanced spaces. Thus it possesses
U(2n) symmetry. The saddle-point solution, which is cho-
sen by the infinitesimal η term, breaks it down to U(n) ×
U(n). Under a global unitary transformation of the fermions
ψ → uψ , Q transforms as Q → u†Qu. Thus the nonlinear
sigma model for diffusion can be obtained by constraining Q
matrices as

Q2 = 12n,
(A15)

Tr[Q] = 0.

The coset space of this NLSM is U(2n)/U(n) × U(n), i.e., the
unitary class. This is expected based on the fact that the Dirac
fermion theory breaks time reversal and spin conservation.
Thus the Q fields describe the diffusion of just the fermion
density.

Since this theory involves a single Dirac fermion, the
effects of chiral anomaly need to be analyzed carefully. For
example, it is known that in half-filled 1+1-dimensional
Hubbard model, it leads to a topological term that describes
the Berry phase effects for SDW modes [43]. In our case,
as we’ll see, it will give rise to a topological term describing
the physics of Hall conductivity and integer quantum Hall to
insulator transition.

The fermion part of the action in Eq. (A11) is

S =
∫

d2x ψ†[E + iτ j∂ j + iγ Q]ψ. (A16)

Before proceeding, we observe that we may interpret this
2+0-dimension theory independently of the parent 2+1-
dimensional theory. We view it as two-dimensional Dirac
fermions in Euclidean space. Let’s take γ 0 = τ 1 and γ 1 = τ 2

so that the Euclidean signature is (+,+). Quite conveniently,
we can interpret ψ† ≡ iψ̄ since the gamma matrices satisfy
{γ μ, γ ν} = 2δμν . The action now reads

S = −
∫

d2x ψ̄[−iE + /∂ + γ Q]ψ. (A17)

Using ψ̄ ≡ ψ†γ 0, we arrive at

S = −
∫

d2x ψ†[−iEτ 1 + ∂1 + iτ 3∂2 + γ τ 1Q]ψ. (A18)

Let’s now go to a rotating frame of reference via the substitu-
tion Q = u�zu† so that Q is always aligned along �z locally in
space and the fermions experience a gauge field in exchange.
u ∈ U(2n) is a slowly varying matrix. To do this, we transform
ψ = uψ̃ and ψ† = ψ̃†u†,

S = −
∫

d2x ψ̃†

[
∂+ + u†∂+u −iE + γ�z

−iE + γ�z ∂− + u†∂−u

]
ψ̃, (A19)

where we have explicitly written out the τ -matrix compo-
nents of the action and ∂± = ∂1 ± i∂2. The Fermi energy has
become an imaginary mass for the two-dimensional Dirac
fermions. Notice that the field strength of the U(2n) gauge
field aμ ≡ iu†∂μu satisfies

fμν = i[Dμ, Dν] = 0. (A20)

This should not be surprising because the gauge field was
introduced through a gauge transformation of fermion fields.
However, aμ is not unphysical. The action spontaneously
breaks U(2n) symmetry to U(n) × U(n) and thus some of
the components of aμ correspond to the resulting Goldstone
modes. This is made clear by the following relation:

∂μQ = iu[�z, aμ]u†. (A21)

All components of aμ that commute with �z are unbroken
gauge degrees of freedom while the remaining ones are Gold-
stone modes.

For chiral anomaly, one should analyze the full action con-
taining the unbroken non-Abelian gauge symmetry U(n) ×
U(n). However, the same result can be achieved by treating
each replica separately and adding up their anomaly con-
tributions. Such contributions can be calculated using the
formalism of just the Abelian U(1) anomalies. For the reasons
of simplicity and the pedagogical value, we do the latter first
in Appendix A 1. For a more technically complete analysis,
we direct the reader to Appendix A 2.

1. Topological term using U(1) anomalies of replicas

In this section, we will look at each replica separately and
find the topological term that results from adding up their
contributions. Thus we split 3 aμ = Aa

μ�a + δaμ, where “a”

3Within a single replica, there are two U(1) gauge fields. One of
them is the �a component of aμ, the other corresponds to 1a ≡
δσσ ′δαβδαa component. However, we can work in a gauge where the
latter are zero.
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is a replica index, Aa
μ is a set of n Abelian U(1) gauge fields

and

�a
αβ;σσ ′ = σ z

σσ ′δαβδαa, (A22)

Aa
μ = 1

2 Tr[�aaμ], (A23)

F a
μν = ∂μAa

ν − ∂νAa
μ. (A24)

Thus we are looking at U(1)n part of the unbroken gauge
symmetry U(n) × U(n) that ignores mixing between different
replicas.

We will treat δaμ as a perturbation. So, let’s set it to equal
zero and write the action as

S[A] = −
∫

d2x
n∑

a=1

ψ̃†
a

[
∂+ − iAa

+ −iE + γ σ z

−iE + γ σ z ∂− − iAa
−

]
ψ̃a,

(A25)

where ψ̃a, ψ̃
†
a represent the Dirac field corresponding to

replica index “a.”
This action is similar in structure to the SU(2)/U(1) theory

in Ref. [43]. So, we will closely follow their approach for
deriving the topological term. We can interpret the above
action as two Dirac fermions (retarded and advanced) that
have masses related by m+ = −m∗

− = −iE + γ . They also
have opposite charges under the U(1) gauge field Aa

μ. Thus
we can write the partition function as

Z[A] =
n∏

a=1

Z[Aa, m]Z[−Aa,−m∗], (A26)

Z[Aa, m] =
∫

Dψ̄aDψa e−S[Aa,m],

S[Aa, m] = −
∫

d2x ψ†
a

[
∂+ − iAa

+ m
m ∂a

− − iAa
−

]
ψa,

(A27)

where m = −iE + γ and ψa, ψ
†
a are now two-dimensional

Grassmann variables.
We will now find the relative phase between the retarded

and advanced Dirac fermion actions. To do this, we can first
reverse the sign of the mass of advanced Dirac fermions
through a chiral rotation: ψa → eiτ 3π/2ψa, ψ

†
a → ψ†

a e−iτ 3π/2.
Using Fujikawa’s method, the Jacobian of this transformation
gives us the topological term:4

Z[−Aa,−m∗] = e−Sa
top Z[−Aa, m∗],

Sa
top = i

4

∫
d2x εμνF a

μν, (A28)

Stop =
n∑

a=1

Sa
top

= i

4

∫
d2x εμν

n∑
a=1

F a
μν. (A29)

4One should find the Jacobian of the finite chiral transformation
Uch = eiτ3π/2 by building it up continuously from infinitesimal chiral
rotations of the form Uch(α) = eiατ3π/2. However, in our case, γ μDμ

is independent of α and thus the calculation simplifies.

Quite nicely, the topological term is a sum over the U(1)
Abelian anomaly of each individual replica. We can convert
it in terms of the Q matrix using the following identity:

n∑
a=1

F a
μν = 1

2
Tr

[
(∂μaν − ∂μaν )

∑
a

�a

]

= 1

2
Tr[(∂μaν − ∂μaν )�z]

= i

4
Tr[Q∂μQ∂νQ], (A30)

Stop = − 1

16

∫
d2x εμνTr[Q∂μQ∂νQ]. (A31)

Further, we can use the charge and Hermitian conjugation
properties of 2d Dirac fermions to arrive at [44]

Z[A] = e−Stop

n∏
a=1

Z[Aa, m]Z[−Aa, m∗] (A32)

= e−Stop

n∏
a=1

|Z[Aa, m]|2. (A33)

Thus the topological term is the imaginary part of the action
that results from anomalous chiral rotation between Dirac
fermions of the retarded and advanced kind.

2. Topological term using the full action

In this section, we will analyze the chiral anomaly keeping
all gauge field components. For this purpose, we’ll generalize
the approach of Ref. [45] to U(2n)/U(n) × U(n) case.

It will be useful to split the gauge field aμ = iu†∂μu into
two parts. First, Cμ are the gauge field components that
correspond to the unbroken gauge symmetry U(n) × U(n) and
second, Gμ are the remaining gauge fields. We can show the
following relations:

aμ = Cμ + Gμ,

[Cμ,�z] = 0,
(A34)

{Gμ,�z} = 0,

Cμ = 1
2 (aμ + �zaμ�z ),

Gμ = 1
2 (aμ − �zaμ�z ). (A35)

Cμ are block diagonal 2n × 2n matrices that are diagonal
in retarded/advanced space. On the other hand, Gμ are off-
diagonal in retarded/advanced space. Notice that only Gμ

correspond to Goldsone modes as one can see from Eq. (A21).
This is related to the fact that U(2n) gauge symmetry is broken
down to U(n) × U(n) and Cμ correspond to the latter. Further,
although the field strength of aμ is zero [Eq. (A20)], the field
strength of Cμ is

f C
μν = ∂μCν − ∂νCμ − i[Cμ,Cν]

= i

4
u(Q∂[μQ∂ν]Q)�zu†, (A36)

where [μ · · · ν] means antisymmetrization with respect to
μ, ν. Clearly, Cμ can not be completely gauged away. The
topological term can be formed by two possible combinations
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of the gauge fields:

Tr[Q∂μQ∂νQ] = −2iTr
[
�z f C

μν

]
(A37)

= 2Tr[�z[Gμ, Gν]]. (A38)

We can rewrite the action in Eq. (A19) as

S = −
∫

d2x ψ̃[/∂ − i/C − i /G − iE + γ�z]ψ̃. (A39)

We will now perform the chiral rotation Uch = eiγ 5(�z−1)π/4

on this theory as we did in Sec. A 1 (where γ 5 ≡ iτ 1τ 2 =
−τ 3). This makes the masses of retarded and advanced
fermions become complex conjugates of each other. The
gauge invariant regularization for the anomaly calculation
involves /D ≡ γ μ(∂μ − iaμ) which, unlike the previous sub-
section, changes under this operation. So, the finite chiral
rotation needs to be built up from successive infinitesimal
rotations. To do so, we define the continuous chiral rota-
tion Uch(α) = eiαγ 5(�z−1)π/4. The fermion fields transform as:
ψ̃ → Uch(α)ψ̃ and ψ̃ → ψ̃Uch(α). /D transforms to

/Dα = /∂ − i/C − i
[
cos

(απ

2

)
+ iγ 5�z sin

(απ

2

)]
/G. (A40)

The Jacobian of the finite chiral rotation is

J = exp

[
i

2π

π

4

∫ 1

0
dα Tr

[
(�z − 1)γ 5 /D2

α

]]
. (A41)

There are two terms that are proportional to the topological
term

J = exp

[
i

2π

π

4

∫ 1

0
dα

∫
d2x (T1 + T2)

]
,

T1 = −εμνTr
[
�z f C

μν

]
, (A42)

T2 = iεμν cos απ Tr[�z[Gμ, Gν]]. (A43)

T2 integrates out to zero and T1 gives the topological term.
This expression makes it clear why treating each replica sepa-
rately worked in Appendix A 1. Due to the appearance of trace
in the T1 term, only the �z component of the U(n) × U(n)
field strength f C

μν matters. This is exactly equal to what we
got in Eq. (A30). We obtain the Jacobian

J = exp

[
εμν

16

∫
d2x Tr[Q∂μQ∂νQ]

]
. (A44)

The topological term in the action is

Stop = −εμν

16

∫
d2x Tr[Q∂μQ∂νQ]. (A45)

3. Kinetic energy term for Goldstone modes

Lastly, we can find the kinetic energy term by integrating
out fermions and expanding the action in Eq. (A19) to second
order in aμ. It is given by

S(2)
eff = πσxx

4

∫
d2x Tr[∂Q]2, (A46)

where σxx = 1
4π�

. The full action for the NLSM now reads

Seff [Q] =
∫

d2x

[
πσxx

4
Tr[∂Q]2 − εμν

16
Tr[Q∂μQ∂νQ]

]
.

(A47)

4. Relation between g = 2 and Dirac-fermion theory

In this section, we point out some minor differences be-
tween the Dirac theory and g = 2 theory. In Sec. III, we had
mentioned that g = 2 theory is slightly different from the
Dirac theory in the sense that one of the components of 

field does not have a time derivative. This does not affect the
static physical observables like the dc conductivities, however,
leads to changes in the definitions of other quantities. To see
this, we utilize the relation between g = 2 and Dirac fermion
Green functions [46]

Gg=2
R,A (μg=2) = m

μ
(GR,A(μ) − GA,R(−μ))↓↓,

μg=2 = μ2

2m
, (A48)

GR,A(μ) = 1

μ − σ.p ± i
2τ

,

where “↓↓” means the down spin component. This gives

Gg=2
R,A (μg=2) = 1

μg=2 − p2

2m ± i μ

2mτ

. (A49)

Using this and ρ
g=2
F = m

2π
, ρF = μ

2π
; we get

1

τ g=2
= μ

mτ
= 2πgv2

F ρ
g=2
F ,

Dg=2 = v2
F τ g=2

2
= 1

4πgρg=2
F

, (A50)

σ g=2
xx = Dg=2ρ

g=2
F = 1

4π�
,

where Dg=2 is the diffusion constant and vF = kF
m is the Fermi

velocity. The longitudinal conductivity for g = 2 is same as
what we got for the Dirac fermion problem. In addition, the
topological term stays unchanged because it was derived using
the chiral anomaly of 2 + 0-dimensional Dirac fermions.

APPENDIX B: IQHIT SELF-DUALITY FROM THE DIRAC
THEORY OF COMPOSITE FERMIONS

We have presented the self-duality at IQHIT taking the
viewpoint of the HLR theory. However, Son has conjectured
a Dirac fermion description [14] of the half-filled Landau
level that has a manifest particle-hole symmetry. In this Ap-
pendix, we present the self-duality again, taking the latter
perspective and find that the description stays exactly the
same. In fact, we will discover that the mean-field descriptions
of HLR and Son’s theories with disorder are physically and
mathematically close. This treatment makes the self-duality
a general feature of IQHIT, not tied to a specific composite
fermion theory.
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Let’s consider 2+1-dimensional Dirac fermions at zero
chemical potential in the presence of a large magnetic field:

Z[A] =
∫

D̄D ei
∫

L [A], (B1)

L [A] = ī /DA + 1

8π
AdA + · · · , (B2)

where i /DA = γ μ(∂μ − iAμ), ∇ × A = B, and the second term
represents the contribution from a massive partner Dirac
fermion. Since the Dirac fermion is at zero chemical potential,
it corresponds to the half-filled zeroth Landau level of the
Dirac fermion. Son proposed the following composite fermion
theory:

Z[A] =
∫

Dψ̄DψDa ei
∫

Lcf [A], (B3)

Lcf [A] = iψ̄ /Daψ − 1

4π
Ada + 1

8π
AdA + · · · . (B4)

These composite fermions are at a finite chemical potential
μcf so that ρcf ψ̄γ 0ψ = B

4π
. Analogous to what we did for

the HLR composite fermions, let’s add chemical potential
disorder to this theory and construct the mean-field Hamil-
tonian for composite fermions. This can be done by shifting
A0 → A0 + V (r). The relevant term in the Lagrangian is

Ldis = − 1

4π
V (r)b. (B5)

It acts as a source of effective magnetic field b ≡ ∇ × a.
Therefore the Dirac composite fermions experience a random
effective magnetic field due to a potential disorder in the elec-
tron coordinates. For a smooth disorder, the random magnetic
field will be proportional to V (r) as we saw in the HLR theory,
Eq. (10). Using these, we obtain the mean-field Hamiltonian
of the Dirac composite fermions:

HD
cf = (p − a(r)) · σ, (B6)

where a(r) is a quenched vector-potential representing the
random magnetic field and σ = (σ x, σ y) are Pauli matrices.

It now becomes clear that the physics of the Dirac com-
posite fermion theory is identical to that of g = 2 theory of
composite fermions in Eq. (11). In Sec. III, we had mapped
the g = 2 mean-field Lagrangian to a Dirac fermion with ran-
dom magnetic field, i.e., precisely the mean-field Hamiltonian
obtained in Son’s theory of composite fermions.

Let’s now discuss the appearance of IQHIT self-duality
in the Dirac fermion language. The parent Dirac “electron”
theory in Eq. (B2) has an IQHT in the presence of chemical
potential disorder. This can be seen by tuning the chemical
potential μ across μ = 0. The random chemical potential
broadens the zeroth Landau level. It has an extended state at
zero energy if the odd moments of the disorder vanish, i.e., the
disorder is statistically particle-hole symmetric. Also, all other
states are localized. Since a full zeroth Landau level has a Hall
conductance σxy = 1

4π
, the theory exhibits the following phase

transition at μ = 0:

σxy =
{

1
4π

, μ > 0

− 1
4π

, μ < 0
. (B7)

FIG. 5. A schematic for density of states of the Dirac fermion
Hamiltonian HD

cf in Eq. (B6) for (a) b0 = 0 [47] and (b) b0 = 0.
All states are extended for b0 = 0 due to the presence of statistical
time-reversal symmetry. For b0 = 0, there are zero-energy states
that contribute a Hall conductance of σ cf

xy = 1
4π

sgn[b0]. All positive
energy extended states are assumed to have levitated up. There-
fore b0 = 0 is the critical point between the two integer quantum
Hall states.

Let’s now discuss its dual interpretation in the Dirac compos-
ite fermion language using the Hamiltonian in Eq. (B6). Since,
the chemical potential μ is a source of effective magnetic
field for the composite fermion, tuning across the half-filled
Landau level corresponds to tuning the effective magnetic
field across zero. So, as we did for HLR theory, let’s split
b(r) = b0 + b̃(r), where b0 = 1

L2

∫
d2r b(r) is the uniform

part and b̃(r) is the quenched disorder part of the effective
magnetic field.

The density of states for b0 = 0 and b0 = 0 is plotted in
Fig. 5. For b0 = 0, the Dirac fermion has exact zero mod
es [20] analogous to the lowest Landau level. A filled set
of such zero modes contributes a Hall conductivity of σ cf

xy =
1

4π
sgn[b0]. Moreover, all positive energy states are localized.

Thus we find that b0 = 0 is a critical point between the
following integer quantum Hall states:

σ cf
xy =

{
− 1

4π
, b0 < 0, μ > 0

1
4π

, b0 > 0, μ < 0
. (B8)

Again, we find that IQHIT displays self-duality as one goes
from a theory of electrons to that of composite fermions with
a change of sign of the Hall conductivity. In certain sense, this
self-duality is more robust in Son’s theory since it contains
an explicit particle-hole symmetry transformation. While, the
HLR theory appears to require a long range disorder [Eq. (8)].

Lastly, the nonlinear sigma model for Dirac composite
fermions is identical to that of g = 2 theory [Eq. (18)]. We
have already derived it in Appendix A.
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