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We study precursor states of fractional topological insulators (FTIs) in interacting fermionic ladders with spin-
orbit coupling. Within a microscopically motivated bosonization approach, we investigate different competing
phases depending on same-spin and interspin interactions at fractional effective filling ν = 1/3 per spin. In the
spin-decoupled limit, we find that strong repulsive interactions of already moderate range may lead to a partially
gapped state with two time-reversed copies of a quasi-one-dimensional Laughlin phase. This FTI precursor
competes with an interleg partially gapped phase displaying quasi-long-range density wave order, however, it
may be stabilized if interactions are SU(2) symmetric, or have suitable anisotropy, in leg space. When the FTI
phase is present, it is moderately robust to small interspin interactions; these introduce competing partially
gapped phases of orbital antiferromagnetic and bond density wave character. Performing a strong-coupling
analysis of the FTI precursor regime, we find that the main effect of interspin interactions is to induce correlated
quasiparticle backscattering between the precursor FTI edge modes. Although this process competes with
the topological phase, we show, by considering an array of ladders, that its influence may disappear upon
approaching the two-dimensional case. Considering time-reversal symmetry breaking perturbations, we also
describe a protocol that adiabatically pumps 1/6 charge per half-cycle, thus providing a quantized FTI signature
arising already in the single ladder regime.
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I. INTRODUCTION

Topological phases of matter are characterized by topolog-
ical invariants rather than conventional local order parameters.
Their discovery has widely extended the landscape of possible
states of matter, beyond the standard classification based on
symmetry breaking [1–3]. Nonetheless, symmetry can play
a crucial role in the description of topological systems, as
highlighted by the discovery of topological insulators whose
defining topological invariants exist only in the presence of
time-reversal (TR) symmetry [4–7]. The recognition of this
interplay between symmetry and topology has led to a com-
plete symmetry-based classification of topological phases in
noninteracting fermion systems [8–12], providing a guideline
for the search of new materials.

The presence of interparticle interactions greatly modifies
the landscape of possible phases. In particular, interactions
can give rise to fractionalized excitations [13,14], potentially
useful for fault tolerant topological quantum computation
[15]. Arguably the most prominent example that shows this
fractionalization is the fractional quantum Hall (FQH) state
[16,17]. This two-dimensional state supports anyonic quasi-
particles in the bulk, i.e. quasiparticles with exchange statis-
tics different from bosons or fermions [18–20]. FQH states
are also characterized by one-dimensional (1D) fractionalized
states at their edge [21], which in the simplest case take the
form of one-way chiral Luttinger liquids [22]. These modes
are robust against disorder as long as they cannot backscatter
between different edges [23]. This interedge backscattering is
usually prevented by the width of the sample, as the bulk of
the system forms a gapped incompressible quantum state.

Given this picture, it is interesting that precursors of FQH
states already emerge in quasi-1D systems such as two-leg
ladders, which are the minimal departure from the strict 1D
limit [24–28]. In addition to being of interest on their own
right, such ladder-based precursors may also be viewed as ele-
mentary building blocks of two-dimensional (2D) lattice FQH
systems formed from an array of ladders, in a spirit similar to
the coupled wire approach put forward in Refs. [29,30].

While the existence of robust FQH states is well estab-
lished both theoretically and experimentally, much less is
known about the strongly correlated fractional analogs of
TR invariant topological insulators, i.e., fractional topological
insulators (FTIs). The simplest picture for such an FTI state is
that of two copies of FQH states, one for each spin direction,
with opposite magnetic field for opposite spins. This gives a
TR-symmetric state because TR flips both the magnetic field
and spin. The direction in which the edge modes propagate is
set by the magnetic field. An FTI therefore supports “helical”
edge modes: a counterpropagating pair of opposite-spin edge
modes. The spin-dependent magnetic field in this picture is a
particular case of spin-orbit (SO) coupling. The possibility of
generating FTI states beyond this simple picture (e.g., with the
two copies being coupled by more general SO couplings and
interspin interactions) are among the key questions we shall
address.

Several approaches exist to uncover the edge and bulk
characteristics of FTIs. The stability analysis of the edge
modes starting from the picture above has been given in
Refs. [31–34]. Results on the bulk stability of different sys-
tems that may develop FTI states are so far based on numerical
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exact diagonalization [32,35–40], being thus limited to small
system sizes.

In this paper, we develop a complementary approach to
FTIs: motivated by the existence of FQH precursors in ladder
systems, we investigate under what conditions FTI precursors
may emerge in two-leg spinful fermion ladders, and what
signatures such precursors may have in experiments. We also
examine the phases that compete with the FTI precursor state,
characterize their properties, and identify the regions in the
phase diagram where the FTI precursor dominates.

The quasi-1D nature of our approach allows us to make
progress in connecting phenomenological and microscopic
considerations without being restricted to small system sizes.
The price paid for this advantage is the challenge of ex-
trapolating our results reliably towards the genuinely 2D
scenario. Nevertheless, in an approach similar to that of
Refs. [29,30,41–44], we are able to extend the discussion to
two spatial dimensions by coupling a series of ladders and
thus comment on possible FTI physics arising in a 2D lattice.

The spinful ladder physics we describe may be particularly
relevant to ultracold-atom-based realizations. In addition to
the great degree of control over interactions these systems
provide, they also offer a number of ingredients needed for
prospective FTI states, such as SO fluxes via artificial gauge
fields [45–63] and topological band structures [50,64–82].
Our results may also be useful for solid state considerations,
in particular, if one takes the view advocated above, that the
ladders serve as elementary building blocks towards 2D FTI
states.

In this work, we focus on the possible emergence of
(precursors of) FTI states that form the TR invariant analog
of the simplest, most robust, FQH state: the Laughlin state
Although such a Laughlin FTI is just the simplest possibility,
understanding the conditions for its emergence depending
on same-spin and interspin interactions will already provide
a useful guide on how fermionic FTIs may be created. In
addition, studying this possibility illustrates how quasi-one-
dimensional ladder systems may be utilized as a playground
for studying 2D topological states protected by symmetries.
A key parameter in FQH as well as FTI systems is the filling
fraction ν: the ratio of the number of fermions per plaquette
nplaq (per spin) and the flux � per plaquette of the effective
magnetic field. In terms of these, ν = 2πnplaq/�, where � is
measured in units of h/e. (In what follows, we use h̄ = e = 1.)
The Laughlin state corresponds to ν = 1/3.

Before we would turn to the detailed problem setup and
analysis, we first provide a road-map of our approach and
findings. We start with a two-leg fermion ladder with nearest
and next-nearest-neighbor interactions, in the presence of
the simplest (opposite flux for opposite spin) SO coupling
compatible with an FTI phase. (For a review on imprinting
such synthetic gauge fields for ultracold atoms in quasi-1D
geometries, see e.g., Ref. [48].)

Our first step is to develop a low-energy field theory
of our microscopic lattice model, including an explicit link
between microscopic interaction parameters and field theory
couplings. The correspondence thus established will be ac-
curate for weak interactions. However, the field theory itself
is valid even for strong interactions; here our correspondence
gives a qualitative picture for the interpretation of the now

phenomenological field theory couplings in terms of micro-
scopics, a picture we support by strong interaction analysis
and comparision to numerical results near a high-symmetry
line. The FTI precursor will be found in this strongly inter-
acting regime, including the proximity of the high-symmetry
line; it develops due to interleg fermion tunneling processes
dressed by density fluctuations.

To disentangle the effect of the different interaction terms,
we first focus on vanishing interspin interactions, as in the
simplest decoupled-spin FTI picture. In this regime, the sys-
tem will be shown to support fractionalized gapless modes
that we will be able to identify as the precursors of helical FTI
edge modes. We shall then investigate the role of interspin
interactions. Provided these are not too strong, the helical FTI
precursor edge modes will be shown to retain their integrity.

The FTI precursor competes with several density-
fluctuation and backscattering processes. For the regimes of
interactions where these dominate, they induce various forms
of quasi-long-range orders (QLROs) which we shall charac-
terize in detail in Sec. IV A. The phase diagrams including the
FTI and these competing phases are shown in Figs. 6 and 7.

The results highlighted thus far build on taking the density-
fluctuation-dressed tunneling term responsible for the FTI
precursor as a weak perturbation and investigating (through
a perturbative renormalization group procedure) the regimes
where this term may dominate the low-energy physics. To
assess the consistency of the thus predicted FTI precursor,
we also investigate the corresponding low-energy picture:
here the FTI term is at strong coupling, i.e., we have a fully
developed FTI precursor phase. Its consistency amounts to it
being robust to all symmetry-allowed perturbations, including
the strong-coupling remnants of the density-fluctuation and
backscattering processes mentioned above. We find this to
be the case for perturbations related to same-spin interac-
tions. The lack of separation between bulk and the edge in
our ladder system, however, leads to some limitations when
considering interspin processes: the most important of these
generates correlated backscattering of FTI quasiparticles be-
tween the (precursors of) opposite edges which can gap the
corresponding helical edge modes. This observation allows
us identify the energy window in which the FTI-precursor
physics dominates: the energy scales of interest should be
larger than the backscattering induced gap mlow but smaller
than the (precursor of) the bulk gap mFTI. We provide a
detailed discussion on this in Sec.V.

One of our most striking finding is that this phase, despite
being only a quasi-1D precursor of an FTI state, can give
rise to fractionally quantized signatures typically expected
only in the 2D regime. The signature we predict is based on
the response of the FTI precursor to explicit TR symmetry
breaking, in spirit similar to the idea in Ref. [83] for 2D sys-
tems. The protocol we describe involves gapping TR partner
precursor edge states by a suitable TR-breaking perturbation
effectively implementing a Zeeman field. (The characteristic
energy scale mTR of this is taken to be mlow < mTR < mFTI.)
This effectively renders the system into an FQH state on
a cylinder (Fig. 1). Then, a suitable local rotation of the
Zeeman field has the same effect as piercing flux through
the cylinder. According to Laughlin’s argument [84], this
flux insertion pumps charge along the system. We find that
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FIG. 1. (Left) The bulk of the system (represented in light-blue)
and the helical edge modes (blue arrows) in the FTI precursor
phase. Adding TR breaking processes (black lines) that connect TR
partners, it is possible to gap the edge modes. In this case, the system
is similar to a FQH state on a cylinder. (Right) A suitable rotation of
the TR breaking term along one edge effectively pierces flux through
the cylinder (in the direction of the black arrow); this pumps charge
along the system. A protocol that rotates from a starting configuration
to its TR conjugate pumps one sixth of a particle.

the rotation of the Zeeman term between two TR-conjugate
values pumps one-sixth of a particle (or of the electron charge
in an electronic system), providing a fractionally quantized
signature of the precursor state. We emphasize that this TR-
conjugate protocol corresponds one-half of a conventional
(i.e., with identical initial and final Hamiltonian) adiabatic
pumping cycle; this differentiates the signature we find from
fractional charge pumping over a full cycle in other systems,
including those without (precursor) topological order [85].

Our findings indicate that a spinful fermionic ladder with
SO coupling represents the minimal setup where the physics
of the strongly interacting FTI phase appears. Nevertheless,
due to the quasi-1D nature of this system, we find that it
displays some characteristics which are not expected in a truly
2D system. These characteristics appear due to the absence of
a separation of length scales between the edge and the bulk.
This is underscored by the existence of QLRO in the FTI
phase of bond-density wave type, together with the presence
of local perturbations that induce quasiparticle backscattering
between the edges. In contrast, a 2D FTI phase does not have
QLRO, and quasiparticle backscattering between its edges is
suppressed by the presence of the bulk. The FTI precursors
in our ladder systems however can be viewed as the basic
building blocks from which to construct such genuinely 2D
phases. To illustrate this, we investigate the transition between
the quasi-1D ladder and a 2D system by coupling many
ladders side by side. In this way, we show that the processes
that compete with the development of true topological order
are exponentially suppressed in the number of ladders (i.e.,
separation between the edges), suggestive of the FTI phase
being stabilized in the 2D limit.

Our results on FTI precursors, their quantized signatures,
and their relation to 2D lattice systems exemplify a potentially
much broader paradigm in which to investigate the interplay
of topological phases and symmetries. We expect our ap-
proach centered on ladder-based precursors to generalize to a
variety of novel 2D topological phases where symmetry plays
an important role.

The paper is organized as follows. We start by introducing
the microscopic model and its symmetries in Sec. II, followed
by the formulation of its low-energy description in Sec. III.
In Sec. IV, we discuss the phase diagram of the model
starting from microscopics in the weak interaction regime
and expanding to stronger interactions using bosonization
phenomenology. In Sec. V, we characterize the FTI precursor
from a strong-coupling perspective. To simplify our discus-
sion, we mostly assume the presence of an additional in-
version symmetry. Departures from this inversion symmetric
point are considered in Sec. VI. In Sec. VII, we discuss TR
symmetry breaking perturbations, and propose a protocol that
pumps a fractionally quantized charge per half-cycle in the
FTI precursor phase. A discussion of extending our findings
towards 2D systems is given in Sec. VIII. In the last section,
we present our conclusions.

II. THE SO LADDER

We consider a TR symmetric ladder consisting of two
one-dimensional legs (legs labeled by β = {I, II} = {0, 1})
of spinful fermions with spin components σ = {↑,↓} =
{+1,−1}. We assume that each leg contains Nleg particles per
spin and has length L; there is a distance d between the legs
and lattice spacing a in the direction of the legs. Furthermore,
we consider that the fermions are subject to SO coupling that
generates flux ±� per plaquette for opposite spins, and thus
�leg = L

a
�
2π flux quanta per leg and spin. The filling fraction

ν (per spin) is given by the ratio of particle number to flux
quanta, ν = Nleg/�leg = 2π Nlega

�L . Consequently the density of

fermions per leg per spin is Nleg

L = ν�
2πa . In what follows, we

will be focusing on ν = 1
3 .

The single-particle Hamiltonian for the system is

H0 = H‖
0 + H⊥

0 + H⊥
so , (1)

with (using Ī = II and ĪI = I)

H‖
0 = − t

2

∑
j,σ,β

[
eiσ�(β− 1

2 )(cβj,σ )†
cβj+1,σ + H.c.

]
, (2)

H⊥
0 = −t⊥

∑
j,σ,β

(
cβj,σ

)†
cβ̄j,σ , (3)

H⊥
so = αso

∑
j,σ,σ ′

[
(iσ2)σσ ′

(
cI

j,σ

)†
cII

j,σ ′ + H.c
]
. (4)

Here, cβj,σ (cβ†
j,σ ) destroys (creates) fermions of spin σ at site j

and leg β. The tunneling amplitudes in the longitudinal (along
the 1D legs) and perpendicular (across the legs) directions
are t and t⊥ respectively. The Hamiltonian H‖

0 + H⊥
0 is thus

the fermion ladder with SO flux. These terms conserve the
spin component along the quantization axis. With H⊥

so we
also include a SO coupling term (of strength αso) that does
not conserve this spin component, i.e., [H⊥

so, Sz] �= 0. (The
matrix σ2 is the second Pauli matrix.) The single-particle
Hamiltonian H0 can be readily diagonalized in momentum
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FIG. 2. Single-particle spectrum for t⊥/t = 0.1, αso/t = 0.1, and
�/(2π ) = 1/4 as a function of momentum k̃.

space. The single-particle spectrum is

Er
±(k̃) = −t cos(k̃) cos

�

2

±
√(

t sin(k̃) sin
�

2
+ rαso

)2

+ t2
⊥, (5)

where r = (+,−), k̃ = ka and k is the momentum along the
ladder. The single-particle spectrum is shown in Fig. 2.

A. Symmetries

In the single-particle Hamiltonian (1), the SO induced
flux � is introduced via a (spin-dependent) vector potential
aligned parallel to the legs of the system. This choice is con-
venient because allows us to diagonalize the noninteracting
Hamiltonian easily. The physics of the system is invariant un-
der changing� by a flux quantum: upon the combined change
� → 2π and the gauge transformation cβj,σ → (−1) jcβj,σ the
single-particle Hamiltonian is unchanged. This gauge trans-
formation also leaves invariant the electron densities and
hence the interactions we will consider in Eq. (8) below. Given
this symmetry, together with the invariance of the physics un-
der � → −�, it is enough to consider flux values � ∈ [0, π ].
The point symmetries of the model are crucial for establishing
the various phases of the system. We consider two symmetries
in detail: TR and inversion. Starting with TR, and introducing
the vector c†

i = ((cI
i,↑)†, (cII

i,↑)†, (cI
i,↓)†, (cII

i,↓)†) and its Fourier

transform c†
k̃

= √ a
L

∑
j eik̃ jc†

j , the TR transformation T acts
on the operators as

T ck̃T −1 =

⎛
⎜⎜⎜⎝

cI
−k̃,↓

cII
−k̃,↓

−cI
−k̃,↑

−cII
−k̃,↑

⎞
⎟⎟⎟⎠ = (iσ2 ⊗ 12)c−k, (6)

with 12 the two-dimensional identity matrix and A ⊗ B the
Kronecker tensor product between A and B. In a system with
time-reversal symmetry, backscattering between Kramers
pairs is forbidden. We will also consider inversion, i.e., the

FIG. 3. (Top diagram) Tunnelling parameters and SO coupling.
The SO coupling that conserves the spin projections generates a spin
dependent magnetic field. The effective magnetic flux through the
plaquette is depicted by the (counter) clockwise arrow in the (down)
up spin sectors. (Bottom diagram) Different interaction parameters
between nearest and next to nearest neighbors used in this work.

unitary operation that changes the momentum k → −k. In the
momentum basis, inversion I acts as

Ick̃I−1 = c−k̃ . (7)

The microscopic model (1) is invariant under TR sym-
metry: keeping in mind that TR is antiunitary, one readily
verifies that T H0T −1 = H0. For vanishing αso, inversion is
also a symmetry of the system. The interactions that will be
introduced below are also assumed to keep both TR and in-
version symmetry. Although TR symmetry will be considered
as an exact symmetry throughout the discussion, inversion
symmetry is just a symmetry of the αso = 0 point, and it will
be explicitly broken after the Hamiltonian H⊥

so is considered.
As a starting point, we consider αso = 0, and analyze the
system in this limit, including interactions. The effect of αso �=
0 will be considered in Sec. VI.

B. Interactions

FTIs are strongly correlated phases not adiabatically con-
nected to a noninteracting system: their very existence hinges
on the presence of interactions. To make the emergence of FTI
phases possible in our system, we include interactions of the
form

Hint =
∑

m,i,σ,β

V s
‖,mnβi,σnβi+m,σ + V d

‖,mnβi,σnβi+m,σ̄

+
∑

m,i,σ,β

V s
⊥,mnβi,σnβ̄i+m,σ + V d

⊥,mnβi,σnβ̄i+m,σ̄ . (8)

Here, ↑̄ =↓ and ↓̄ =↑. The electron densities at lattice site
i per leg β and spin σ are nβi,σ = (cβi,σ )†cβi,σ . The letters
s and d in the interaction parameters refer to interaction
between same or distinct spins, in the same leg (‖) or between
different legs (⊥). A diagram with the different interactions
is presented in Fig. 3. Note that for generic values of the
interaction parameters V s(d )

⊥,m �= V s(d )
‖,m , so the interactions are
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not SU(2) invariant in leg space. This is the generic situation
as the SU(2) symmetry of unitary transformations between the
legs is broken already at the single-particle level by SO and
interleg tunneling.

For vanishing interspin interactions V d
‖ and V d

⊥ and for
αso = 0, the system forms two time-reversed copies of its
spinless counterpart. For a certain range of the V s

‖ and V s
⊥

same-spin interactions, the system is expected to display FTI
analogues of spinless quasi-one-dimensional Laughlin state
precursors. In this case, our study thus provides the FTI coun-
terpart of earlier work on spinless states of bosons [24,86–
92], numerics on fermions [26,93], spinful bosons [40], and
analytical approaches in strictly 1D spinful fermionic systems
with a Zeeman field [94] or systems using (leg) SU(2) in-
variant interactions [25]. We will see that, even in this spin-
decoupled case, our microscopically motivated approach will
allow us to reveal novel aspects, including the presence of a
competing interleg gapped, density-wave type, phase.

The inclusion of the interspin interaction terms V d
‖ and

V d
⊥ lets the two time-reversed copies interact, resulting in a

genuinely spinful physics. In many systems, the interaction
between different spin components V d is naturally present,
for example due to the overall density being the main channel
for interactions. The robustness of the FTI state to interspin
interactions is therefore a key question to address.

III. LOW-ENERGY DESCRIPTION

We are interested in exploring the SO ladder phase dia-
gram, and in particular to study the regime where the putative
fractional topological insulator (FTI) appears. To prepare for
this analysis, we first describe our model at low energies,
which will serve as a starting point for developing a bosoniza-
tion approach.

As mentioned above, we start with αso = 0. In this case,
TR and inversion symmetries together ensure that the bands
are twofold degenerate. We focus on small fillings, so that
the Fermi level is below the avoided crossing at k = 0, i.e.,
the chemical potential μ satisfies μ < −t cos �

2 − t⊥ (see also
Fig. 4). The single-particle Hamiltonian matrix is diagonal-
ized by the unitary transformation

U =
(

Uk

U−k

)
with Uk =

(
cosαk − sin αk

sin αk cosαk

)
, (9)

where the rotation angle αk is given by

αk =
{
α0

k if k ∈ [0, π/a]

α0
k − π

2 if k ∈ [−π/a, 0]
, (10)

and α0
k = 1

2 arctan ( −t⊥
t sin ka sin �

2
). The branches for the angle αk

in Eq. (10) are chosen such that the limit of zero tunneling is
recovered.

The fields corresponding to the diagonalizing basis are
ψk = U†ck , i.e.,

ψ+
k,σ = cosαkcI

k,σ + sin αkcII
k,σ , (11)

ψ−
k,σ = − sin αkcI

k,σ + cosαkcII
k,σ , (12)

cI
k,σ = − sin αkψ

−
k,σ + cosαkψ

+
k,σ , (13)

cII
k,σ = cosαkψ

−
k,σ + sin αkψ

+
k,σ . (14)

FIG. 4. (Top) Band structure of the SO ladder for αso = 0. (Mid-
dle) Labelling of the different low-energy fermion branches, in terms
of their spin σ = (↑,↓), their valley β = 1, 2 and their chirality
η = L,R. We have separated the spin branches for clarity. The UV
extension of the model corresponds to replacing the original spec-
trum with a linearized spectrum around the Fermi points. (Bottom)
Dispersion relation of fermions around the Fermi energy (dashed
horizontal). For small filling fraction, around the Fermi energy the
lower band has four Fermi points per spin depicted by empty blue
circles in the diagram above, together with the corresponding valleys
β. An arrow from kηF,α to kη

′
F,β represents the process ψ†

σ,β,η′ψσ,α,η.
Momentum conservation requires that interaction generated pro-
cesses are composed of arrows of zero sum. The most relevant
processes in the sense of a weak-coupling renormalization group are
correlated backscattering between each minima (blue) and Laughlin
backscattering (purple). The black arrow loops indicate forward
scattering processes.

As we will be working at small fillings, we will eventually
project to the low-energy band, corresponding to the fields
ψ−

k,σ (see also Appendix A). We will be interested in the
FTI phase at 1/3 effective filling per spin. For this filling,
four Fermi momenta kR

F,β , kL
F,β exist. As a consequence of TR

symmetry they satisfy kL
F,1 = −kR

F,2 and kR
F,1 = −kL

F,2 (see also
Fig. 4). For

t⊥
t

�
∣∣∣∣sin

(
�

2

)
sin

(
�

6

)∣∣∣∣, (15)

the Fermi points are given by kL
F,1 = −kR

F,2 = �/(3a) and
kR

F,1 = −kL
F,2 = 2�/(3a).

A. Low-energy fermion branches in presence of tunnelling

The presence of fermion tunneling between the legs opens
a gap at k = 0 and π/a. This tunneling also mixes the leg
states into the combinations ψ+

k,σ and ψ−
k,σ . After projection,
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the lower band state ψ−
k,σ is the only remaining degree of

freedom.
In addition to the band projection, in our low-energy

description, we will be focusing on the physics in a small
energy window near the Fermi energy. Taking this window
such that the corresponding window of momenta is much
smaller than the scale on which α0

k changes allows us to bring
the rotation matrix U of Eq. (9) out of the Fourier transform,
which simplifies going to the real space representation. We
find, taking into account the contribution of the fields ψ−

k,σ

just near the Fermi points, that the original operators cβi,σ can
be expressed as(

cI
i,↑

cII
i,↑

)
=
∑
η

(
cosαη2 − sin αη1
sin αη2 cosαη1

)(
ψi,↑,2,η
ψi,↑,1,η

)
, (16)

(
cI

i,↓
cII

i,↓

)
=
∑
η

(
cosαη1 − sin αη2
sin αη1 cosαη2

)(
ψi,↓,1,η
ψi,↓,2,η

)
, (17)

with the angle αηβ ≡ α0
kηF,β

. Here, η = (L,R) = (−,+) denotes

the left and right branches around kF while β = 1 and 2 the
valley around which the different branches appear (see also
Fig. 4). Note that for weak interleg tunneling there is an ap-
proximate correspondence between the valley and leg indices;
this is however the opposite for opposite spins due to these
experiencing the opposite �. Note also that as far as matrix
elements between states involving excitations near the Fermi
points are concerned, we may promote ψσ,β,η to describing
separate branches of excitations, e.g., with linear dispersions
tangent to the low-energy band at the Fermi points, as will be
convenient for our subsequent bosonization [95,96].

In terms of the branch decomposition (16), the fermion
densities become

nI
i,σ =

∑
ββ ′,ηη′

uησβuη
′
σβ ′ψ

†
i,σ,β,ηψi,σ,β ′,η′ , (18)

nII
i,σ =

∑
ββ ′,ηη′

v
η

σβv
η′
σβ ′ψ

†
i,σ,β,ηψi,σ,β ′,η′ , (19)

where the tensors u, v are(
uη↑2

uη↑1

)
≡
(

cosαη2
− sin αη1

)
,

(
v
η

↑2

v
η

↑1

)
≡
(

sin αη2
cosαη1

)
,

(
uη↓1

uη↓2

)
≡
(

cosαη1
− sin αη2

)
,

(
v
η

↓1

v
η

↓2

)
≡
(

sin αη1
cosαη2

)
. (20)

Focusing on a small energy window around the Fermi
points, also allows us to describe such branches using a
continuum formulation of the lattice operators. We use the
replacements (with x = ja)∑

j

→ 1

a

∫
dx,

ψ j,σ,α,η√
a

→ ψσ,α,η(x). (21)

B. Low-energy Hamiltonian

In terms of the low-energy continuum description, the
kinetic energy of the fermions is given by

H0 = i
∑
σ,α,η

∫
dxηvFψ

†
σ,α,η

(
∂x − ikηF,α

)
ψσ,α,η, (22)

where the Fermi velocity vF = ta| sin(�/6)| is assumed to
be the same around all the Fermi points, which is valid for
(t⊥/t ) � 1. We use this assumption for convenience (e.g.,
near t⊥ = 0 connections to standard Luttinger parameters of
bosonization will become available), but it is not crucial as
long as the interleg tunneling satisfies t⊥/t < sin2(�/2)

cos(�/2) . For
larger values of t⊥, the states around zero lattice momentum
become minimum in energy, invalidating the analysis as two
Fermi points disappear.

Next we turn to describing the low-energy form of the
interactions. Our explicit mapping between the microscopic
interactions Eq. (8) and our low-energy model will be in
terms of second order perturbation theory in the interaction
strength to bandwidth ratio. This implies that this mapping
is accurate only where the microscopic interactions are much
smaller than the bandwidth. The physics beyond this regime
will be accessible to us via phenomenological (but symmetry
restricted) parameters of bosonization (see Sec. III D). Away
from weak interactions, we will relate these parameters to
microscopics for weak t⊥, using a combination of symmetry
based considerations, comparisons to numerics [97–102], and
studying the interaction dominated limit (Appendix G).

First order perturbation theory involves matrix elements
of the microscopic interactions between low-energy states.
These matrix elements are well captured using the branch
decomposition Eq. (16). The interaction Hamiltonian (8) in
the continuum limit becomes

Hint =
∫

dxdr
∑

all labels

Aηη
′η̃η̃′,σσ ′

ββ ′γ γ ′ (r)ψ†
σ,β,η(x)ψσ,β ′,η′ (x)

×ψ
†
σ ′,γ ,η̃(x + r)ψσ ′,γ ′,η̃′ (x + r), (23)

where the coefficients are

Aηη
′η̃η̃′,σσ ′

ββ ′γ γ ′ = V σσ ′
‖

(
uησβuη

′
σβ ′u

η̃

σ ′γ uη̃
′
σ ′γ ′ + v

η

σβv
η′
σβ ′v

η̃

σ ′γ v
η̃′
σ ′γ ′

)
+V σσ ′

⊥
(
uησβuη

′
σβ ′v

η̃

σ ′γ v
η̃′
σ ′γ ′ + v

η

σβv
η′
σβ ′u

η̃

σ ′γ uη̃
′
σ ′γ ′

)
,

(24)

with the couplings V ↑↑ = V ↓↓ = V s and V ↑↓ = V ↓↑ = V d

being those of the microscopic interactions Eq. (8). In terms
of Eq. (8), for the purposes of explicit expressions, we will
consider same-spin interactions up to next-nearest-neighbor
range [V s

‖,m>1 = V s
⊥,m>1 = 0] and interspin interactions to be

on-site and on-rung [V d
‖,m �=0 = V d

⊥,m �=0 = 0]. We use the nota-
tion V s

‖,1 ≡ V s
‖ and V d

‖(⊥),0 = V d
‖(⊥). We will mostly focus on

the following concrete case for same spin interactions: V s
⊥,0 =

V s
⊥,1 ≡ V s

⊥ providing access to a tunable breaking of the SU(2)
invariance of same spin interactions in leg space. Gener-
ally, such moderate range interactions result in effectively
local interactions in the continuum limit with the couplings
in Eq. (24) essentially being replaced by a delta functions
V (r) → Ṽ (r) = (aV )δ(r) with strengths set by the Fourier
components of V (r) at zero momentum and the various Fermi
momenta differences. The results of this continuum procedure
for the concrete interactions described above, and expressed in
terms of the subsequent bosonization parameters, are given in
Appendix D.

In second-order perturbation theory, we find corrections
to all the previously discussed terms. These corrections have
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their origin in the transitions to intermediate virtual states
outside of the low-energy window. Apart from modifying
the interaction coefficients Aηη

′η̃η̃′,σσ ′
ββ ′γ γ ′ by second-order terms

three-particle (and higher) processes are generated in the low-
energy Hamiltonian. Of these Hproj = ∫

dxgFTIBσFTI + H.c,
with

BσFTI = ψ
†
σ,1,Rψσ,2,Lψ

†
σ,2,Rψσ,2,Lψ

†
σ,1,Rψσ,1,L, (25)

will be seen to be responsible for the FTI (precursor) physics,
see also Appendix A. This term corresponds to tunneling of
fermions between the legs of the ladder, dressed by modu-
lations of the density in each leg. Under a change of basis,
this term becomes a normal tunneling process of dressed
fermions. The condensation of these dressed fermions, for
each spin projection, leaves behind fractionalized edge modes
and a gapped bulk. The natural quasiparticles in this system
satisfy anyonic statistics, signaling that the system develops
FTI order. This transition is explored in detail in Sec.V. The
second-order terms (25) involve an energy denominator of the
order of the bandwidth vF/a, hence generically they come
with a coefficient of order aV 2/vF , which in turn translates
to couplings of order a3V 2/vF in the local, long-wavelength
formulation. In particular, the coupling constant of the FTI
operator BσFTI is given by

gFTI = a

vF

[
c1aV s

‖ + c2aV s
⊥,0 + c3aV s

⊥,1
]2
. (26)

Here, ci are flux dependent parameters of order one (see
Appendix B for more details). Furthermore, for weak interleg
tunneling t⊥ � t , we have gFTI ∝ t⊥.

C. Bosonization

We now turn to expressing the fields in terms of bosoniza-
tion. In a long-wavelength description near the Fermi energy,
we have eight fields (labelled by spin σ = (↑,↓), valley α =
(1, 2), and chirality η = (L,R) = (−,+)). In bosonization,
these are given by [103]

ψσ,α,η(x) = κησ,α√
2πa

eiη
√

4πφσ,α,η (x)eikηF,αx, (27)

where κησ,α is a Klein factor ensuring the anticommutation
of different fermions (see Appendix C). The commutation
relations of the bosonic fields are

[φσ,α,η(x), φσ̃ ,β,η̃(x′)] = i

4
(σ3)ηη̃δσ σ̃ δαβsgn(x − x′), (28)

with σ3 the diagonal Pauli matrix. In our notation, the
bosonized form of the small wavevector component of
the particle (“charge”) density operator reads ρσ,α,η(x) =
− 1√

π
∂xφσ,α,η.

Note that in contrast to existing descriptions of Laughlin
ladders [24,25,27], we do not include higher harmonics in
the bosonization formula (27). Instead, as mentioned above,
we assume that focusing on the physics sufficiently close
to the Fermi momenta, one may replace the dispersion with
unbounded branches extending the low-energy window, in
which case Eq. (27) becomes exact [95,96]. The contributions
that would be generated phenomenologically by harmonics
are obtained using perturbation theory; this approach helps us

keeping the microscopic origin of various terms transparent,
and highlight, even beyond the weak interaction limit, the
presence of interrelations between various bosonization pa-
rameters.

The kinetic energy (22) in terms of our low-energy bosonic
description is given by

H0 =
∑
σ,α

∫
dxvF [(∂xφσ,α,R)2 + (∂xφσ,α,L )2]. (29)

Introducing the vector of bosonic fields φ = (φ↑,φ↓),
where

φT
σ = (φσ,1,L, φσ,1,R, φσ,2,L, φσ,2,R), (30)

we find that TR symmetry in this basis acts as

T φT −1 = −[σ1 ⊗ σ1 ⊗ σ1]φ + t, (31)

with σ1 the first Pauli matrix and t the constant vector tT =
(0, 0, 0, 0, π, π, π, π ). Note that as TR flips momentum, it
acts nontrivially on the valley index.

Inversion symmetry, on the other hand, acts as

IφI−1 = −[12 ⊗ σ1 ⊗ σ1]φ. (32)

D. Forward scattering terms and Luttinger parameters

The different processes induced by the interactions become
either quadratic terms in the bosonic representation, or cosine
nonlinear operators in the boson fields. The quadratic bosonic
Hamiltonian, together with the quadratic terms from the ki-
netic energy, are encoded in the forward scattering matrix M.
This matrix determines the Luttinger parameters of the system
[96,103,104] and the fate of the nonlinear operators under
scale renormalization. We will be comparing the relevance of
the different operators under the renormalization group (RG)
to determine the different phases of the system.

The quadratic sector of the Hamiltonian is

Hfwd =
∫

dx∂xφ
TM∂xφ, (33)

with the symmetric M = 12 ⊗ (vF14 + 1
4πV ) + σ1 ⊗ 1

4πW .

The 4 × 4 symmetric matrices V ,W have the form

V =

⎛
⎜⎝

f22 f12 g12 g22

f12 f11 g11 g12

g12 g11 f11 f12

g22 g12 f12 f22

⎞
⎟⎠,

W =

⎛
⎜⎜⎝

h22 h12 h̃12 h̃22

h12 h11 h̃11 h̃12

h̃12 h̃11 h11 h12

h̃22 h̃12 h12 h22

⎞
⎟⎟⎠. (34)

The forward interaction matrices V ,W have the the most
general structure allowed by time-reversal and inversion sym-
metry. Note that a 4 × 4 real symmetric matrix is specified in
general by ten parameters. The symmetries impose relations
between them, leaving just six independent parameters. By the
unitary transformation S = σ3⊗12+σ1⊗σ1√

2
, the matrices V and

W can be put in a block diagonal form, composed of two 2 ×
2 symmetric matrices. These sub-matrices are independent,
corresponding to the 6 different parameters. The relationship
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between the microscopic parameters and fmn, gmn, hmn, h̃mn

for weak interactions is given in Appendix D.
We will also make use of a number of simplifications that

arise for t⊥ � t . As established explicitly in Appendix D for
weak interactions, the first small t⊥ correction to the for-
ward scattering parameters is of order (t⊥/t )2. This, however,
should be a generic feature valid also for strong interactions,
because forward scattering conserves the number of particles
in a given leg while O(t⊥) processes involve a single interleg
tunneling event. Working to linear order in t⊥ (where the FTI
term is already operative), the forward scattering part can thus
be taken at t⊥ = 0. In this case, the theory has an additional
reflection symmetry in each leg separately, which ensures
that f11 = f22 ≡ f , g11 = g22 ≡ g, h11 = h22 ≡ h, and h̃11 =
h̃22 ≡ h̃. This allows one to discuss the physics, including the
qualitative behavior away from weak interactions, in terms of
simple Luttinger parameters summarized in Appendix D and
Eqs. (82) and (83), below. In particular, for h = h̃ = 0, we
recover the familiar charge Luttinger parameter Kρ and the
leg analog, Kβ , of the spin Luttinger parameter, given by

Kρ =
√√√√vF + f −g− f12+g12

4π

vF + f +g+ f12+g12

4π

, Kβ =
√√√√vF + f +g− f12−g12

4π

vF + f −g+ f12−g12

4π

.

(35)

Note that the quadratic Hamiltonian defines a quadratic
action, which is invariant under scale transformations, i.e., an
action that does not change if we change (x, t ) to (x′, t ′) =
λ(x, t ). Under a scale transformation this is a fixed point. In
the next section, we will see how the inclusion of nonquadratic
terms changes this picture.

E. Interaction operators and scaling dimensions

The presence of interactions also generates cosine terms in
the bosonic description. The only terms that may affect the
low-energy description are the ones allowed by momentum
conservation. The momentum nonconserving terms acquire
an oscillation with wavelength 1/kF , which averages out the
operators at large distances. The remaining terms appear in
the Hamiltonian as

Hint =
∑

i

∫
dxḡiOi(x), (36)

where the operators Oi correspond either to same-spin interac-
tions or opposite spin interactions. The strength of interactions
is ḡi. The different Oi terms are generally combinations of
exponentials in the bosonic fields. The Klein factors that
appear from bosonization are not dynamical and can be dealt
appropriately, as shown in Appendix C. These exponential
terms, viewed as perturbations to the Gaussian Hamiltonian
(33), induce an RG flow of the parameters after integrating out
short distance degrees of freedom, as the system is not scale
invariant anymore. As we are interested in a low-energy long-
wavelength theory, we will analyze how the system changes
as we approach the physics of longer and longer lengthscales.
To first order in the couplings ḡi, the RG flow can be deter-
mined by the behavior of the action under a scale transforma-
tion (x, t ) → (x′, t ′) = λ(x, t ), (λ is usually parameterized as

λ = e�) [105,106]. The action transforms as

S = Squad −
∑

i

∫
dtdxḡiλ

2−�iOi, (37)

where we have characterized the change of the operators
Oi by their scaling dimensions �i. In particular, using the
parametrization λ = e�, we find that the coupling constants
ḡi satisfy the RG equation

dḡi

d�
= (2 −�i )ḡi. (38)

We see that if �i < 2, the coupling constant of the operator
Oi grows larger under scale transformation, which renders
it relevant to the physics at low energies, large wavelengths.
Operators of this type are dubbed relevant in the RG sense. On
the other hand, operators whose scaling dimension is larger
than 2, are dubbed irrelevant in RG sense. For a given operator
Oi the value of the scaling dimension�i is set by the quadratic
term Squad. To first order in ḡi, this term does not change
under the RG transformation, and hence neither do the scaling
dimensions [103–105].

Such first-order RG equations are sufficient where ḡi are
sufficiently weak and �i is sufficiently away from 2. It may,
however, happen that these two conditions are not indepen-
dent, e.g., for weak interactions if ḡi, similarly to the forward
scattering parameters, is first order in interactions and cannot
be suppressed, e.g., by small t⊥. In this case, the RG has to be
taken at second order,

dḡi

d�
= (2 −�i )ḡi −

∑
jk

Ci jk ḡ j ḡk, (39)

where gi now include not only exponentials but also correc-
tions to the forward scattering terms, which thus also flow.
The coefficient matrix Ci jk is set by the behavior of products
of operators under a short distance expansion, i.e., the operator
product expansion.

We now focus on the scaling dimensions of the different Oi

operators, which are determined by the quadratic part of the
action

Squad =
∫

dtdx(∂tφ
TK∂xφ − ∂xφ

TM∂xφ), (40)

where the symmetric matrix K encodes the commutation
relations of the fields [107]. In the basis of chiral fields (30), it
corresponds to K = −1N ⊗ σ3 for N right and N left movers,
with 1N the N × N identity matrix and σ3 is a left-right mover
grading. Given the action (40), the operator Oη = eiηT φ has
scaling dimension �η = ηT�η, where � is the matrix [107]

� = 1

8π
M− 1

2
∣∣M 1

2 K−1M 1
2
∣∣M− 1

2 , (41)

with |B| ≡
√

B†B the absolute value of the matrix B (see
Appendix F for a derivation of this result). Parameterizing the
forward scattering matrix as M = vF1 + 1

4π V , we can expand
the scaling dimension matrix to first order in V/vF . We obtain
for N legs

� = 1

8π

(
12N + 1

8πvF
[K,V]K

)
+ O(V2). (42)
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Below we summarize the four-fermion and six-fermion pro-
cesses arising in our problem and calculate their scaling
dimensions. (Though eight-fermion processes also arise from
second-order perturbation theory, we do not detail these as
they are expected to be less relevant under RG than four- and
six-fermion terms.) While explicit links between these and
microscopics we can obtain only for weak interactions, the
expressions we provide for the scaling dimensions will be in
terms of the general forward scattering parameters f , g, h, h̃
and in terms of Eq. (41), thus being valid beyond the weakly
interacting regime.

1. Four-fermion processes

It is useful to define the slow modes around the Fermi
points as Rσα = ei

√
4πφσ,α,R and Lσ,α = e−i

√
4πφσ,α,L . To first

order in the interaction couplings, the interaction terms pro-
portional to V s

‖,⊥ between alike spins result in one cosine
term,

Os
1σ = (R†

σ,1Lσ,1L†
σ,2Rσ,2 + H.c.). (43)

Including also the corrections to the same process from
second-order perturbation theory, Os

1σ has coupling constant

with ḡs
1σ = a

cs
1V s

‖ +cs
2V s

⊥,0+cs
3V s

⊥,1
(2πa)2 + O(V 2). The coefficients cs

i are
functions of the flux and of order one (see also Appendix B for
a detailed discussion of this prefactor).

The interaction terms that appear in the case of nonvanish-
ing interactions between different spin components are

Od
1 = O1,↑↓ = (R†

↑1L↑1L†
↓1R↓1 + H.c.), (44)

Od
2 = O2,↑↓ = (R†

↑1L↑1L†
↓2R↓2 + H.c.), (45)

Od
3 = O5,↑↓ = (L†

↑2L↑1L†
↓1L↓2 + H.c.), (46)

Od
4 = O6,↑↓ = (L†

↑2L↑1R†
↓1R↓2 + H.c.), (47)

Od
5 = O9,↑↓ = (R†

↑2L↑1L†
↓1R↓2 + H.c.), (48)

Od
6 = O10,↑↓ = (L†

↑2R↑1R†
↓1L↓2 + H.c.), (49)

and

O3,↑↓ = (L†
↓1R↓1R†

↑2L↑2 + H.c.), (50)

O4,↑↓ = (R†
↑2L↑2L†

↓2R↓2 + H.c.), (51)

O7,↑↓ = (R†
↑2R↑1L†

↓1L↓2 + H.c.), (52)

O8,↑↓ = (R†
↑2R↑1R†

↓1R↓2 + H.c.). (53)

The coefficients of these interactions are

ḡ↑↓
i = a

cd
1,iV

d
‖ + cd

2,iV
d
⊥

(2πa)2
+ O(V 2), (54)

where the coefficients cd
1,i, cd

2,i are functions of the flux of
order one O(1) (see Appendix B for more details). These pro-
cesses are illustrated in Fig. 5. Note that the processes Oi�5,↑↓
involve interleg tunneling for each spin, hence for weak t⊥ one
has ḡ↑↓

i�5 ∼ (t⊥/t )2. Under TR symmetry, the operators above
satisfy the relations OsT

1σ ≡ T Os
1σT −1 = O1,σ̄ together with

FIG. 5. Four fermion processes in the presence of interspin in-
teraction. The four Fermi points are denoted by black dots around
the Fermi energy (dashed line). Scattering processes between Fermi
points are denoted by long black arrows. Short arrows indicate the
spin of the band. The numbering of the processes is the same as in
Eqs. (44)–(53).

OT
1,↑↓ = O4,↑↓ and OT

5,↑↓ = O8,↑↓. Under inversion, OI
2,↑↓ =

O3,↑↓, OI
6,↑↓ = O7,↑↓. Given these symmetries, in the analysis

of scaling dimensions we just consider the subset of opera-
tors {Os

1σ ,Od
i } with i = 1, . . . , 6, as the remaining operators

have the same scaling dimension as the operators to which
they are related by symmetry. The scaling dimensions of
{Os

1σ ,Od
5 ,Od

6 } are

�s
1σ = 1

2

∑
r=+,−

Kr
34 + Kr

43 + sin
(
ζ r

2

)(
Kr

43 − Kr
34

)
, (55)

�d
5 = K−

12 + K−
21 + cos(ζ−

1 )(K−
12 − K−

21), (56)

�d
6 = K−

12 + K−
21 + cos(ζ−

1 )(K−
21 − K−

12). (57)

The Luttinger parameters K±
rs and angles ζ±

1,2 are defined in
Appendix D. Note that �s

1↑ = �s
1↓ ≡ �s

1 does not depend on
the spin. The scaling dimensions of {Od

i }, i = 1, . . . , 4 can be
written compactly by defining

�ab ≡ K−
12 + K−

21 + Ka
34 + Ka

43

2

+ b sin(ζ−
1 )

K−
21 − K−

12

2
+ sin

(
ζ a

2

)Ka
43 − Ka

34

2
, (58)

with a, b = +,−, such that �d
1 = �−+, �d

2 = �++, �d
3 =

�−− and �d
4 = �+−.

The scaling dimensions of the different operators satisfy
the following relations:

�s
1 = �d

1 +�d
4 − 1

2

(
�d

5 +�d
6

)
, (59)

�d
3 = �d

1 −�d
2 +�d

4 . (60)

We find that�d
3 � 2 implying that the operator Od

3 = eiηd
3 φ

(with ηd
3 = √

4π (−1, 0, 1, 0, 1, 0,−1, 0)) is never relevant in
the RG sense. This process does not contain backscattering
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terms. That �d
3 � 2 can be seen considering

�d
3 = (

ηd
3

)T
�ηd

3

= 1

4π

(
ηd

3

)TM− 1
2
∣∣M 1

2 K−1M 1
2
∣∣M− 1

2 ηd
3

� 1

4π

(
ηd

3

)T
(−K−1)ηd

3 = 2, (61)

where we have used that vT |A|v � vT Av, as a simple conse-
quence of the properties of the absolute value.

Given that �d
3 � 2 for all interactions, it follows from (59)

and (60) that

�s
1 + 1

2

(
�d

5 +�d
6

)
� 2 +�d

2 , (62)

which implies that the operators Os
1σ ,Od

5 and Od
6 cannot be all

relevant in the same region of parameters, unless Od
2 is also

relevant. An expanded discussion of the different relations
between the scaling dimensions is given in Appendix D.

2. Six fermion processes

At second-order perturbation theory in the interactions, in
addition to the correction to the forward scattering parameters
and the four fermion couplings mentioned above, two sets
of six fermion operators appear involving same or different
spin components. We discuss first the cosine terms that appear
from the interaction of alike spins. Among these, the terms

R†
σ,2Lσ,2(R†

σ,2Rσ,2)L†
σ,1Rσ,1 + H.c.,

(R†
σ,1Rσ,1)L†

σ,1Rσ,1R†
σ,2Lσ,2 + H.c.,

L†
σ,2Lσ,1R†

σ,1(Lσ,1L†
σ,1)Rσ,2 + H.c.,

(L†
σ,2Lσ,2)R†

σ,1Lσ,1R†
σ,2Lσ,2 + H.c., (63)

are all related to the first-order operator Os
1σ by the insertion

of a density operator at some of the Fermi points. The scaling
dimension of such operators is then �s

1 + 1. This means that
these type of operators are never more relevant than Os

1σ , so
we do not consider them further.

The operators (one per spin projection) that in principle can
open a gap leading to a FTI (precursor) are

Oσ
FTI = (R†

σ,1Lσ,2R†
σ,2Lσ,2R†

σ,1Lσ,1 + H.c.), (64)

which we introduced earlier in Eq. (25) in terms of the
fermionic degrees of freedom ψ . A detailed discussion of
how the relevance of this operator induces the FTI precursor
phase, with fractional edge modes and gapped bulk anyonic
quasiparticles is presented in Sec. V. The scaling dimension
of these operators is independent of the spin σ and given by

�FTI = 5

4

∑
r=+,−

Kr
12 + Kr

21 + cos
(
ζ r

1 − ε
)(

Kr
21 − Kr

12

)
,

with tan ε = 4/3. (65)

The bare coupling for Oσ
FTI is

ḡFTI = gFTI

(2πa)3
= c1(V s

‖ )2 + c2V s
‖ V s

⊥ + c3(V s
⊥)2

(2π )3vF
, (66)

with ci ∼ O(1) being functions of the flux (and ∝t⊥ if interleg
tunneling is weak). The full expression can be seen in Ap-
pendix B.

The last pair of operators of a single spin species are

Os
2 = (R†

σ,1Lσ,2R†
σ,2Lσ,2R†

σ,2Lσ,2 + H.c.), (67)

Os
3 = (L†

σ,1Rσ,1L†
σ,1Rσ,1L†

σ,2Rσ,1 + H.c.), (68)

with scaling dimension �s
2 = �s

3 = �s
1 +�FTI. As these are

both less relevant than Oσ
FTI, we do not consider them further.

Similar to the case of interactions between alike spins
considered above, some of the second-order terms containing
both species are just density insertions on top of the first-order
terms. All these terms have scaling dimension larger by one
than the corresponding first-order process to which they are
related. This implies that they are always less relevant in RG
sense than they first-order counterparts. For this reason, we do
not consider them. The processes that are not just insertions of
density operators on the lowest-order terms are

OI
11,↑↓ = (R†

↑,1L↑,1R†
↑,1L↑,2R†

↓,1L↓,1 + H.c.), (69)

OI
12,↑↓ = (R†

↑,1L↑,2R†
↑,2L↑,2R†

↓,2L↓,2 + H.c.), (70)

OI
13,↑↓ = (R†

↓,1L↓,1R†
↓,1L↓,2R†

↑,1L↑,1 + H.c.), (71)

OI
14,↑↓ = (R†

↓,1L↓,2R†
↓,2L↓,2R†

↑,2L↑,2 + H.c.), (72)

OII
15,↑↓ = (R†

↑,1L↑,1R†
↑,1L↑,2R†

↓,2L↓,2 + H.c.), (73)

OII
16,↑↓ = (R†

↑,1L↑,2R†
↑,2L↑,2R†

↓,1L↓,1 + H.c.), (74)

OII
17,↑↓ = (R†

↓,1L↓,2R†
↓,2L↓,2R†

↑,1L↑,1 + H.c.), (75)

OII
18,↑↓ = (R†

↓,1L↓,1R†
↓,1L↓,2R†

↑,2L↑,2 + H.c.). (76)

These operators are related by TR symmetry as(
OI

11,↑↓
)T = OI

14,↑↓,
(
OI

12,↑↓
)T = OI

13,↑↓,(
OII

15,↑↓
)T = OII

17,↑↓,
(
OII

16,↑↓
)T = OII

18,↑↓. (77)

Inversion symmetry, on the other hand, relates them as(
OI

11,↑↓
)I = OI

12,↑↓,
(
OI

15,↑↓
)I = OI

16,↑↓,(
OII

13,↑↓
)I = OII

14,↑↓,
(
OII

17,↑↓
)I = OII

18,↑↓. (78)

These symmetries split the operators above into two families
{I,II} in terms of scaling dimensions. The scaling dimension
of the operators in each family are

�I = �FTI +�s
1 + �d

3

2
− 1

2

(
3�d

1 +�d
6

)
, (79)

�II = �I +�d
4 −�d

3 . (80)

3. Scaling dimensions for t⊥ = 0 forward scattering

The above scaling dimensions dramatically simplify in the
case when the forward scattering parameters can be taken at
t⊥ = 0. We find

�s
1 = Kβ,− + Kβ,+, �d

1 = Kρ,− + Kβ,−,

�d
2 = Kρ,− + Kβ,+, �d

3 = Kβ,− + K−1
β,−,
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�d
4 = K−1

β,− + Kβ,+, �d
5 = �d

6 = Kρ,− + K−1
β,−,

�FTI = 9
4 (Kρ,+ + Kρ,−) + 1

4 (K−1
β,+ + K−1

β,−), (81)

where the Luttinger parameters are

Kρ,± =
√√√√1 + f −g− f12+g12±(h−h̃−h12+h̃12 )

4πvF

1 + f +g+ f12+g12±(h+h̃+h12+h̃12 )
4πvF

, (82)

Kβ,± =
√√√√1 + f +g− f12−g12±(h+h̃−h12−h̃12 )

4πvF

1 + f −g+ f12−g12±(h−h̃+h12−h̃12 )
4πvF

. (83)

IV. WEAK-COUPLING PHASE DIAGRAM

In this section, we discuss the different phases of the SO
ladder at 1/3 effective filling, as seen from a weak-coupling
perspective. We emphasize that by weak coupling we mean
small ḡi, but not necessarily that the interactions are weak
(e.g., our discussion of the FTI precursor phase will be for
strong interactions, but weak t⊥). In this approach, the phases
are determined by which operators are the most relevant in
the RG sense. For most operators, we restrict ourselves to an
analysis first order in ḡi where RG (ir)relevancy is determined
by the scaling dimensions [see Eq. (38)]. As noted at Eq. (39),
this works when ḡi is small while �i is sufficiently away from
2. For weak ḡs

1σ and a nearly leg-SU(2) invariant system, we
have �s

1 ≈ 2 which necessitates a second-order RG treatment
for Os

1σ . [We also note that for certain six-fermion terms,
given that their ḡi is already second order in interactions
when those are weak, one may worry that first-order RG may
not suffice if the (2 −�i )ḡi and ḡ j ḡk terms in Eq. (39) give
comparable contributions due to ḡ j and ḡk being first order
in interactions. However, we did not find that such scenario
would occur.]

In what follows, we will first start from weak interactions
and combine first-order RG for ḡi �= ḡs

1σ with a second-order
RG approach to Os

1σ . This will provide a starting point from
which the qualitative landscape and competition of various
phases may be discussed.

We will find that the appearance of the FTI phase requires
going beyond the weakly interacting regime. This prompts us
to complement our analysis with a Kρ,β Luttinger parameter
based formulation suited also for strong interactions (and in
this case work to linear order in t⊥ as discussed in Sec. III D).
To connect our findings in this regime to microscopics, we
will exploit strong interaction analysis (Appendix G) and
numerical results [97–102] around leg-SU(2) invariance.

We first discuss the case of vanishing interspin interactions.
In order to characterize the different phases, we will begin by
introducing order parameters, which differentiate between the
different QLRO.

A. Vanishing interspin interaction

In the context of spin-decoupled (or spinless) ladders,
the possible local fermion bilinear order parameters include
[103,104] the particle number conserving order parameters

Oμ,σ,x =
∑
β,β ′

(
c†β

x,σ (τμ)ββ ′cβ
′

x,σ

)
, (84)

and the superconducting order parameters

Sμ,σ,x =
∑
β,β ′

(
c†β

x,σ (iτμτ2)ββ ′c†β ′
x+a,σ

)+ H.c. (85)

Here, τμ, μ = 0, 1, 2, 3 is the identity matrix (μ = 0) and the
three Pauli matrices in the space of leg degrees of freedom
of the ladder. In terms of the low-energy theory, given by the
four Fermi points in the system, these order parameters have
the structure (see also Appendix E)

Oμ,σ (x) = O0
μ,σ (x) +

∑
α

(
ei�kαxOα

μ,σ (x) + H.c.
)
, (86)

where α ≡ b, b′, η, η′ in the differences �kα = kηF,b − kη
′

F,b′
and Oα

μ,σ (x) are slowly varying operators. A similar expan-
sion holds for the superconducting order parameters. (The
bosonized expressions of the order parameters are given in
Appendix E.)

The order parameter O0,σ measures the total particle den-
sity per spin and thus a nonvanishing expectation value of
Oα �=0

0,σ indicates the presence of a charge density wave for the
spin projection σ . We denote this type of order as CDW.
The order parameter O1,σ measures bond densities: in terms
of the single-particle states |I〉 and |II〉 of a given rung,
O1,σ measures the density of τ1 eigenstates |I〉 ± |II〉, i.e.,
of bonding and anti-bonding orbitals. Hence Oα �=0

1,σ is a bond
density wave (BDW) order parameter. The order parameter
O2,σ ∼ c†1

x,σ c2
x,σ − c†2

x,σ c1
x,σ measures the particle current be-

tween the ladder’s legs. The order parameter Oα �=0
2,σ , in turn,

measures a spatially alternating current pattern. Due to the
alternating orbital moments corresponding to this, it is an
orbital antiferromagnet (OAF) order parameter (other names
include staggered flux or d-density wave order parameter).
Finally O3,σ measures polarization along the τ3 eigenstates |I〉
and |II〉, hence Oα �=0

3,σ is a relative density wave (RDW) order
parameter.

The order parameter S0,σ ∼ c†1
x,σ c†2

x+a,σ − c†2
x,σ c†1

x+a,σ indi-
cates the presence of orbital singlet pairing order (i.e., singlet
in leg space, for a given value of σ ). Similarly, the order
parameters Sμ �=0,σ describe the three orbital triplet order pa-
rameters [104,108].

It is important to note that due to the incommensurability
of lattice and the particle density, umklapp terms are ab-
sent, and hence the system is not completely gapped in any
region. Instead, we start with a gapless theory with central
charge c = 4 (a single fermionic chain has c = 1, so c = 2
per spin) and, in the presence of cosine terms, end up with
either a c = 4 or a partially gapped c = 2 system. Some of
these c = 2 systems can be characterized in terms of the
Oα �=0
μ,σ or Sμ,σ order parameters, with the gap related to the

order parameter amplitude fluctuation, and the gapless sector
describing fluctuations of its phase, i.e., the Goldstone mode
for, e.g., spontaneous breaking of translation symmetry (of
the low-energy continuum theory, due to working with fillings
away from lattice commensurability). For our quasi-1D quan-
tum system, these Goldstone modes preclude the appearance
of true long-range order, and allow at most QLRO, where
certain Oα

μ,σ or Sμ,σ correlators decay as power laws. When
more than one order parameter is QLRO, the phases may be
characterized by which of these has the dominant (i.e., slowest
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decaying) correlation function. A complementary c = 2 case,
partially gapped by Oσ

FTI, will be identified with the FTI
precursor. In this case, the Oα

0,σ and Oα
3,σ correlators decay

exponentially, while the correlators Oα
1,σ and Oα

2,σ develop
QLRO. In the Luttinger liquid phase where no gap develops
(c = 4) a characterization in terms of the order parameters
Oα
μ,σ and Sμ,σ is possible, although here both the amplitude

and the phase are QLRO only.
For vanishing interspin interactions, all the operators Od

i
in the Hamiltonian have vanishing coupling constant, so we
concentrate on the competition between Os

1σ and Oσ
FTI. Using

Eq. (42), which serves to find the first-order correction in the
forward scattering parameters to the scaling dimensions for
any operator, we find the regions

0 <
2 f12 − g11 − g22

2πvF
, Os

1σ relevant, (87)

3

2
<

g22 + 4( f12 + g11)

8πvF
, Oσ

FTI relevant, (88)

where relevancy is understood in terms of first-order RG.
While the relation for Os

1σ is consistent with the V � vF

regime of scaling dimension linearization, the relation for
Oσ

FTI is not, which indicates that system requires strong in-
teractions for Oσ

FTI to govern the physics.
The different phases that arise are shown in Fig. 6. In the

microscopics for the weakly interacting regime (top panel),
we use V s

‖,1 ≡ V s
‖ and V s

⊥,0 = V s
⊥,1 ≡ V s

⊥ as interaction vari-
ables. The diagram has been calculated for t⊥/t = 0.1, � =
π/3, using a second-order RG procedure, discarding O(t4

⊥)
and/or O[(V s

‖,⊥)3] terms as well as RG irrelevant terms with
�i well away from 2. The details of the calculations are given
in Appendix H. Depending on the character of the interactions
we encounter three possible phases.

1. Os
1σ partial gap and Luttinger liquid phases

In the weakly interacting regime, the physics is governed
by the Os

1σ term. The phases that arise are a c = 4 Luttinger
liquid phase (two Luttinger liquids per spin) and a c = 2 phase
characterized by a Os

1σ partial gap (the leg analog of the fa-
miliar spin gap of spinful one-dimensional fermion systems),
with the phase boundary between them being a function of the
flux and the interleg tunneling. The Luttinger liquid phase ex-
ists for repulsive or moderately attractive interleg interactions,
and for attractive to moderately repulsive intraleg interactions.
When both interactions are repulsive (V s

‖ , V s
⊥ � 0) it is delim-

ited by a line below the V s
‖ = V s

⊥ line of leg-SU(2) invariant
interactions. For t⊥ → 0, this boundary line approaches the
SU(2) invariant line. In the complementary regions of weak
interactions, the system displays the Os

1σ partial gap. It is
worthwhile to note that were one to use simple first-order
RG (i.e., describe the phase diagram solely using scaling
dimensions), the Luttinger liquid phase would gain area at the
expense of the Os

1σ partial gap [the boundaries in this case
would be implicitly determined by Eq. (87)]. For repulsive
interactions, if the system is precisely on the Luttinger liquid -
Os

1σ partial gap boundary, the parameters flow to ḡs
1σ = 0 and

Kβ = 1. For weak interactions, the resulting phase again is the
c = 4 Luttinger liquid. Conversely, for attractive interactions,
the flow on the boundary is to the Os

1σ partial gap phase.

FIG. 6. Phase diagram for vanishing interspin interactions. (Top)
Phase diagram for weak interactions for t⊥/t = 0.1 and � = π/3.
In this range of interactions two possible phases appear (separated
by solid black line), distinguished by the presence or absence of
the partial Os

1σ gap. The dominant order parameters are also in-
dicated, with coloring/shading illustrating the crossovers between
the various cases. The blue dashed line shows V s

‖ = V s
⊥ where

interactions are SU(2) symmetric in leg space. The dash-dotted
line shows where ḡs

1σ changes sign, changing the QLRO in the
partially gapped regime between CDW and RDW. (Bottom) Scaling
dimension phase diagram in terms of Luttinger parameters Kρ,β . We
consider the most general quadratic term allowed by symmetries
(Sec. III D) and work to first order in t⊥. In the FTI region (grey
area) �FTI < 2; the Os

1σ region (yellow) has �s
1 < 2. For the c = 4

Luttinger liquid (white), �FTI, �
s
1 > 2. The FTI gap dominates for

Kβ � 1 in the FTI region. We also show a coordinate grid linking
bare Luttinger parameters and microscopics for weak interactions
V s

‖ /t = −1, 0, 1 and V s
⊥/t = −0.1, 0, 0.1, as well as the leg-SU(2)

invariant line (blue dashed). Arrows are in the direction of increasing
interactions.
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In the regions with a Os
1σ partial gap, the strong-coupling

behavior of Os
1σ = cos(

√
4π (φσ,1,R + φσ,1,L − φσ,2,R −

φσ,2,L )) ≡ cos(
√

4π�σ ) means that the field �σ becomes
locked to the minimum of ḡs

1σOs
1σ . For most of the V s

⊥ < 0
side of the Os

1σ gap we have ḡs
1σ < 0 and hence �σ = n

√
π .

Conversely, above the dashed-dotted line in Fig. 6 we have
ḡs

1σ > 0 and hence �σ = (n + 1/2)
√
π . (In both cases,

n ∈ Z.) Towards the V s
‖ > 0 region of the Os

1σ partial gap, the
dominant order parameters are RDW (for ḡs

1σ > 0) and CDW
(for ḡs

1σ < 0). The dominant component of the corresponding
order parameters are Oσ,RDW ∼ ei

√
πϒc

σ sin(
√
π�σ ) and

Oσ,CDW ∼ ei
√
πϒc

σ cos(
√
π�σ ). The Goldstone mode

ϒc
σ = φσ,1,R + φσ,1,L + φσ,2,R + φσ,2,L commutes with �σ (x)

and appears due to the spontaneous breaking of continuous
translation symmetry (of the continuum theory) by the CDW
or RDW. In fact, ϒc

σ is the total charge mode (of each spin);
this is consistent with the soft mode causing distortions
of the density wave orders and thus local particle density
accumulation. The wave number associated with these QLRO
is �kα = �/(3a).

For sufficiently attractive intraleg interactions (V s
‖ < 0) the

dominant order parameter crosses over to orbital singlet pair-
ing with dominant component Ssinglet

σ,leg ∼ ei
√
π�c

σ cos(
√
π�σ )

where �c
σ is conjugate to ϒc

σ , i.e., it is the phase, as befits
superconducting QLRO. The wave number for this QLRO is
�kα = 0.

In the c = 4 Luttinger liquid phase, all order parameters
have power-law correlations. For sufficiently repulsive in-
terleg interactions, the dominant ones are BDW and OAF
with wave number �kα = 2�/(3a). For sufficiently strong
(|V s

‖ | � V s
⊥) intraleg attraction there is a crossover towards

orbital triplet pairing Striplet
σ ;x,y,leg with wave number �/a.

2. FTI precursor phase

As noted above, reaching the FTI precursor phase requires
going beyond weak interactions. To discuss this phase, we
now turn to a formulation which is nonperturbative in inter-
actions but works with nearly decoupled legs, i.e., to first
order in t⊥. To connect to our preceding discussion, in the
bottom panel of Fig. 6, we show the c = 4 Luttinger liquid
and Os

1σ partial gap regions in terms of a (first order in t⊥)
Luttinger parameter diagram, together with the FTI region to
be discussed below. As noted in Sec. III D, the parameters Kρ

and Kβ remain valid descriptors of the system even away from
weak interactions so long as the system can be viewed as a
weakly perturbed Luttinger liquid at low energies. Therefore,
the Luttinger parameters here are to be interpreted as those
describing the low-energy physics. We delineate the borders
of the different phases in terms of their scaling dimensions.
Below we identify a key region of microscopic interactions
where this is sufficient, and which includes the FTI phase,
by linking our weak interaction phase diagram to strong
interaction numerics, using a combination of symmetries and
bosonization phenomenology.

Starting from a t⊥ = 0 system, a key condition for the
FTI precursor to develop upon turning on ḡFTI ∝ t⊥ is that
(i) the t⊥ = 0 system form a c = 4 Luttinger liquid and
(ii) its Luttinger parameters Kρ,β fall into the FTI gap domi-

nated region (�FTI<2, Kβ � 1) of the bottom panel of Fig. 6.
We now show that both of these conditions can be met in our
model.

We start with (i). For t⊥ = 0, the system displays
U(1)×U(1) symmetry owing to the particle number being
conserved in the two legs separately. (There are further
symmetries in spin space but they play no role in the argument
that follows.) Our nonperturbative (in interactions) analysis
(Secs. III D and III E) shows that the most important
U(1)×U(1) symmetric, potentially gap opening, term to
consider is Os

1σ . It is thus this term we now focus on. (We
emphasize that the density is incommensurate with the lattice,
hence umklapp terms are inoperative.) To perform an analysis
in terms of the microscopic interactions, we first consider the
repulsive part of the leg-SU(2) invariant line. [For t⊥ = 0, the
full system, not only the interactions, is leg-SU(2) symmetric
here.] On this line, each spin sector of the ladder provides an
instance of the extended Hubbard (or U -V ) model [104] with
a constant interaction parameter ratio. Phrased in terms of our
ladders, a key feature of this model, numerically observed
for several particle densities [97–102], is that if ḡs

1σ > 0 and
hence the Os

1σ gap is absent for a given interaction ratio
at weak interactions, then, for the same ratio it remains
absent away from weak interactions. For weak interactions,
we have ḡs

1σ = V s
⊥(1 + cos�/3)/(2π2a) at ν = 1/3 (see

Appendix B), therefore ḡs
1σ > 0 on the repulsive part of leg-

SU(2) invariant line; the Os
1σ gap is absent, as we found. This,

then, means that the Os
1σ gap is absent on the entire repulsive

part of the line, even for strong interactions. The Os
1σ gap

phase boundary thus does not cross the V s
⊥ = V s

‖ > 0 line. The
c = 4 Luttinger liquid then prevails for V s

⊥ � V s
‖ > 0 beyond

weak interactions, provided that no disconnected Os
1σ gap

phases appear in that region (consistently with V s
⊥ � V s

‖ > 0
suppressing interleg singlets, and hence the Os

1σ gap).
We now turn to condition (ii). For the interleg sector, the

preceding analysis coupled with the standard second-order
RG picture for ḡs

1σ (with ḡs
1σ weak at low energies owing to

the system being a c = 4 Luttinger liquid, even if V s
‖,⊥ are

strong) implies [104] that the t⊥ = 0 low-energy physics has
ḡs

1σ → 0, Kβ → 1 on the leg-SU(2) invariant line and ḡs
1σ →

0, Kβ > 1 for V s
⊥ > V s

‖ > 0. [This also shows that the leg-
SU(2) invariant line marks the boundary where second-order
RG is required; for V s

⊥ > V s
‖ > 0 a scaling dimension analysis

suffices.] As seen from the bottom panel of Fig. 6, �FTI<2
requires Kρ�0.4. The precise value depends on Kβ , e.g.,
we need Kρ < 1/3 for Kβ = 1. As we show in Appendix G
(see also [25,104,109–111]), with strong repulsive leg-SU(2)
invariant interactions our model can reach Kρ ≈ 0.15 for den-
sities compatible with the two partially filled lower pockets
(Fig. 4) required for FTI physics, thus the leg-SU(2) invariant
line itself reaches well into the FTI region of the parameter
space.

With the t⊥ = 0 system in the FTI region, turning on weak
interleg tunneling adds Oσ

FTI as the most relevant perturbation,
hence establishing the FTI precursor phase. In the FTI phase,
Oσ

FTI open a partial gap in the spectrum and leave behind
two chiral modes corresponding to the edge modes of a FQH
state at filling fraction 1/3 for each spin; the central charge
is thus c = 2. As a consequence of time reversal symmetry,
different spin projections have different chiralities. These
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helical gapless modes are the precursors of FTI edge modes.
The dominant order parameters, with power-law correlations,
are of BDW and OAF type. The rest exhibit exponential
decay. The existence of these power-law correlations for the
local order parameters can be understood as a consequence
of the quasi-one-dimensional nature of the system. As shown
in Appendix E, the BDW and OAF order parameters contain
contributions from counterpropagating gapless edge modes,
which can be connected by a local operator in the quasi-one-
dimensional system.

3. Intermediate discussion and comparison to FQH ladders

Our findings in the case of vanishing interspin interactions
may be contrasted to results on spinless fermion ladders under
a magnetic flux. An exhaustive analysis of different phases
was carried out in Ref. [112], focusing on the case that both
single-particle bands are partially filled. This is a regime
complementary to our analysis, where the upper band is empty
and the bottom band is partially filled with the density tied
to the flux, keeping a constant filling factor. Nevertheless,
while a FQH precursor (the spinless counterpart of the FTI
precursor) phase is absent in Ref. [112] due to the different
filling, similar density wave and Luttinger liquid phases have
been found for small interactions.

A study of a (spinless) fermion ladder system in a mag-
netic field at ν = 1/3 has been performed in Ref. [25], us-
ing phenomenological bosonization with higher harmonics
in Eq. (27). Using first-order RG (i.e., based on scaling di-
mensions), it was found that for sufficiently strong leg-space-
SU(2)-invariant interactions a FQH precursor dominates. In
this phenomenological approach, the various cosine coeffi-
cients ḡi are undetermined, and therefore the interrelation of
these with forward scattering parameters is not immediately
obvious. It is, however, this interrelation that necessitates a
second-order RG at leg-SU(2) symmetry, at least for Os

1σ .
[The interrelation between ḡs

1σ and Kβ holds even at low
energies, when these parameters may differ significantly from
their bare values, as it is tied to the degree of leg-SU(2)
symmetry in the interactions.] While in this case, similarly
to Ref. [25], we find that Os

1σ is irrelevant for repulsive
interactions, we note that this holds only marginally. The
corresponding, only logarithmic, suppression of Os

1σ towards
low energies may partly explain the numerical difficulties in
earlier spinless ladder simulations [26]. A more pronounced
suppression of the Os

1σ term can be achieved by going away
from leg-SU(2) symmetry. Noting the presence of this Os

1σ
competition, and how interaction anisotropy may be used to
suppress it, is a contribution of this work pertinent already for
the spinless (i.e., FQH) ladder case.

Even though our considerations for the FTI precursor have
been formulated working to first order in t⊥, this does not
imply that the FTI precursor (and the Laughlin precursor
for spinless systems) may not arise away from weak t⊥:
indeed, the top panel of Fig. 6 suggests that by reducing the
region of repulsive interactions with a Os

1σ partial gap, inter-
leg tunneling may help in suppressing the Os

1σ competition.
While examining this scenario away from weak interactions is
outside the scope of our methods, it is an interesting direction
to explore in the future, e.g., using numerical simulations.

Finally, it is worth mentioning that our analysis also applies
to 1D spinful electron systems for which the ladder flux
translates to spin-orbit coupling and t⊥ to a Zeeman energy
[56]. Such systems have been proposed to host fractional
helical liquids [94], (the phase corresponding to the Laughlin
precursor), based on which parafermion modes with potential
utility for quantum computation may be created. Taking into
account the competition from Os

1σ , we observed may facilitate
achieving the prerequisite fractional helical liquid state.

B. Including interspin interactions

Once interspin interactions are added, the previous phase
diagram is modified. As our main interest is the exploration
of possible FTI precursor phases, we focus on the Kβ � 1,
Kρ � 0.4 region of the phase diagram where the FTI precursor
may arise in the absence of interspin interactions, and study
the competition of interspin interactions and the FTI term. A
more complete exploration of the full phase diagram is left for
a future study.

Upon including interspin interactions, all the operators Od
j ,

with j = {1, 6} have to be considered in the analysis of RG
relevance. We will mostly focus on weak interspin interac-
tions. In this case, first-order RG suffices, because the same-
spin interactions are strong and hence the zero-interspin Lut-
tinger parameters Kρ,β (which remain useful characteristics of
the system for small interspin-to-same-spin interaction ratios)
largely set the interspin scaling dimensions, independently of
the small interspin coupling constants ḡd

j .
For weak interspin interactions, irrespective of their sign

and the details, we find that for most of the Kβ � 1 FTI
regime, the operators Od

5,6 are more relevant than Oσ
FTI in

the RG; the exception is Kρ < 1/7, Kβ � 1, where Oσ
FTI is

the most relevant. (Reaching this regime requires going be-
yond the next-nearest neighbor interactions considered in our
model.) As Od

5,6 are the most relevant competitors for Kβ > 1
and, apart from a patch near Kβ � 1, Kρ ≈ 1/3 (where Od

1,2

are also more relevant than Oσ
FTI), Od

5,6 are the only operators
more relevant than Oσ

FTI, we focus on these in what follows,
and show how, even in their presence, the FTI precursor
phase may survive. [The discussion for Od

1,2 is analogous, in
particular leading again to Eq. (89).]

For small interspin interactions V d
‖,⊥, the couplings ḡd

5,6 of
the interspin operators can be much smaller than ḡFTI. This
implies that the FTI operator can still grow larger under RG
and hit the high-energy cutoff scale vF/a before the other
operators’ coupling would grow comparable. Physically this
corresponds to the FTI operator having opened a gap; the
interspin operators are perturbations for the low-energy theory
of the remaining gapless FTI edge modes. An estimate of the
boundaries can be found by identifying the bare couplings
corresponding to which the g̃FTI and g̃d

i processes (with g̃i =
a2ḡi/vF the dimensionless couplings) reach the high-energy
cutoff at the same scale under renormalization. From the
first-order renormalization equations, we find that the cutoff
is reached at the same scale when

|g̃∗
FTI| ∝ ∣∣g̃d∗

i

∣∣ 2−�FTI
2−�d

i , (89)

where g̃∗
i is the bare value of the coupling i. The conclusions

above are not influenced significantly by the second-order
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FIG. 7. Sketch of the phase diagram for the SO ladder with
interspin interactions, around the FTI phase. Interspin interactions
generate competing operators that are always more relevant than the
operator leading to the FTI phase. The competition between these
determines the ultimate fate of the system under RG [see Eq. (89)].
Outside the FTI regime, the dominant order parameter parameter is
odd (even) under time-reversal symmetry for g̃d

5,6 > 0 (g̃d
5,6 < 0).

interspin terms (69)–(76). These operators can be separated
into two families, each with a single scaling dimension �I,II

[see Eqs. (79) and (80)]. For most of the Kβ � 1 and Kρ � 0.4
region, we find that �I,II > �FTI and hence the corresponding
terms are less RG relevant than Oσ

FTI. Considering also the
weakness of interspin interactions, the second-order interspin
processes are also suppressed compared to Oσ

FTI and the pair
Od

5,6 in terms of their bare couplings. Thus, for small interspin
interactions, the terms in Eqs. (69)–(76) can be ignored, and
the FTI precursor survives in a region according to Eq. (89).
A diagram of the different phases is shown in Fig. 7.

For stronger interspin interactions, analogous weak t⊥ con-
siderations may be developed to the ones we presented in
Sec. IV A 2 for the spin decoupled case, again provided the
t⊥ = 0 system forms a c = 4 Luttinger liquid. Though our
analysis of scaling dimensions considering stronger interspin
interactions has not indicated cases where only Oσ

FTI would
be relevant, scenarios where Oσ

FTI only competes with Od
5,6

do arise, e.g., for Kβ,± > 2 and Kρ,± � 0.4. In this case, for
small t⊥, these operators give small perturbations with ḡFTI ∝
t⊥ and ḡd

5,6 ∝ t2
⊥ so that ḡd

5,6 � ḡFTI, thus making Eq. (89)
and Fig. 7 again applicable. Exploring for what microscopic
interactions this scenario may occur is left as a subject for
future investigations.

The characterization of the phases involved in the compe-
tition described by Eq. (89) and Fig. 7 requires a family of
order parameters with both leg and spin degrees of freedom.
In the regions of our interest, the dominant order parameters
conserve particle number. The possible such local fermion
bilinears now include [103,104]

Oμ,λ,x =
∑

β,β ′,σ,σ ′

(
c†β

x,σ (τμ)ββ ′ (σλ)σσ ′cβ
′

x,σ

)
. (90)

Here, in addition to the τμ matrices in leg space that appeared
previously in Eq. (84), we also use the matrices σλ that denote
the identity matrix (λ = 0) and the three Pauli matrices (λ =
1, 2, 3) in spin space. In terms of the low-energy theory, we
now have

Oμ,λ(x) = O0
μ,λ(x) +

∑
α

(
ei�kαxOα

μ,λ(x) + H.c.
)
, (91)

with slowly varying operators Oλ
μ,η(x).

In bosonized language Od
5 = cos(

√
4πϑ−

5 ) and Od
6 =

cos(
√

4πϑ−
6 ); here and for Eqs. (96) and (95) below,

we have introduced ϑ±
5 = φ↑,1,L + φ↑,2,R ± (φ↓,1,L + φ↓,2,R)

and ϑ±
6 = φ↑,1,R + φ↑,2,L ± (φ↓,1,R + φ↓,2,L ) which satisfy

[ϑ s
j , ϑ

s′
j′ ] = 0 for (s, j) �= (s′, j′). The variables ϑ−

5 and ϑ−
6

become locked to the minimum of the cosine potentials Od
5

and Od
6 respectively once these terms run to strong coupling.

As [ϑ−
5 , ϑ

−
6 ] = 0, the locking of these two variables can occur

simultaneously. The field values minimising these cosines are

ϑ−
i =

{
n
√
π if ḡd

i < 0,(
n + 1

2

)√
π if ḡd

i > 0,
(92)

for i = 5, 6. For weak interspin interactions, if ḡd
5 and ḡd

6
change sign they do so simultaneously (Appendix B). Once
the ϑ−

i fields are pinned, the phase displays QLRO character-
ized by Oα �=0

μ,λ , with μ = 1, 2 (BDW and OAF) and λ = 0, 3;
specifically its component at wave number�kαa = 2�/3 and
4�/3:

ei2�/(3a)xO2�/3
μ,λ + H.c. =

∑
σσ ′

�̃†
σ τμ(σλ)σσ ′�̃σ ′ , (93)

ei 4�
3a xO4�/3

μ,λ + H.c. =
∑
σσ ′

�†
σ τμ(σλ)σσ ′�σ ′ , (94)

with �̃σ = (ψσ,1,L, ψσ,2,R)T and �σ = (ψσ,1,R, ψσ,2,L )T .
Note that ψ↑,β,η and ψ↓,β,η are predominantly on different
legs, hence the OAF order parameter in Eq. (93) is defined
such that it is antiphase between spins for λ = 0 and in phase
for λ = 3.

In bosonization terms, we have

O2�/3
μ,λ ∼ ei

√
πϑ+

5

{
cos(

√
πϑ−

5 ), μ = 1, 2, λ = 0,
sin(

√
πϑ−

5 ), μ = 1, 2, λ = 3,
(95)

O4�/3
μ,λ ∼ ei

√
πϑ+

6

{
cos(

√
πϑ−

6 ), μ = 1, 2, λ = 0,
sin(

√
πϑ−

6 ), μ = 1, 2, λ = 3.
(96)

The Om�/3
μ,λ (m = 2, 4) order parameter correlators have ap-

proximately the same power-law decay (the exponents of the
two, similarly to the Od

5,6 scaling dimensions, approach each
other for t⊥ → 0) and we will thus consider them as the
two dominant order parameters in the regions simultaneously
gapped by Od

5,6.
Due to the left/right mover and valley structure of �,

the TR transformation of the fields is implemented by
T �σT −1 = ∑

σ ′ (iσ2)σ ′σ τ1�σ ′ . Therefore τ1,2 and σ0 are TR
even, while σ3 is TR odd. In the region ḡd

5,6 > 0, the QLRO

is characterized by Om�/3
μ,3 which thus implies the onset of

spontaneous TR symmetry breaking (note that there is no true
TR breaking in the sense that there is no local order parameter,
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just QLRO). In the region ḡd
5,6 < 0, the QLRO is that of Om�/3

μ,0
which is compatible with TR symmetry.

The nature of the corresponding phases involved in the
competition between Oσ

FTI and Od
5,6 is shown in Fig. 7. For

both the ḡd
5,6 > 0 and ḡd

5,6 < 0 regions outside of the FTI
regime, the operators Od

5,6 open a gap, leaving two gap-
less modes behind corresponding to the total charge mode
ϑ+

5 + ϑ+
6 = ϒc

↑ +ϒc
↓ and the mode ϑ+

5 − ϑ+
6 = −(ϒ↑ +

ϒ↓). Here, ϒσ is the conjugate mode to �σ .

V. STRONG-COUPLING ANALYSIS

In the FTI (precursor) phase, the Oσ
FTI operator opens a

gap in the excitation spectrum. In what follows we will be
interested in working deep in this (partially) gapped phase,
focusing on energies much below the FTI gap. Before turning
to this strong-coupling analysis, we first establish the typical
energy scale of the FTI gap.

Starting from weak coupling, g̃FTI grows exponentially
with the scaling parameter � in the FTI phase, where Oσ

FTI is
relevant. In terms of first-order RG (and ignoring the flow of
Kβ due to Os

1σ ), the scale �1 [see Eq. (38)] where this coupling
becomes of order one is

e�1 ≈ (g̃∗
FTI )

1
�FTI−2 , (97)

where, as before, g̃∗
FTI is the bare value of the FTI coupling. At

this RG scale, the argument of Oσ
FTI is largely pinned to one

of the minima of the corresponding cosine, with fluctuations
being costly in energy. This physics can be described by
expanding the cosine around this minimum, truncating the
expansion up to second order. This introduces a mass scale
in the quadratic part of the Hamiltonian, implementing the
opening of the FTI gap. The gap at this scale is given by
mFTI(�1) ∼ v′

a

√
2πKeff with v′ and Keff being the renormal-

ized velocity and the effective Luttinger parameter of the hard
modes respectively, obtained by decoupling the interaction
between the hard and the soft modes, and a is the short
distance cutoff of the renormalized theory [104]. In terms of
the forward scattering parameters, they read (see Appendix I)

v′ = 5

9

√
(vF + g4)2 − g2

2, Keff =
√

vF + g4 + g2

vF + g4 − g2
, (98)

where we have introduced the g parameters

g4 = f22 + 4( f11 − f12)

20π
, g2 = 4(g12 − g11) − g22

20π
. (99)

In the region where the Oσ
FTI are the most relevant operators,

Keff < 1. The gap generated by Oσ
FTI has units of energy, so it

scales with � as mFTI(�1) ∼ e�1 mFTI(0) with mFTI(0) the bare
gap. This provides a crude, leading order RG based, estimate

mFTI(0) ∼ mFTI(�1)(g̃∗
FTI )

1
2−�FTI ,

∼ v′

a

√
2πKeff (g̃∗

FTI)
1

2−�FTI , (100)

where a now is the short distance cutoff at scale � = 0.
Though based on taking the weak-coupling RG out of its do-
main of validity, such estimates are known to capture certain
essential qualitative features, e.g., that the gap depends on the
bare coupling g̃∗

FTI through a power law [104].

The opening of a gap induced by the operators Oσ
FTI defines

the FTI precursor phase of the ladder. This is the FTI analog
of the term introduced for (two-dimensional) FQH systems
in Ref. [30]. Here we summarize the main properties of this
phase, in terms of its bulk excitations. The edge properties
of the FTI precursor phase are addressed in the next section,
when we discuss the complete transformation between the
original and the effective degrees of freedom describing the
low-energy theory of the topological phase.

In the strong-coupling limit of the FTI phase, the fields

θgσ ≡ φσ,1,L + 2φσ,1,R + 2φσ,2,L + φσ,2,R, (101)

are pinned to the minimum of the cosine potential defined by
Oσ

FTI = cos(
√

4πθgσ ). This implies that those modes become
massive, i.e., it costs energy ∼mFTI(�1) to excite them. The
(bulk) charge density per spin is ρc = − 1

3
√
π
∂xθgσ . Hence, a

kink in the θgσ field connecting neighboring cosine minima
(θgσ → θgσ + √

π) carries charge 1/3. It is important that
the different cosine minima are physically equivalent: the
compactness of the microscopic fields φσ,α,η ≡ φσ,α,η + √

πn
(n ∈ Z) implied by Eq. (27), translates to θgσ ≡ θgσ + √

πn
according to Eq. (101). Hence such a kink configuration is
local; it can be moved by local operators. The conjugate
mode to θgσ is ϕgσ , and together they satisfy the commutation
relation

[θgσ (x), ϕgσ ′ (y)] = 3iδσσ ′�(x − y), (102)

where �(x) is the Heaviside step function (see Appendix C

for more details). Hence, the operator ei
√
π

3 ϕgσ , by creating the
corresponding kink in the θgσ field, creates a quasiparticle.

In the quasi-1D geometry that we consider, this bulk quasi-
particle cannot be braided. Extending the system by coupling
different quasi-one-dimensional systems (ladders) labeled by
�, it is possible to show that these bulk quasiparticles possess
fractional statistics due to the field θgσ being locked in the
bulk. Specifically, moving a quasiparticle along a loop in the
bulk can be described by the extended operator

�σ (x1) = �σ� (x1, x2)χσ�,�+1(x2)�σ�+1(x2, x1)χσ†
�+1,�(x1),

(103)

where �σ� (x1, x2) = ei
√
π

3 (ϕ�gσ (x2 )−ϕ�gσ (x1 )) is an operator that
displaces the bulk quasiparticle along the quasi-one-
dimensional system from x1 to x2, while χ�,�+1(x) =
ei

√
π

3 (ϕ�+1
gσ (x)−ϕ�gσ (x)+θ�+1

gσ (x)+θ�gσ (x)) moves a bulk quasiparticle be-
tween neighboring ladders. The operators �σ� (x, y) and
χσ�,�+1(x) can be constructed using products of the original
fermion operators. Using their explicit form, the loop operator
becomes

�σ (x1) = ei2πNσ
QP/3, (104)

where we used that the number of quasiparticles (of a
given spin) inside the loop is Nσ

QP = ∑�+1
m=�〈 1√

π
(θm

gσ (x1) −
θm

gσ (x1))〉/4π . This signals the anyonic statistics of the bulk
quasiparticles.

In what follows, we will be focusing on the regime of
momenta and frequencies small compared to the gap, which
corresponds to the high-energy cutoff of the low-energy the-
ory. This implies that we can project out the high-energy
processes, which create excitations of the order the FTI
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gap (or larger). After the projection, the resulting operators
constitute perturbations to the low-energy FTI sector formed
by the precursor FTI edge modes. Depending on the RG
scaling dimensions, the FTI edge modes may be robust against
these perturbations or they may become gapped. We first
concentrate in the case of vanishing interspin interaction.

A. Decoupled spin limit

In the decoupled spins regime, we focus on the region
where the operators Os

1σ are irrelevant while the FTI operator
flows to strong coupling. As we discussed previously in
Sec. III E 2, higher-order terms are more irrelevant than Os

1σ
in terms of the weak-coupling analysis. All these terms can
be present in a strong-coupling description, with arbitrarily
small coupling strengths. In the analysis of this section, we
consider the largest of those, which corresponds to Os

1σ . The
Hamiltonian consists of H = ∑

σ (Hσ
0 + Hσ

FTI + Hσ
1 ), where

Hσ
0 = 1

2

∫
dx∂x�

T
σM̃∂x�σ , (105)

together with Hσ
FTI = ∫

dxḡFTI cos(
√

4πθgσ ), and

Hσ
1 =

∫
dxḡs

1 cos

(√
4π

3
(ϕgσ + φ̃Lσ − φ̃Rσ )

)
. (106)

The Klein factors of these operators are given explicitly in
Appendix C. They do not play a role in the following discus-
sion. Here we introduced the fields �T

σ = (ϕgσ , θgσ , φ̃Lσ , φ̃Rσ )
which form a natural choice of basis in the FTI phase. Their
relation to our original fields φσ,β,η is given by⎛

⎜⎜⎜⎜⎝
ϕgσ

θgσ

φ̃Lσ

φ̃Rσ

⎞
⎟⎟⎟⎟⎠ ≡

⎛
⎜⎝

1 2 −2 −1
1 2 2 1
2 1 0 0
0 0 1 2

⎞
⎟⎠
⎛
⎜⎝
φσ,1,L
φσ,1,R
φσ,2,L
φσ,2,R

⎞
⎟⎠. (107)

The forward scattering matrix that determines the Gaussian
part of the Hamiltonian is M̃ = UT MU with M = vF14 +

1
2πV and V given in Eq. (34). The similarity transformation
U is the inverse of the matrix in Eq. (107)

U =

⎛
⎜⎜⎜⎜⎝

− 1
6 − 1

6
2
3 0

1
3

1
3 − 1

3 0

− 1
3

1
3 0 − 1

3
1
6 − 1

6 0 2
3

⎞
⎟⎟⎟⎟⎠. (108)

The commutator of these fields is given by

[�i,σ (x), ∂y� j,σ ′ (y)] = iK̃−1
i j δσσ ′δ(x − y), (109)

with the K̃ matrix being explicitly

K̃ =
(
K̃h 0
0 K̃s

)
, K̃h = 1

3
σ1, K̃s = −2

3
σ3. (110)

The charge density per spin is given by

ρc = − 1

3
√
π

(∂xθgσ + ∂xφ̃Lσ + ∂xφ̃Rσ ). (111)

FIG. 8. The operator Os
1 acting on a uniform configuration (rep-

resented by the black arrow) creates a kink in the field θgσ , which
carries an extra charge of 2/3. The operator also creates two quasi-
particles in the gapless sector, an excitation of charge −2/3.

For FQH and topological insulator states, the K̃ matrix
is known to encode topological data, which directly deter-
mine the commutator structure of the edge modes. In our
case, the modes φ̃L,R are seen to obey the commutator re-
lations corresponding to FTI edge modes at 1/3 effective
filling per spin, provided that the edge quasiparticle operators
are proportional to exp[±i(

√
4π/3)φ̃ησ ], as suggested by

Eq. (106), which is also consistent with the observation that
exp[−iη(

√
4π/3)φ̃ησ ] creates charge 1/3.

To obtain a low-energy description in the strong-coupling
regime, we project out the massive sector. To perform the
projection, we first consider the situation of vanishing Hσ

1
(i.e gs

1 = 0). In this case, the low-energy theory is obtained
upon a quadratic expansion of the cosine term in Hσ

1 around
one of the minima, and integrating out the massive degrees of
freedom.

Considering now Hσ
1 , we observe that the operator

e−i
√

4π
3 ϕgσ creates a θgσ profile connecting second neighbor

minima (Fig. 8),

e−i
√

4π
3 ϕgσ (x′ )

∣∣∣∣ θgσ√
π

= n

〉
=
∣∣∣∣ θgσ√
π

= n + 2�(x′)
〉
. (112)

That is, it creates a (double) kink. Due to the equiv-
alence of the different minima, this is a local object
[30]. This object has charge Q = ∫

dxρσ = − 1
3
√
π

(θgσ (∞) −
θgσ (−∞)) = −2/3 which is accumulated entirely in the
gapped sector. This process is identified with the creation
of two quasiparticles in the “FTI bulk.” The term Hσ

1 thus
transfers pairs of quasiparticles between the gapless (“edge
modes”) and the gapped (“FTI bulk”) sector. Physically,
one expects that due to the “bulk” quasiparticles that appear
in the phase where the FTI term is dominant, Hσ

1 creates
high-energy excitations. This intuition is supported by ana-
lyzing the effect of the perturbation Hσ

1 in the Hamiltonian
Hσ

0 + Hσ
FTI. This perturbation creates kink eigenstates of the

unperturbed Hamiltonian Hσ
0 + Hσ

FTI. These states have an
energy of the order of ∼2mFTI(�1)/(πKeff ) [104], which, as
expected, is comparable to the FTI gap (measuring energies
on the RG scale of the low-energy theory). Due to Hσ

1 having
no low energy to low-energy matrix elements, to first order
in g̃s

1, the projection to the low-energy sector amounts to
discarding Hσ

1 altogether. The first nonvanishing contribution
comes from second-order perturbation theory (in g̃s

1), which
allows for processes where “bulk” quasiparticles appear only
as intermediate states. These processes have a prefactor of the
order of (ḡs

1)2/mFTI(�1) and their most RG relevant contribu-
tion corresponds to density-density interactions between the
right and left mover “edge” modes of the FTI precursor phase
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in the low energy description. Although these can modify the
effective Luttinger parameters of the low-energy theory, they
do not open a gap for the FTI “edge” modes. This implies that
(at least to second order in g̃s

1) the Hσ
1 perturbation does not

destroy the FTI precursor phase.
Defining the new basis of soft bosonic fields

ϕ̄sσ = φ̃Lσ + φ̃Rσ

2
, θ̄sσ = φ̃Lσ − φ̃Rσ

2
, (113)

the forward interaction matrix in the gapless sector becomes
diagonal. In this new basis, the low-energy theory splits into
two uncoupled Luttinger liquids, described by the Hamilto-
nian Hs↑ and Hs↓, with

Hsσ = 1

2

∫
dxvs

(
(∂xϕ̄sσ )2K + (∂x θ̄sσ )2

K

)
. (114)

In terms of the forward scattering parameters, the veloc-
ity vs and the Luttinger parameter K are respectively vs =
10
9

√
(vF + a1)2 − b2

1 and

K =
√

vF + a1 + b1

vF + a1 − b1
, (115)

where a1 = 1
20π ( f11 + 4( f22 − f12)) and b1 = 1

20π (g11 +
4(g22 − g12)). In the region of parameters considered, the
Luttinger parameter is K � 3/2, indicating a strong interedge
interaction. The fields ϕ̄sσ and θ̄sσ are conjugates, and satisfy
the commutation relations

[ϕ̄σ (x), ∂yθ̄σ ′ (y)] = −i 3
4δσσ ′δ(x − y). (116)

B. Including interspin interactions

In the case with nonzero interspin interactions, there are
many operators that appear. To first order in the interspin in-
teraction they are given by Eqs. (44) to (53). The high-energy
projection analysis is similar to the decoupled case, with
the important difference that the forward scattering matrix
couples all the fields. The quadratic part of the Hamiltonian
is now

H0 = 1

2

∫
dx∂x�

TM∂x�, (117)

while the nonlinear contributions are

HFTI =
∑
σ

∫
dxḡFTI cos(

√
4πθgσ ), (118)

H2 =
∑

i

∫
dxḡiOi(�). (119)

The vector of fields � = (�h,�s) contains the hard (�h) and
soft modes (�s). They are given by �h = (ϕg↑, θg↑, ϕg↓, θg↓)
and �s = (φ̃L↑, φ̃R↑, φ̃L↓, φ̃R↓).

The operators Oi correspond to all the exponential opera-
tors considered in the previous discussion of scaling dimen-
sions, apart from the FTI operators. The forward scattering
matrix M is given by

M =
[

M(4)
hh M(4)

hs(
M(4)

hs

)T M(4)
ss

]
, (120)

where M(4)
ab encodes the forward scattering interaction be-

tween a and b sectors. The 4 × 4 matrices M(4)
ab are given

in Appendix I. The commutation relations of the bosonic
operators are given in Eq. (109). The exponential operators
Oi can be written in compact form as

Oi,↑↓ = (
ei

√
π

3 ηT
i,↑↓� + H.c.

)
, (121)

with the vectors ηi,↑↓ given by

ηT
1,↑↓ = (−1,−1, 1, 1,−2, 0, 2, 0), (122)

ηT
2,↑↓ = (−1,−1,−1, 1,−2, 0, 0, 2), (123)

ηT
3,↑↓ = (1,−1, 1, 1, 0,−2, 2, 0), (124)

ηT
4,↑↓ = (1,−1,−1, 1, 0,−2, 0, 2), (125)

ηT
5,↑↓ = (−1, 3, 1,−3,−4,−2, 4, 2), (126)

ηT
6,↑↓ = (−1, 3,−1,−3,−4,−2, 2, 4), (127)

ηT
7,↑↓ = (1, 3, 1,−3,−2,−4, 4, 2), (128)

ηT
8,↑↓ = (1, 3,−1,−3,−2,−4, 2, 4), (129)

ηT
9,↑↓ = (0, 2, 0,−2,−4,−4, 4, 4), (130)

ηT
10,↑↓ = (0,−4, 0, 4, 2, 2,−2,−2). (131)

Due to the nonvanishing ϕgσ components, the operators Oi,↑↓
with i = 1, . . . , 8 create kinks in a similar way as discussed
previously for Os

1σ . Projecting out the high-energy states,
these operators do not contribute in first order of gi. On the
other hand, the operators O9,↑↓ ≡ Od

5 and O10,↑↓ ≡ Od
6 do

not vanish after the projection. To first order in the interaction
parameter, the projected operators become

Od
5,proj = cos

(
2
√

4π

3
(φ̃L↑ + φ̃R↑ − φ̃L↓ − φ̃R↓)

)
, (132)

Od
6,proj = cos

(√
4π

3
(φ̃L↑ + φ̃R↑ − φ̃L↓ − φ̃R↓)

)
, (133)

with the Klein factors considered explicitly in Appendix C.
In terms of the weak-coupling analysis, the operators Od

5 ,Od
6

were the most relevant in RG sense. After the projection
performed above, both operators survive. Among them, the
more relevant is Od

6,proj in terms of the low-energy description
of the FTI dominated phase. The second-order operators (69)
to (76) are less relevant in RG sense according to the weak-
coupling analysis of the previous section. Now we are con-
cerned with the strong-coupling regime, where these operators
have flowed under RG as well. Writing them in the basis of
fields �, we find that they also create high-energy excitations
as the processes considered above, and hence, to first order in
their coupling constant, do not contribute after the low-energy
projection. We thus concentrate on the effect of Od

6,proj as a
perturbation in the FTI precursor phase.

Introducing the quasiparticle operator ψη
qp,σ = eiη

√
4π
3 φ̃ησ ,

(using the same left-right notation as Eq. (27) and without
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Klein factors), the projected process Od
6,proj becomes

Od
6,proj = ((

ψR
qp,↑

)†
ψL

qp,↑
(
ψL

qp,↓
)†
ψR

qp,↓ + H.c.
)
. (134)

We see that this operator corresponds to correlated quasiparti-
cle backscattering between opposite edges of the FTI precur-
sor, with one backscattering factor for each spin component.

Projecting out the massive modes θgσ of the FTI precursor
following the steps discussed in the previous section, the
quadratic Hamiltonian of the soft modes takes the form

H = 1

2

∫
dx∂x�

T
s Ms∂x�s. (135)

The soft-mode commutators are given by [φ̃ησ (x),
∂yφ̃η′σ ′ (y)] = i 3

2ηδσσ ′δηη′δ(x − y) while the forward scattering
matrix is

Ms = 10

9

(
12 ⊗

[
vF + a1 b1

b1 vF + a1

]
+ σ1 ⊗

[
β1 β2

β2 β1

])
,

(136)
where a1 and b1 correspond to the same parameters defined
in the decoupled spin limit. The parameters β1,2 describe the
interspin interactions and are given by β1 = 4(h22−h12 )+h11

20π and

β2 = 4(h̃22−h̃12 )+h̃11
20π in terms of the forward scattering parame-

ters. This quadratic Hamiltonian can be diagonalized defining
the new bosonic fields⎡

⎢⎢⎢⎢⎣
ϕ̄+
θ̄+
ϕ̄−
θ̄−

⎤
⎥⎥⎥⎥⎦ = 1

2

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎠
⎡
⎢⎢⎢⎢⎣
φ̃L↑
φ̃R↑
φ̃L↓
φ̃R↓

⎤
⎥⎥⎥⎥⎦. (137)

In this new basis, the Hamiltonian (135) splits into two
uncoupled Luttinger liquids, described by the Hamiltonian H+
and H−, where

Hi = 1

2

∫
dxvi

(
(∂xϕ̄i )

2Ki + (∂x θ̄i )2

Ki

)
, (138)

with v± = 10
9

√
(vF + a1 ± β1)2 − (b1 ± β2)2 and

K± = K

(
1 ± x

1 ± y

) 1
2

. (139)

Here, K is the Luttinger parameter for vanishing interspin
interactions (115), x = β1+β2

vF +a1+b1
and y = β1−β2

vF +a1−b1
.

The fields ϕ̄i and θ̄i are conjugates, and satisfy the commu-
tation relations

[ϕ̄a(x), ∂yθ̄b(y)] = −i 3
2δabδ(x − y). (140)

It follows from here that the projected operator (134)
has scaling dimension �d

6,proj = 2K−
3 . (For Od

5,proj we have
�d

5,proj = 4�d
6,proj.) Within the FTI phase, this scaling dimen-

sion is much smaller than 2 making it highly relevant in the
RG sense. The projected operator Od

6,proj will open a gap
mlow in the low-energy theory, as it backscatters quasiparticles
between the two edges.

We can estimate the value of the gap mlow compared to the
gap of the FTI precursor by applying a logic analogous to the
one leading to Eq. (100). We find

mlow(�1) ∼ mFTI(�1)
√

2πK−
(
g̃d

6(�1)
) 1

2−�d
6,proj , (141)

FIG. 9. Sketch of the phase diagram for the SO ladder with
interspin interactions, including the strong-coupling analysis. In the
strong-coupling phase, the most relevant operators that survive are
Od

5,proj and Od
6,proj, which induce quasiparticle backscattering in each

effective spin layer in the FTI phase. These backscattering terms
open a gap in the spectrum of the low-energy modes. To consider
a FTI precursor, the ratio mlow

mFTI
between the backscattering induced

gap to the FTI induced gap has to be small. For mlow
mFTI

∼ 0.1, K− ∼ 1,

and�d
6,proj ∼ 1.8, the different phase boundaries for weak and strong

coupling are represented here by the light blue and red regions.

where we used that the high-energy cutoff v/a (with v of the
order of v±) is to be interpreted as mFTI(�1), the FTI gap at
scale �1 relative to the weak coupling RG starting point.

The coupling strength g̃d
6 at scale �1 is in turn related to the

bare coupling g̃d∗
6 via the weak-coupling RG flow

g̃d
6(�1) ∼ g̃d∗

6 (g̃∗
FTI )

2−�d
6

�FTI−2 . (142)

Using these two previous relations, we find the ratio between
the gap of the FTI precursor to the gap induced by Od

6,proj to
be

mlow

mFTI
∼
√

2πK−
(
g̃d∗

6

) 1
2−�d

6,proj (g̃∗
FTI )

2−�d
6

(�FTI−2)(2−�d
6,proj )

. (143)

As long as the ratio mlow
mFTI

� 1, it is sensible to talk about an
FTI precursor state. A qualitative diagram including both the
weak-coupling and the strong-coupling analysis is given in
Fig. 9.

VI. PERTURBATION AWAY FROM THE INVERSION
SYMMETRIC POINT

So far we have ignored the effect of SO coupling that
breaks Sz symmetry. We analyze the consequences of includ-
ing such process in this section. For small SO coupling∣∣∣∣∣ αso

t
(

sin �
2

)2

∣∣∣∣∣ � 1, (144)

the single-particle band structure is only slightly modi-
fied compared to the case of vanishing αso. This mod-
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-1 -0.5 0 0.5 1

-0.95

FIG. 10. Change in the single-particle spectrum between αso = 0
(dashed curve) and αso/t = 0.01 (solid curves) around the Fermi
energy EF (horizontal black line). Here we plot the bottom of
the lower bands of the single-particle spectrum as a function of
momentum ka. The displacement of the Fermi momenta between the
two cases is denoted by δ. (Inset) Full band spectrum.

ification is sketched in Fig. 10. By a direct compu-
tation, we find that the original Fermi momenta kF =
(kL

F,↑,2, kR
F,↑,2, kL

F,↑,1, kR
F,↑,1, kL

F,↓,2, kR
F,↓,2, kL

F,↓,1, kR
F,↓,1) change

from

k0
F = �

3a
(−2,−1, 1, 2,−2,−1, 1, 2) (145)

for αso = 0 to

kα �=0
F = k0

F + δ(1,−1,−1, 1,−1, 1, 1,−1), (146)

with δ = αso

sin �
6

, for nonvanishing perpendicular SO coupling.

This implies that the operator that induces the FTI precursor
still conserves momentum in the presence of small αso SO
coupling for the exact same effective 1/3 per helicity. A
nonzero αso nevertheless breaks inversion symmetry, so we
cannot obtain closed expressions for the Luttinger parameters.
For αso �= 0, it is always possible to fix the Fermi energy to
satisfy the requirement of momentum conservation that gives
rise to the FTI operator, as long as the combinations of α̃ =
αso/t , the Fermi energy ẼF = EF/t , the interleg tunneling
t̃⊥ = t⊥/t given by

A1 = 4ẼF cos�/2, A2 = 4α̃ sin�/2, (147)

B = 4
(
Ẽ2

F − α̃2 − t̃2
⊥
)+ 2 cos�. (148)

reside inside the simplex shown in Fig. 11. A detailed deriva-
tion of this is given in Appendix J.

VII. TR BREAKING EXTERNAL PERTURBATIONS

Having established the existence of the FTI precursor
phase, we can consider its stability against TR symmetry
breaking perturbations. The findings of Ref. [83] based on
a phenomenological FTI edge model suggest that the sys-
tem may display a degree of robustness against weak TR
symmetry breaking, and that moderately strong TR breaking

FIG. 11. Simplexlike volume in the parameter space where the
FTI operator can exist. If the parameters t, αso, t⊥, and � reside
inside the region, it is always possible to set the Fermi energy such
that the FTI operator conserves momentum.

perturbations may be used to probe the FTI phase. Here we
show when such robustness may arise in terms of microscopic
interactions, and suggest a quantized signature of the FTI
precursor. The physical origin of TR breaking depends on the
particular realization of the system. In solid state realizations,
it may correspond to a Zeeman field (due to external magnetic
field or arising, e.g., from coupling to a ferromagnet), while
in cold atomic realizations where TR symmetry is synthetic
(e.g., is based on conditions on the optical coupling [47,50–
52,55,63,64,67]) it may arise from the appropriate detuning
from the TR symmetric point.

A simple example of TR symmetry breaking is that of an
impurity that allows for the hybridization of Kramers pairs.
The perturbation that couples Kramers pairs corresponds to
the backscattering of electrons at one “edge” of the FTI
precursor. The electron operator of chirality η and spin σ in
the FTI precursor phase corresponds to

ψη
e,σ = eiη

√
4πφ̃ησ . (149)

The backscattering between Kramers pairs thus corresponds
to (

ψR
e,σ

)†
ψL

e,σ̄ = e−i
√

4π (φ̃Rσ+φ̃Lσ̄ ). (150)

This operator has scaling dimension

�imp = �
[(
ψR

e,σ

)†
ψL

e,σ̄

] = 3

2

(
1

K+
+ K−

)
. (151)

The Luttinger parameters K± are defined in Eq. (139). For a
single impurity, the first-order RG equation for the backscat-
tering coupling constant is [104]

dgimp

d�
= (1 −�imp)gimp. (152)

As shown in Fig. 12, for a considerable part of the FTI phase,
we have �imp > 1 which means that the FTI precursor can
be made robust against such a TR breaking perturbation.
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FIG. 12. Scaling dimension of the magnetic impurity opera-
tor (ψR

e,σ )†ψL
e,σ̄ . The Luttinger parameter K and x, y are given by

Eq. (139). For vanishing interspin interaction x = y = 0, the scaling
dimension�imp � 3. For sufficiently strong interspin interaction, the
impurity may become RG relevant. In region I, the TR breaking
term is irrelevant. In region II, an extended TR breaking term is
relevant. In region III, TR breaking random disorder and an extended
TR breaking term are relevant in RG sense. In region IV, all forms
of TR breaking terms that involve the process of backscattering
between Kramers pairs are relevant. This figure corresponds to the
case K = 1.

In particular, for vanishing interspin coupling, this operator
is irrelevant for all values of interaction, as K± = K and
3
2 (K + K−1) � 3. Analogous robustness against perturbations
seemingly at odds with a topological phase has also been
noticed for strongly interacting integer topological insulator
edge modes [113]. Including the interspin interaction so that
K± are split, the magnetic impurity operator can become
relevant. The required values of x and y in Eq. (139), however
correspond to strong interspin interactions.

Spatially extended forms of TR breaking perturbations can
also be considered. In this case, the RG equation is analo-
gous to Eq. (38), and irrelevancy in the RG sense requires
�imp > 2. A similar equation also holds for the case of an
spatially extended region with magnetic impurities of random
coupling strength; RG irrelevancy in this case requires�imp >

3/2. These, more stringent, criteria can also be satisfied in
a nonvanishing part of the FTI precursor phase, as shown in
Fig. 12.

A. TR symmetry-breaking-based Thouless pump

While the presence of a large region with �imp < 2 may
seem as a shortcoming, its existence can be exploited to obtain
quantized signatures of the FTI precursor, as we now discuss.
Our suggestion is based on the observation of Ref. [83] that
when a TR breaking perturbation like Eq. (150) gaps an

FTI edge over a spatially extended region, gradually shifting
the phase of the coupling by π to rotate it from a starting
configuration to its time-reversed conjugate, 1

2ν charge is
pumped between the ends of the rotated perturbed region
[114]. Similar fractional pump mechanism has been described
in ultracold atoms subject to synthetic gauge in synthetic
dimensions [85].

In the case of the FTI precursor, we find that due to the
quasi-one-dimensional nature of the system and the existence
of the FTI precursor phase, the process that can gap the edge
appears at third order in perturbation theory. By controlling
the phase in the coupling between the different spin projec-
tions, it is possible to induce a charge pumping of 1/6, as in
the edge of a true 2D FTI.

It must be noted that we do not assume in the following
that the interspin interactions vanish, instead we assume that
the FTI precursor phase exists and the FTI gap is the largest
scale, and that the perturbations considered in this section
have sufficiently large amplitudes so that they control the
gap of the FTI edge modes. This allows for small interspin
interactions (in a similar sense to that in Sec. V B) to be still
present.

Specifically, we introduce two microscopic perturbations
corresponding to same spin and interspin processes. The
same-spin perturbation that we consider,

HN =
∑
i,σ

Nic
I†
iσ cI

iσ , (153)

preserves time-reversal symmetry. This perturbation corre-
sponds to a modulation of the density along leg I and gen-
erates backscattering between modes within the same spin
projection on that same leg. The interspin perturbation that
we consider,

HM =
∑

i

(
Mi
(
eiχcI,†

i↑ cI
i↓ + cII,†

i↑ cII
i↓
)+ H.c.

)
, (154)

explicitly breaks TR symmetry by effectively implementing
Zeeman terms of magnitude Mi and along the σ1 direction for
leg II and in the σ1 − σ2 plane in an angle set by χ for leg I. In
what follows, we assume that Ni and Mi extend over a length
LTR and that the strength of the backscattering potential Ni is
larger than that of the TR breaking terms Mi.

After diagonalization of the single-particle Hamiltonian,
projecting to the lower band, and discarding the HN,M induced
forward scattering terms as they do not open a gap, we just
consider the Fourier components at ka = n�

3 , (n = 1, 4) of
the potentials N (x),M(x) in the continuum which provide the
momentum necessary to backscatter the low-energy modes.
Using the bosonized expressions for the fermionic operators
at the Fermi points, the potential term becomes

HN =
∑
ββ ′σ

∫
dx
∣∣nσββ ′

∣∣ cos
(√

4π (φσ,β,R + φσ,β ′,L )
)
, (155)

where nσββ ′ = uR
σβuL

σβ ′
∫

ei(kR
F,β−kL

F,β′ )x N (x)
2πa dx. The Zeeman

terms become

HM =
∑
ββ ′σ

∫
dx
∣∣mσ

ββ ′
∣∣ cos

(√
4π (φσ,β,R + φσ̄,β ′,L ) + χ̃ σββ ′

)
,

(156)
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where the amplitude is, assuming for simplicity that the
potential M(x) is an even function

mσ
ββ ′ = (

uR
σβuL

σ̄ β ′eiχ + vR
σβv

L
σ̄ β ′
) ∫

ei(kR
F,β−kL

F,β′ )x M(x)

2πa
dx.

(157)
and χ̃ σββ ′ = Arg(mσ

ββ ′ ). The tensors u and v are defined in
Eq. (20). As seen from Eqs. (155) and (156), these backscat-
tering perturbations can be written as Ha = H‖

a + H⊥,2
a +

H⊥,4
a where a = N,M. The perturbations H‖

N,M connect Fermi
points of different chirality within the same valley, and their
amplitudes are controlled by the Fourier components of N (x)
and M(x) at ka = �/3, while H⊥,n

N,M connect opposite chirality
states between different valleys and exist provided that the
Fourier component of the potentials at ka = n�/3 does not
vanish and that tunneling between the legs of the ladder is
nonzero. Note that due to the nonvanishing tunneling between
the legs of the ladder, even focusing on a particular leg (I) pro-
duces terms involving the other (II), but with parametrically
small strength.

In the FTI precursor phase, these perturbations are sup-
pressed by the existence of the FTI gap mFTI, as they generate
bulk excitations. This occurs in a way similar to the process
(106). Performing the projection of high-energy states, all the
backscattering processes do not contribute at first or second
order. At third order, the only processes that does not vanish
after projecting out the high-energy degrees of freedom are

HMG =
∑
σ

gσMG

∫
dx cos

(√
4π (φ̃R,σ + φ̃L,σ̄ ) + χ̃ σ21

)
,

where gMG ∼ a2|nσ22nσ̃11mσ
21|

m2
FTI

+ O(|m|2). Note that the main con-
tribution to this effective amplitude is first order in the TR
breaking process. In the region where this term is relevant
(regions II, III, and IV in Fig. 12) and/or has sufficiently large
coupling gσMG compared to gd

6 to control the gap of the FTI
edge modes, it will also control the (χ̃σ21 dependent) value to
where of the field combination φ̃R,σ + φ̃L,σ̃ is locked.

1. Pumping protocol

Once the edge has been gapped according the procedure
described above, it is possible to manipulate the configuration
to create a domain wall trapping 1/6 charge (i.e., particle
density integrated across the domain wall).

The edge mode combination θ̃σ = φ̃R,σ + φ̃L,σ̄ is locked
into a minimum that depends on the angle χ̃ σ21 throughout
the region of length LTR (that can correspond to the whole
length of the ladder as well). This angle can in principle be
manipulated by rotating the leg I Zeeman term in Eq. (154)
to change the parameter χ . By adiabatically advancing the
angle χ (see also Fig. 13) to its TR conjugate value χ + π

in a segment of size LDW within the region of length LTR, two
domain walls are created separated by a distance ∼LDW. We
note that, although χ governs both χ̃

↑
21 and χ̃

↓
21, and hence

the locking value of θ̃↑ and θ̃↓ characterizing opposite edges,
advancing χ by π has a topologically distinct effect on χ̃↑

21 and
χ̃

↓
21, provided the interleg tunneling is sufficiently small. In

this case, while the complex number m↑
21 encircles the origin

in the complex plane (Fig. 14, left) thus advancing χ̃↑
21 by π

FIG. 13. A TR breaking perturbation can gap out a pair of edge
modes. This mechanism locks the field θ̃↑ to a value tracking the
angle χ of the rotating Zeeman term (illustrated by the ribbon
of vertical bars) between the fermions to the left of the diagram.
(Top) Initial gapping configuration, corresponding to a constant χ
throughout the edge. (Bottom) Adiabatically changing the value of
χ within a sector of the gapped edge produces a domain wall,
represented by the twisted ribbon. A domain wall between TR
conjugate configurations has 1/6 fractional charge, corresponding to
the excess accumulated particle density depicted in red.

as well, the complex number m↓
21 does not enclose the origin

(Fig. 14, right) and thus the phase of θ̃↓ returns to its original
value. As a result, in terms of the FTI edges, the domain
walls arise only in one of these, the other one returns to
being uniformly gapped along the length LTR. The appealing

FIG. 14. An adiabatic change of the microscopic phase χ from
0 to π advances only one of the phases χ̃ σ21, and it does so by the
same amount. This occurs because the complex number m↑

21 encircles
the origin during the adiabatic change (left diagram), while m↓

21 does
not (right diagram). In the left (right) diagram, the black horizontal
arrow represents vR

↑βv
L
↓̄βv

R
σβv

L
σ̄ β while the other arrow that traverses

the semicircumference is uR
σβuL

σ̄ βeiχ .
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feature of being able to advance χ̃↑
21 only with our protocol is

a physically intuitive consequence of the rotating part of the
microscopic perturbation Eq. (154) being concentrated in one
leg, and that of the tunneling being small.

The charge accumulated in the domain walls is conve-
niently obtained using the bosonization language. Recalling
that in the FTI phase the charge density per edge is given by

ρedge = − 1

3
√
π

(∂xφ̃L↑ + ∂xφ̃R↓), (158)

the accumulated charge across a domain wall, is given by

δq =
∫

dom.
wall

ρedge = − 1

3
√
π

(φ̃L↑ + φ̃R↓)

∣∣∣∣dom.
wall

= ±1

6
, (159)

as the locking values for the field combination
√

4π (φ̃L↑ +
φ̃R↓) at the two sides of a domain wall differ by ±π . Our pro-
tocol thus pumps charge 1/6 between the two domain walls
per half-cycle (defined such that a full cycle corresponds to
χ → χ + 2π , i.e., returning the Zeeman fields to the original
configuration).

Although this signature of the topological phase can be
seen in principle, clearly the quasi-one-dimensional nature of
the system conspires against the existence of a truly topo-
logical ordered state. In the next section, we provide some
arguments towards the stabilization of the true topological
system by coupling FTI precursor states.

VIII. EXTENSION TOWARDS A 2D SYSTEM

As we have seen, a key process competing against the
emergence of the FTI precursor is the backscattering between
“opposite” FTI edges. One may hope that upon extending
the ladder towards a 2D system, such processes may be sup-
pressed. By considering a multileg ladder system consisting
of several FTI precursors coupled together, we show that this
is indeed the case. While a microscopic description for such
multileg ladders is beyond the scope of this work, we will, in
the spirit of the coupled wire constructions [29,30], show that
if a process between neighboring ladders can be generated that
dominates over the intraladder quasiparticle backscattering
and suitably gaps the neighboring “edge” modes, the quasipar-
ticle backscattering that survives is exponentially suppressed
in the number of ladders.

We start by considering two copies of the FTI precursors,
labeled I and II (see Fig. 15). We assume that an interladder
process can be generated that pins the combination of fields

θlink,σ = φ̃Rσ,I + φ̃Lσ,II. (160)

The conjugate field to θlink,σ is given by

ϕlink,σ = φ̃Rσ,I − φ̃Lσ,II. (161)

Deep in the gapped phase as described in the strong-coupling
section, a quasiparticle can tunnel from one edge of the FTI
precursor to the other via the process Od

6,proj. Once the gap
is opened between the two FTI precursor copies forming a
larger correlated state, we have to project out the high-energy
degrees of freedom of the low-energy theory. To do so, we
first write the backscattering operators in terms of the massive

FIG. 15. Coupling scheme towards a two-dimensional realiza-
tion. (a) The coupling two FTI precursors, such that their closest
edges are gapped by an FTI gap opening term Oσ

FTI, still contains
residual terms of Od

6 , (b) Once the gap between the two FTI copies of
the FTI precursor is opened, the residual terms become quasiparticle
tunneling operators between the different edges, but suppressed by
an exponential factor in the number of copies of the FTI precursors
involved in the construction.

degrees of freedom

Od,I
6,proj = (

ei
√
π

3 (θlink,↑+ϕlink,↑+θlink,↓−ϕlink,↓ )

× ei
√

4π
3 (φ̃L↑I+φ̃R↓I ) + H.c.

)
(162)

and

Od,II
6,proj = (

ei
√
π

3 (θlink,↓+ϕlink,↓+θlink,↑−ϕlink,↑ )

× ei
√

4π
3 (φ̃L↓II+φ̃R↑II ) + H.c

)
. (163)

These processes now create high-energy excitations in-
volving solitons in the FTI precursor phase, which have
energy of the order of the gap. By projecting out these high-
energy states, the operators above do not contribute to first
order in the interspin interaction coupling g̃d

6. In second order
perturbation theory the combination Od,I

6,projO
d,II
6,proj creates pro-

cesses that survive the high-energy projection, in particular,[
Od,I

6 Od,II
6

]proj = (
ei

√
4π
3 (φ̃R↓I+φ̃L↓II+φ̃L↑I+φ̃R↑II ) + H.c.

)
.

This projected operator corresponds to correlated quasiparti-
cle tunneling between the edges of the extended system. The
prefactor of this operator is g(2)

qp ∼ (g̃d
6)2/m(�1).

Following the same procedure, we find that in the case of
N copies of the FTI precursors, the coupling of the backscat-
tering operators g(N )

qp scales as

g(N )
qp = g̃d

6

(
g̃d

6

m(�1)

)N

, (164)

which decreases exponentially in the transversal size of the 2D
system, as expected. This exponential decrease of the coupling
with the transversal size of the system helps to stabilize the
FTI phase, as the competing order induced by Od

6 becomes
negligible. In terms of the ratio between the gaps generated
by both terms, we find that mlow/m → 0 as N increases.

IX. SUMMARY AND DISCUSSION

In this work, we have analysed the physics of SO ladders
focusing on the possibility of creating a precursor of an FTI
phase. Given the quasi one-dimensional nature of the sys-
tem, we could take an analytical, microscopically motivated
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approach, providing a complementary perspective to numer-
ics on small 2D systems [32,35–40] and phenomenological
constructions [42,44,115]. We considered a microscopic TR
invariant Hamiltonian, describing a spinful two leg ladder
with interactions and SO coupling. The SO coupling generates
an effective flux ±� of opposite sign for opposite spins and
we focused on the case of a fractional effective filling ν = 1/3
per spin.

To locate the region of the parameter space where the FTI
precursor may appear, we first investigated the spin-decoupled
case, i.e., when the z component of the spin is conserved
and interspin interactions vanish. In this case, the physics is
equivalent to that of interacting spinless fermion ladders in a
magnetic flux at ν = 1/3 filling, or equivalently, 1D spinful
fermions with spin-orbit coupling and Zeeman fields, both
systems of considerable interest, in part due to the possibility
of Laughlin precursor states [24–27], and fractional helical
liquids (of potential utility for quantum computation) [94],
respectively.

Our results include novel findings pertinent already to
these cases, originating in the interrelation of forward and
backscattering parameters highlighted by our microscopic and
symmetry analysis. Using a weak-coupling RG approach and
considering weak interleg tunneling t⊥ while allowing also
strong microscopic interactions, we found three phases: a
fully gapless Luttinger liquid with dominant BDW, OAF or
triplet superconducting QLRO; a phase induced by correlated
density fluctuations in each leg, characterized by an interleg
partial gap (the leg analog of the familiar spin-gap in spin-
ful 1D fermion systems) displaying RDW, CDW, or singlet
superconducting QLRO; and the FTI (Laughlin) precursor
phase. For the concrete form of the interactions we consid-
ered, we could also establish that the repulsive part of the
leg-SU(2) invariant line leads into the interior of the FTI
precursor region. Along this line, due to the aforementioned
interrelation, the interleg partial gap, while competing with
the FTI phase, is suppressed logarithmically. With suitable
interaction anisotropy, a stronger suppression of the interleg-
gap can also be achieved, thus eliminating this competition.
Further discussion of this spin-decoupled case is provided in
Sec. IV A 3. The phases of the spin-decoupled SO ladder are
summarized in Fig. 6.

With the FTI part of the spin-decoupled phase diagram
identified, we performed a detailed study in this regime, first
assessing the stability against weak interspin interactions. A
weak-coupling RG analysis shows that interspin interactions
introduce competition against the FTI phase. This competition
can result in three outcomes depending on the nature of the
interspin interaction (attractive or repulsive), and its strength.
For sufficiently small interspin interaction, the FTI phase sur-
vives. Focusing on the most RG-relevant competition, Od

5,6,
we find that beyond a critical value of interspin repulsion the
system shows BDW and OAF QLRO order with combined
orbital and spin structure that is odd under TR symmetry,
indicating the onset of TR symmetry breaking. On the other
hand, for interspin attraction beyond a critical value, the
system develops BDW and OAF QLRO consistent with TR
symmetry. We also noted that while the effective strength of
interspin interactions is influenced directly by the microscopic
interaction parameters, the Od

5,6 couplings are suppressed as

O(t2
⊥) for small t⊥, scaling favorably compared to the O(t⊥)

FTI term. This may allow the FTI precursor to survive also
for stronger interspin interactions, provided the regime can
be reached where Od

5,6 is the only competitor against the FTI
precursor phase. Thus, while influenced by the presence of in-
terspin interactions, the FTI precursor persists in a significant
part of the parameter space. The FTI and adjacent regions of
the phase diagram in the presence of interspin interactions are
depicted in Fig. 7.

To obtain a perspective complementary to our weak-
coupling RG analysis, we have also examined the FTI precur-
sor phase at strong coupling, i.e., its nature and stability from
a starting point with an FTI partial gap. Here we found that in
the absence of interspin interactions, the FTI phase is robust
against the perturbation of correlated density fluctuations in
each leg that promotes the interleg gap. This process generates
high-energy anyonic excitations in the bulk of system and
renormalizes the gapless FTI edge modes. An emergent FTI
precursor low-energy physics is thus compatible with this
competition. The presence of interspin interactions generates
a process that leads to correlated backscattering of quasiparti-
cles between the gapless edges and this does compete against
the FTI precursor at strong coupling by promoting a tendency
to open a gap for the FTI precursor edge modes. The FTI
precursor can be viewed as being present only when this edge
mode gap is negligible compared to the FTI gap. The resulting
strong-coupling phase diagram is shown in Fig. 9.

We have also verified that the FTI precursor is robust
against the inclusion of a small SO coupling that does not
preserve the z component of the spin. However, large such
SO couplings eliminate the term driving the system to the
FTI phase. Regarding the particle density, while we focused
on precisely ν = 1/3 filling, the FTI precursor is expected
to be robust against small deviations from this value up to a
commensurate-incommensurate transition [24,104].

Motivated by the possibility to include TR breaking pertur-
bations we have also studied how a fractional Thouless pump
may be created. Using a protocol [83,114] based on advancing
the orientation of Zeeman-like terms to their TR conjugate
configuration in an extended spatial region, we showed that
±1/6 charge is pumped between the corresponding domain
walls as in the case of a true 2D FTI. This quantized signal of
the topological nature of the FTI precursor state is remarkable
in the view that owing to the quasi-1D nature of the system,
true topological order is absent, as indicated by the existence
of local order parameters displaying QLRO.

For the case of nonzero interspin interactions and/or spin-z
nonconserving SO coupling, our results complement exact
diagonalization numerics on 2D FTIs [32,35]. While the
ν = 2/3 per spin fermionic systems of Ref. [32] are more
complicated (and expected to be less stable [31]) than the
ν = 1/3 Laughlin case we considered, the ν = 1/2 bosonic
Laughlin study of Ref. [35] provides a closer comparison. It
finds similar conditions for stability as our results, though with
tolerance to stronger interspin interactions.

A closer comparison in this regard requires extrapolating
our findings from the quasi-1D to the 2D regime. To this end,
we have developed a coupled wire [29,30] inspired procedure
that provides qualitative insights using our quasi-1D ladders
as elementary building blocks for a 2D system. The results
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from this procedure suggest that the competing processes
due to interspin interactions are suppressed exponentially in
the number of constituent ladders, indicating that the FTI
precursor becomes increasingly robust upon moving towards
2D.

While in our starting phase diagram (Fig. 6), we focused
on a concrete, up to next-nearest-neighbor, form of interac-
tions, our findings are expected to generalize. In particular,
as reaching the required FTI Luttinger parameter regime
requires only the long-wavelength Fourier component of the
interactions to be strong, an interesting generalization is to
allow for less strong interactions but to increase their range.
By taking advantage of this freedom, we expect to be able
to significantly expand the zoo of models supporting the FTI
precursor phase.

Ultracold atomic systems provide a natural platform to-
wards the experimental realization of FTI precursors due to
existing schemes for imprinting large synthetic, including
TR-invariant, fluxes [45–48,50,52–62,67–76,79,116] and the
control of interactions. Here, challenging aspects include
reaching the quantum degenerate regime combining fluxes
with strong and/or long-range interactions. Particularly chal-
lenging is to generate the requisite repulsion between (the
degrees of freedom corresponding to) same spin species while
keeping interspin interactions sufficiently weak (or reaching a
regime where their t⊥-based control suffices). Dipolar Fermi
gases [117,118] may offer a promising starting point as they
furnish two of the key ingredients: they experience long-
range interactions and they may be subjected to the magnetic
field gradient scheme of Refs. [52,116] for imprinting uni-
form fluxes of opposite sign for internal states with opposite
magnetic moment, i.e., the form of the spin-orbit fluxes we
focused on.

The FTI precursors studied here may motivate new re-
search on SO ladders and our work will provide useful guid-
ance for such future investigations. A particularly interesting
next step would be to study the strongly interacting regime
from a fully microscopic perspective (e.g., using the density
matrix renormalization group), which may confirm and re-
fine the conditions we find for stabilizing the Laughlin and
FTI precursor states, and demonstrate the quantized pumping
signature we predict in numerical simulations. Investigating
further indicators of topology (such as string order parameters
[119,120] or entanglement features [121–124]) in the FTI pre-
cursor regime is another interesting future direction. Looking
ahead, the line of inquiry initiated here, in conjunction with
such new studies and the rapid progress in ultracold atom
systems, will hopefully lead to a clear path towards creating
and detecting FTI precursor states, and ultimately 2D FTIs, in
experiments.
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APPENDIX A: INTEGRATION OF HIGH-ENERGY
BAND MODES

The single-particle energy bands E+
± (k̃) of Eq. (5) are sepa-

rated from the lower energy bands E−
± (k̃) by an energy gap of

the order of the interleg tunneling strength t⊥. As we work
at small fillings, such that the upper bands are completely
empty, we consider just the states related with the lower bands,
discarding the contributions from higher bands. In a truly
two-dimensional scenario, this approximation corresponds to
a projection into the lowest Landau level.

As we will be interested in small momentum around
the Fermi points, we introduce four branches of fermion
fields, each one associated with a particular Fermi point, and
linearize the dispersion relation around these points. These
branches correspond to Eq. (16). These four branches can be
thought as capturing the correct degrees of freedom for a small
momentum and energy window around the Fermi points and
Fermi energy. Nevertheless, note that by modifying the UV
theory, these branches can be made to be the exact description
for the fermions.

Concerning the high-energy modes of the lower band, it
is important to clarify their role in the renormalization of
the interaction parameters. In particular, we are interested
in the FTI term which appears by considering second order
processes in the interactions. Here we explore the effect of
higher energy modes in a simplified model where we consider
the following expansion of the fermion operator, that contains
the previously discussed four branches, and a high-energy
mode ψ+

i,σ describing the states around k = 0(
cI

i,↑
cII

i,↑

)
=
∑
η

(
cosαη2 − sin αη1
sin αη2 cosαη1

)(
ψi,↑,2,η
ψi,↑,1,η

)
+
(
ψ+

i,↑
ψ+

i,↑

)
, (A1)

and similarly for the opposite spin components.
Note that although it is convenient to think of this splitting

of the microscopic fermion fields in terms of branches as
a linearization around the Fermi points, conceptually it is
possible to argue that by modifying the UV model, this branch
decomposition becomes exact. This change in the UV does
not affect the low-energy description of the system. The main
observation is then that to first order in the interaction, the
matrix elements with respect to the original fermions are the
same as the matrix elements of the interaction with respect to
the branch splitted fermion.

Once we have split the fermion mode as discussed above,
we consider a derivative expansion of the Hamiltonian for the
band modes. For simplicity, we consider the case αso = 0.
This Hamiltonian is composed of two pieces, the kinetic term
Hkin and the interaction Hint. In the continuum, we have

Hkin = i
∑
σ,α,η

∫
dxvFψ

†
σ,α,η

(
∂x − ikηF,α

)
ψσ,α,η

+
∫

dx

(
∂xψ

†+
σ ∂xψ

+
σ

2meff
+ μeffψ

†+
σ ψ+

σ

)
, (A2)

for the kinetic energy of the fermions, where a2m−1
eff =

t (cos �
2 − t

t⊥
sin2 �

2 ) and μeff = −t⊥ + 2t sin �
3 sin �

6 . This

effective description is valid for momenta k � t⊥
at sin �

2 . Note
that the kinetic term of the high-energy mode has the opposite
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FIG. 16. Band spectrum approximation for the lower partially
filled band and the high-energy state around lattice momentum
k = 0. The full band spectrum is depicted with tenuous lines. We
use a linear approximation for the fermion dispersion relations in the
lower band, around the Fermi points (straight black lines). For the
higher energy mode, we use an inverted quadratic dispersion relation.

sign to the usual term, to reproduce the inverted parabolic
dispersion around k = 0 (See Fig. 16). The interaction

FIG. 17. The FTI process appears in second order in the inter-
actions, after integrating out higher energy modes. Each process
involving four fermions conserves momentum. The processes are
depicted by black arrows.

Hamiltonian, including same leg interaction on site V s
‖ , inter-

leg interaction on the same rung V s
⊥,0 and interleg interaction

between next-nearest neighbors V s
⊥,1, focusing on vanishing

interspin interactions reads

Hint =
∫

dxV s
‖
∑

A=I,II

cA†
σ (x)cA

σ (x)cA†
σ (x + a)cA

σ (x + a) + 2V s
⊥,0cI†

σ (x)cI
σ (x)cII†

σ (x)cII
σ (x)

+V s
⊥,1
(
cI†
σ (x + a)cI

σ (x + a)cII†
σ (x + a)cII

σ (x + a) + cI†
σ (x + a)cI

σ (x + a)cII†
σ (x)cII

σ (x)
)
, (A3)

where the fermion field cA
σ given by (A1) receives contributions from the four Fermi points and the mode ψ+

σ . For economy of
notation, we use Hint = Hint[ψσ,α,η;ψ+

σ ] as the interaction Hamiltonian is a functional of the the lower band fields ψσ,α,η and the
high-energy mode ψ+

σ . At tree level, the equation of motion of the high-energy field ψ+
σ is

ψ+
σ (x) = − 1

μeff

δHint

δψ
†+
σ (x)

∣∣∣∣
ψ+
σ =0

+ O
(
μ−2

eff

)
. (A4)

where δ
δφ(x) is the functional derivative with respect to φ(x). Using this equation of motion to solve for the heavy field ψ+

σ , and
inserting back into the Hamiltonian, we find to first order in the inverse mass μeff the Hamiltonian

H = i
∑
σ,α,η

∫
dxvFψ

†
σ,α,η

(
∂x − ikηF,α

)
ψσ,α,η + Hint[ψσ,α,η; 0] − 1

μeff

∫
dx
∑
σ

∣∣∣∣ δHint

δψ+
σ (x)

∣∣∣∣
2

ψ+
σ =0

. (A5)

The integration of the higher energy modes generates a renormalization of the interaction parameters at second order. It is also
the responsible for the generation of the FTI term Oσ

FTI. This can be seen directly by expanding the interaction term using the
decomposition (A1). Assuming a local interaction in the sense of Sec. III B, the expansion of the interaction generates many
different terms. Writing explicitly just a few

Hint =
∫

dx
{
V s

‖
(

cosαL
1

)2
cosαR

1 (ψ†
↑,1,Lψ

+
↑ )(ψ†

↑,1,Lψ↑,1,R) + V s
‖ cosαL

2

(
cosαR

2

)2
(ψ+†

↑ ψ↑,2,R)(ψ†
↑,2,Lψ↑,2,R) + · · · } (A6)

where the ellipsis indicates that many more terms are generated, including the ones proportional to V s
⊥,0 and V s

⊥,1 This leads to∣∣∣∣ δHint

δψ+
σ (x)

∣∣∣∣
2

ψ+
σ =0

= (V s
‖ )2

(
cosαL

1 cosαR
2

)2
cosαR

1 cosαL
2 (ψ†

↑,1,L )2ψ
†
↑,2,L (ψ↑,2,R)2ψ↑,1,R + · · · (A7)

= (V s
‖ )2

(
cosαL

1 cosαR
2

)2
cosαR

1 cosαL
2Bσ†

FTI + · · · (A8)

with BσFTI given in Eq. (25) the operator that leads to the FTI phase. The whole prefactor is obtained considering all appropriate
terms in the expansion above. It is written explicitly in Eq. (B7). This second-order process can be visualized in Fig. 17.
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APPENDIX B: INTERACTION STRENGTH OF DIFFERENT COSINE TERMS

In this section, we discuss in detail the magnitude and sign of the prefactors corresponding to each cosine term considered in
the main text that opens a gap. These operators are Os

1σ , Od
5 , Od

6 , and Oσ
FTI.

Any four particle term is given generically in our model by the expression

Aη1η2η3η4σσ
′

a1a2a3a4
ψ†
σa1η1

(x)ψσa2η2 (x)ψ†
σ ′a3η3

(x′)ψσ ′a4η4 (x′), (B1)

where A is a prefactor that depends on the interaction parameters V s,d
‖ and V s,d

⊥,i . To first order on the interaction strength, it
is given by the expression (24). Up to an overall positive combinatorial factor, we find that the operator Os

1σ appears in the
Hamiltonian in the following form:

ḡs
1σOs

1σ = ALRRLσσ
1122 (ψ†

σ,1Lψσ,1Rψ̂
†
σ,2Rψ̂σ,2L + ψ̂

†
σ,1Lψ̂σ,1Rψ

†
σ,2Rψσ,2L )

−ALLRRσσ
1122 (ψ̂†

σ,1Lψσ,1Rψ
†
σ,2Rψ̂σ,2L + ψ

†
σ,1Lψ̂σ,1Rψ̂

†
σ,2Rψσ,2L ) + H.c., (B2)

where we have used the ψ̂ to denote that the field is evaluated at a different spatial point that ψ . In term of the slow fields
Rσ,a,Lσ,a, to first order in the interaction parameters, using the expression (24), we find that this contribution is given by
ḡs

1σ (R†
σ1Lσ1L†

σ2Rσ1 + H.c.) with

ḡs
1σ = a

(2πa)2

(
V s

‖ sin 2αR
2 sin 2αL

2 (cosπaρ − cos�) + 2V s
⊥,0 cos 2αR

2 cos 2αL
2

+V s
⊥,1
[
(cosπaρ − cos�) + (cosπaρ + cos�) cos 2αR

2 cos 2αL
2

])
, (B3)

where we have left explicit the dependence on the 1D density ρ = 2Nleg/L per spin. For the particular filling ν = 1/3 that we
are interested, this becomes

ḡs
1σ = a

(2πa)2

(
V s

‖ sin 2αR
2 sin 2αL

2

(
cos

�

3
− cos�

)
+ 2V s

⊥,0 cos 2αR
2 cos 2αL

2

+ V s
⊥,1

[(
cos

�

3
− cos�

)
+
(

cos
�

3
+ cos�

)
cos 2αR

2 cos 2αL
2

])
, (B4)

where the angles are αηa = 1
2 arctan ( −t⊥

t sin(kηFa ) sin �
2

). Note that for zero interleg tunneling t⊥ = 0, the prefactor ḡs
1σ simplifies to

ḡs
1σ = a

2(πa)2

(
V s

⊥,0 + V s
⊥,1 cosπaρ

) = a

2(πa)2

(
V s

⊥,0 + V s
⊥,1 cos

�

3

)
, (B5)

where the second expression is valid for filling ν = 1/3.
We also find for the operators Od

5 and Od
6 the following expressions for their prefactors, in first order in the interaction

strength:

ḡd
5 = a

2(2πa)2
(V d

‖ + V d
⊥ )
(

sin 2αR
2

)2
and ḡd

6 = a

2(2πa)2
(V d

‖ + V d
⊥ )
(

sin 2αL
2

)2
. (B6)

The prefactor of the FTI operator is a little more difficult to obtain. Up to an overall combinatorial factor absorbed in εt⊥
below, the prefactor of Oσ

FTI is given, at second order in the interaction by

ḡFTI = − ε2
t⊥

2π3vF

(
V‖ cos2

(
�

3

)(
cosαR

2 cos2 αL
2+sin αR

2 sin2 αL
2

)+ sin 2αL
2

2

(
cosαR

2 + sin αR
2

)(
V s

⊥,0 + V s
⊥,1 cos2

(
�

3

)))2

.

(B7)

To obtain this result, we have projected out the high-energy single-particle band. For weak t⊥, given that the FTI process is a
single interleg tunneling event dressed by interactions, we have ḡFTI ∝ t⊥. This property is generic, valid also beyond the weakly
interacting regime.

APPENDIX C: KLEIN FACTORS

The fermionic fields ψσ,α,η(x) = κ
η
σα√
2πa

eiη
√

4πφσ,α,η , satisfy anticommutation relations due to the commutation rela-

tions [φσ,α,η(x), φσ̃ ,β,η̃(x′)] = i
4 (σ3)ηη̃δσ σ̃ δαβsgn(x − x′), and the Klein factors κησα = eiπ

∑
(σ ′ ,α′ ,η′ )<(σ,α,η) Nη

σ ′α′ , where (following
Refs. [30,125])

Nη
σα = 1√

π

∫
dx∂xφσ,α,η with

[
Nη
σα,

√
4πφσ ′,α′,η′ (x)

] = iδσσ ′δαα′ (σ3)ηη′ . (C1)
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We use the ordering ↑<↓, 1 < 2, and L < R, in this order of prevalence. So, for example,

(↑, 1,L) < (↑, 1,R) < (↑, 2,L) < (↑, 2,R) < (↓, 1,L) < (↓, 1,R) < (↓, 2,L) < (↓, 2,R). (C2)

This ordering makes the Klein factor commute and the fermions anticommute. The interaction operators Oi after bosonization,
acquire a string of Klein operators, with eigenvalues ±1. So for example, the interaction Os

1σ is

Os
1σ = ψ

†
σ,1,Rψσ,1,Lψ

†
σ,2,Lψσ,2,R = −eiπ (NL

σ,1+NL
σ,2 )e−i

√
4π (φσ,1,R+φσ,1,L−φσ,2,L−φσ,2,R ). (C3)

The factor κL
σ,1κ

L
σ,2 = eiπ (NL

σ,1+NL
σ,2 ) commutes with the exponential operators, as they do not change the number of total left

movers. To determine the correct sign of a prefactor in an operator we compare the bosonic expressions with the original
fermion expressions. Note that the scaling dimensions of the operators are insensitive to the Klein factors. The other operators
considered explicitly in the text in their bosonized form are

Oσ
FTI = ei(

√
4πθgσ+π (NL

σ,1+NR
σ,1+NL

σ,2 )) + H.c., (C4)

O9,↑↓ = Od
5 = ei

√
4π
3 (θg↑−θg↓+2(φ̃L↑+φ̃R↑−φ̃L↓−φ̃R↓ ))+iπ (NL

↑,1+NR
↑,1+NL

↑,2−(NL
↓,1+NR

↓,1+NL
↓,2 )) + H.c., (C5)

O10,↑↓ = Od
6 = ei

√
4π
3 (2(θg↑−θg↓ )+φ̃L↑+φ̃R↑−φ̃L↓−φ̃R↓ )+iπ (NR

↑,1−NR
↓,1 ) + H.c. (C6)

When discussing the FTI phase at strong coupling in Sec. V, the projection of the massive degrees of freedom is carried out
without eliminating the Klein factors. Therefore

Oσ
FTI = ei(

√
4πθgσ+π (NL

σ,1+NR
σ,1+NL

σ,2 )) + H.c., (C7)

Oproj
9 = ei 2

√
4π

3 (φ̃L↑+φ̃R↑−φ̃L↓−φ̃R↓ )+iπ (NL
↑,1+NR

↑,1+NL
↑,2−(NL

↓,1+NR
↓,1+NL

↓,2 )) + H.c., (C8)

Oproj
10 = ei

√
4π
3 (φ̃L↑+φ̃R↑−φ̃L↓−φ̃R↓ )+iπ (NR

↑,1−NR
↓,1 ) + H.c. (C9)

1. Commutation relations and Klein factors

It is convenient to absorb the Klein factors in the definition of the boson fields. Doing this changes the commutation relations
of the fields by a central element, i.e., an element that commutes with all the fields of the theory. This central element accounts
for the difference between the functions sgn(x) and 2�(x). In particular, the fields that describe the bulk of the FTI state,

θgσ = φσ,1,L + 2φσ,1,R + 2φσ,2,L + φσ,2,R, ϕg,σ = φσ,1,L + 2φσ,1,R − 2φσ,2,L − φσ,2,R, (C10)

have a commutation relation [θgσ (x), ϕgσ ′ (y)] = i 3
2 sgnδσσ ′ (x − y). Keeping explicitly the Klein factors, the fields become

θgσ → θgσ +
√
π

2

[
NL
σ,1 + NR

σ,1 + NL
σ,2

]
, ϕgσ → ϕgσ −

√
π

2

[
NL
σ,1 + 3NR

σ,1 + NL
σ,2

]
, (C11)

with commutation relation [θgσ (x), ϕgσ ′ (y)] = 3iδσσ ′ ( 1
2 sgnδσσ ′ (x − y) + 1

2 ) = 3iδσσ ′�(x − y). This difference is important in
determining the effect of the kink operators in the field configurations of the bosons. We choose the Klein factors of the field
ϕgσ such that the kink operator that appears in Sec. V induces changes between different minima of the field θgσ . The difference
disappears in the commutation relation of the densities, which involve derivatives of the boson fields.

APPENDIX D: LUTTINGER PARAMETERS

The computation of the forward scattering parameters in Eqs. (33) and (34) involves a point splitting procedure. Different
regularizations provide slightly different results. Here we follow a procedure similar to that in Ref. [104] whereby we keep the
summation over m in Eq. (8) discrete and take the corresponding field arguments to be x and x + ma and subsequently perform
a derivative expansion of our slow fields. The parameters of the forward scattering matrix defined in the text [Eqs. (33) and (34)]
are related to the microscopic parameters through [using V̄ = aV , where V are the microscopic couplings in Eq. (8)]

fmn = V̄ s
‖
2

(
1 − cos

�

3

)
(c+

mn + c−
mn) + V̄ s

⊥,0s−
mn + V̄ s

⊥,1
2

(
s+

mn

(
1 − cos

�

3

)
+ s−

mn

(
1 + cos

�

3

))
+ O(V 2),

gmn = V̄ s
‖
2

(
1 − cos

(m + n)�

3

)
(s+

mn + s−
mn) + V̄ s

⊥,0c−
mn + V̄ s

⊥,1
2

(
c+

mn + c−
mn + cos

(m + n)�

3
(c−

mn − c+
mn)

)
+ O(V 2), (D1)

hmn = V̄ d
‖
2

(s+
mn + s−

mn) + V̄ d
⊥
2

(c+
mn + c−

mn) + O(V 2), and h̃mn = V̄ d
‖
2

(c+
mn + c−

mn) + V̄ d
⊥
2

(s+
mn + s−

mn) + O(V 2),
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where we have introduced the notation c±
mn = cos2(α0

m ± α0
n ), s±

mn = sin2(α0
m ± α0

n ) and α0
m ≡ α0

m�
3

, with α0
k defined below

Eq. (10). The expressions above have been verified to display the correct behavior in the limit of t⊥ = 0, and also for the
case V d

‖,⊥ = 0 of a spinless ladder. As we have discussed in Appendix A, including higher energy process renormalizes the
interaction parameters. The effect of these renormalization corresponds to the O(V 2) terms appearing in the definition of the
forward scattering parameters fmn, gmn, hmn, and h̃mn.

1. Small interleg tunneling t⊥/t � 1

To gain further insight into the general phase diagram and to simplify the relations between the different Luttinger liquid
parameters, we focus on the reflection symmetric case. Reflection symmetry R acts on the low-energy fermion branches ψσ,α,η
as Rψσ,α,η(x)R−1 = ψσ,α,η̄(−x). The phenomenological parameters of a reflection symmetric system satisfy w11 = w22 = w,
with w = f , g, h, h̃. This is an exact symmetry for t⊥ = 0, which receives corrections in the forward scattering matrix by terms
of order (t⊥/t )2. This implies that we can consider this symmetry to be present when working up to and including terms of order
t⊥/t . It is convenient to define the basis of charge and neutral modes per spin projection⎛

⎜⎝
ϒc
σ

�c
σ

ϒσ

�σ

⎞
⎟⎠ =

⎛
⎜⎝

1 1 1 1
−1 1 −1 1
−1 1 1 −1

1 1 −1 −1

⎞
⎟⎠
⎛
⎜⎝
φσ,1,L
φσ,1,R
φσ,2,L
φσ,2,R

⎞
⎟⎠. (D2)

For a reflection symmetric system (assuming that TR and inversion are symmetries as well), the scaling dimension matrix �
simplifies considerably. In the basis (D2), it is given by� = 1

8π

∑
r=± Pr ⊗ diag[Kρ,r,K−1

ρ,r ,K−1
β,r ,Kβ,r]. The Luttinger parameters

are given correspondingly by

Kρ,± =
√√√√1 + f −g− f12+g12±(h−h̃−h12+h̃12 )

4πvF

1 + f +g+ f12+g12±(h+h12+h̃+h̃12 )
4πvF

and Kβ,± =
√√√√ 1 + f +g− f12−g12±(h+h̃−h12−h̃12 )

4πvF

1 + f −g+ f12−g12±(h+h12−h̃−h̃12 ))
4πvF

, (D3)

in terms of the phenomenological parameters.
The scaling dimensions of the four fermion operators considered in the main text are

�s
1 = Kβ,+ + Kβ,−, �d

1 = Kρ,− + Kβ,−,

�d
2 = Kρ,− + Kβ,+, �d

3 = Kβ,− + K−1
β,−, (D4)

�d
4 = K−1

β,− + Kβ,+, �d
5 = �d

6 = Kρ,− + K−1
β,−.

Additionally the scaling dimension of the FTI operator is �FTI = 9
4 (Kρ,+ + Kρ,−) + 1

4 (K−1
β,− + K−1

β,+). Note that given these
relations, we can write

�FTI = 9
4 Kρ,+ + 1

4 K−1
β,+ + 2Kρ,− + 1

4�
d
5 , (D5)

which serves to show that there are no regions where the only relevant operator is the FTI term. To see this, let’s assume that both
�d

1 and �d
5 are larger than 2, so the corresponding operators are irrelevant. This implies that Kρ,− > 2 − min(Kβ,−,K−1

β,−) � 1.
Using Eq. (D5), we see that the FTI term will also be irrelevant.

Working to first order in t⊥/t and using the microscopic interactions that we consider, the previous expressions simplify
further. We find

Kρ,± =
√√√√ 1

1 + (Ṽ s
‖ +V s

⊥,0+V s
⊥,1±(V d

‖ +V d
⊥ ))a

2πvF

and Kβ,± =
√√√√ 1

1 − (V s
⊥,0+V s

⊥,1±V d
⊥−(Ṽ‖±V d

⊥ ))a
2πvF

, (D6)

with Ṽ s
‖ = V s

‖ (1 − cos�/3).
Small interleg tunneling t⊥/t � 1 modifies the scaling dimension matrix, which to first order in (t⊥/t )2 becomes � =

(1 + δU )(�0 + δ�)(1 − δU ), with the matrices δU and δ� first order in (t⊥/t )2. Specifically we find δ�0 = 1
16π

∑
r=± Pr ⊗

diag[ 1
vρ,r

(δλ2,r − δλ1,rK2
ρ,r ), 1

vρ,r
(δλ1,r − δλ2,rK−2

ρ,r ), 1
vβ,r

(δλ4,r − δλ3,rK−2
β,r ), 1

vβ,r
(δλ3,r − δλ4,rK2

β,r )] and

δU =
∑
r=±

Pr ⊗

⎛
⎜⎝

−δ+,r
−δ−,r

δ+,r
δ−,r

⎞
⎟⎠, with δa,r = εa,rγ

a
r + ε−a,r

(vρ,r + vβ,r )
(
Ka
ρ,r − K−a

β,r

) + εa,r

vρ,rK−a
ρ,r − vβ,rKa

β,r

,

(D7)
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and γr = vβ,r K−1
β,r −vρ,r Kρ,r

vρ,r K−1
ρ,r −vβ,r Kβ,r

. In terms of the original microscopic parameters λa,r (t⊥ = 0) ≡ λ0
a,r , the velocities are vρ,r =√

λ0
1,rλ

0
2,r and vβ,r =

√
λ0

3,rλ
0
4,r . The differences δλa,r = λa,r (t⊥) − λ0

a,r and the parameters ε±,r = δ f11−δ f22±(δg11−δg22 )
8π +

r (δh11−δh22±(δh̃11−δh̃22 ))
8π are first order in (t⊥/t )2.

2. Exact expressions for Luttinger parameters

Using the forward scattering matrix M defined in the text [Eqs. (33) and (34)], we can obtain the Luttinger parameters for
our system as follows. The forward scattering matrix M can be written as

M =
∑
r=±

Pr ⊗
(

vF14 + 1

4π
(V + rW )

)
, (D8)

where P± = 1
2 (12 ± σ1) is the projector onto the eigenvalue ±1 of the σ1 Pauli matrix. This decomposition splits the matrix into

two orthogonal subspaces that can be diagonalized independently

M = P+ ⊗ U †
+D+U+ + P− ⊗ U †

−D−U−,

with the matrices D± = diag(λ1,±, λ2,±, λ3,±, λ4,±). The eigenvalues are explicitly

λ1,± = vF + 1

4π

[
f22 + g22 − ( f12 + g12) tan

(
β±

1

2

)
±
(

h22 + h̃22 − (h̃12 + h12) tan

(
β±

1

2

))]
,

λ2,± = vF + 1

4π

[
f11 + g11 + ( f12 + g12) tan

(
β±

1

2

)
±
(

h11 + h̃11 + (h̃12 + h12) tan

(
β±

1

2

))]
,

λ3,± = vF + 1

4π

[
f11 − g11 + (g12 − f12) tan

(
β±

2

2

)
±
(

h11 − h̃11 + (h̃12 − h12) tan

(
β±

2

2

))]
,

λ4,± = vF + 1

4π

[
f22 − g22 − (g12 − f12) tan

(
β±

2

2

)
±
(

h22 − h̃22 − (h̃12 − h12) tan

(
β±

2

2

))]
, (D9)

with

tan β±
1 = 2( f12 + g12 ± (h̃12 + h12))

f11 − f22 + g11 − g22 ± (h11 − h22 + h̃11 − h̃22)
, tan β±

2 = 2(g12 − f12 ± (h̃12 − h12))

f11 − f22 + g22 − g11 ± (h11 − h22 + h̃22 − h̃11)
.

The unitary matrix U± is in turn

U †
± = 1√

2

⎡
⎣ R

( β±
1
2

)
σ1R

( β±
2
2

)
σ1R

( β±
1
2

) −R
( β±

2
2

)
⎤
⎦,

where R(θ ) = eiσ2θ and σ2 is the second Pauli matrix.
Using the forward scattering matrix M and the K matrix K = −14×4 ⊗ σ3 in the basis φT =

(φ↑,1,L, φ↑,1,R, φ↑,2,L, φ↑,2,R, φ↓,1,L, φ↓,1,R, φ↓,2,L, φ↓,2,R), the scaling dimension matrix � is given by

� = 1

8π

∑
r=±

Pr ⊗ Ũ †
r diag

[
Kr

12 Kr
21 Kr

34 Kr
43

]
Ũr . (D10)

The Luttinger parameters satisfy Kr
12Kr

21 = (Kr
34Kr

43)−1 =
√

λ3,rλ4,r

λ1,rλ2,r
in terms of the eigenvalues (D9).

The Luttinger parameters are given by

Kr
ab =

√
λb,r

λa,r

√
�a,r +√

�b,r

2
+
√
�a,r −√

�b,r

2

[√
λb,r

λa,r
cosφr

ab + sin φr
ab tan

θ r
ab

2

]
. (D11)

The functions �a,r are in turn

�1,r = 1

2

[
λ3,r + λ4,r + (λ4,r − λ3,r ) cos

(
βr

1 − βr
2

)
λ2,r

+ λ4,r − λ3,r√
λ1,rλ2,r

tan
φr

12

2
sin

(
βr

2 − βr
1

)]
, (D12)

�2,r = 1

2

[
λ3,r + λ4,r − (λ4,r − λ3,r ) cos

(
βr

1 − βr
2

)
λ1,r

− λ4,r − λ3,r√
λ1,rλ2,r

tan
φr

12

2
sin

(
βr

2 − βr
1

)]
, (D13)
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�3,r = 1

2

[
λ1,r + λ2,r + (λ2,r − λ1,r ) cos

(
βr

1 − βr
2

)
λ4,r

+ λ2,r − λ1,r√
λ4,rλ3,r

tan
φr

34

2
sin

(
βr

1 − βr
2

)]
, (D14)

�4,r = 1

2

[
λ1,r + λ2,r − (λ2,r − λ1,r ) cos

(
βr

1 − βr
2

)
λ3,r

− λ2,r − λ1,r√
λ4,rλ3,r

tan
φr

34

2
sin

(
βr

1 − βr
2

)]
. (D15)

The angles θ r
ab and φr

ab are defined by

tan φr
12 = tan φr

21 = 2 sin
(
βr

2 − βr
1

)
(λ4,r+λ3,r )(λ1,r−λ2,r )
(λ4,r−λ3,r )(λ1,r+λ2,r ) + cos

(
βr

2 − βr
1

)
(√

λ1,r

λ2,r
+
√
λ2,r

λ1,r

)−1

, (D16)

tan φr
34 = tan φr

43 = 2 sin
(
βr

1 − βr
2

)
(λ2,r+λ1,r )(λ3,r−λ4,r )
(λ2,r−λ1,r )(λ3,r+λ4,r ) + cos

(
βr

1 − βr
2

)
(√

λ3,r

λ4,r
+
√
λ4,r

λ3,r

)−1

, (D17)

tan θ r
ab = 2 sin φr

ab

(
√
�a,r+

√
�b,r )(λa,r−λb,r )

(
√
�a,r−

√
�b,r )(λa,r+λb,r )

+ cosφr
ab

(√
λa,r

λb,r
+
√
λb,r

λa,r

)−1

. (D18)

The unitary Ũ †
r that appears in Eq. (D10) is

Ũ †
r = 1√

2

[
R
( ζ r

1
2

)
σ1R

( ζ r
2
2

)
σ1R

( ζ r
1
2

) −R
( ζ r

2
2

)
]
, (D19)

where the angles ζ r
1 ≡ βr

1 + θ r
12, ζ r

2 ≡ βr
2 + θ r

34 with θ r
ab are defined above.

It is illuminating to study the set of discrete transformations of the forward scattering matrix M that permute the labels of
the different Luttinger parameters Kr

ab. To do so we first arrange the interaction parameters that appear in the forward scattering
matrix as f = ( f11, f12, f22)T and similarly for g, h, and h̃. Defining the matrices (without writing the vanishing entries)

UA =
⎛
⎝ 1

−1
1

⎞
⎠ and UB =

⎛
⎝1

−1
1

⎞
⎠, (D20)

the discrete transformations that permute the indices are

Kr
12( f , g,h, h̃) = Kr

21(UA f ,UAg,UAh,UAh̃), (D21)

Kr
34( f , g,h, h̃) = Kr

43(UA f ,UAg,UAh,UAh̃), (D22)

Kr
12( f , g,h, h̃) = Kr

43(UB f ,−UBg,UBh,−UBh̃), (D23)

Kr
21( f , g,h, h̃) = Kr

34(UB f ,−UBg,UBh,−UBh̃), (D24)

together with the transformation K+
ab( f , g,h, h̃) = K−

ab( f , g,−h,−h̃). We call these transformations A, B, and C, respectively.
They can be easily visualized using the following

where we also indicate that the action of the A and B transformations, together with the identity transformation form a discrete
group of order four, isomorphic to the Klein group K4, while the identity and the transformation C are isomorphic to the Z2

group.
The scaling dimensions studied in the main text satisfy the relations �s

1 = �d
1 +�d

4 − 1
2 (�d

5 +�d
6 ), �d

3 −�d
1 = �d

4 −�d
2

and �d
3 � 2 for all interaction parameters considered. In the AC-symmetric region f = UA f , g = UAg and h = h̃ = 0, we find

that �d
5 = �d

6 and �d
1 = �d

2 = �d
3 = �d

4 � 2. Using these relations and the results for the scaling dimensions, we find that

�FTI = 5
2�

d
6 and �s

1 = 2�d
3 −�d

6 → �FTI � 10 − 5
2�

s
1, (D25)
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which in turn indicates that in the AC-symmetric region, (1) either �FTI � 2 or �s
1 � 2, i.e., the FTI phase does not compete

with the phase created by Os
1,σ ; (2) if �FTI � 2 then �d

5 = �d
6 � 2, which indicates that the FTI phase does compete with the

phase generated by the operators Od
5,6; and (3) �d

6 ,�
d
5 � �d

1 ,�
d
2 ,�

d
3 and �d

4 , signaling that the more relevant operators are
indeed Od

5,6.
Although these considerations are strictly valid in the AC-symmetric region of parameters, evaluating the scaling dimensions

for small values of the parameters, we find that this correspond to the generic situation. To see where this considerations break
down, we go away from the highly symmetric AC region.

Along the C-symmetric region h = h̃ = 0, we have the relations�d
1 = �d

2 and�d
3 = �d

4 . In this region, the scaling dimension
of the FTI operator satisfies

�FTI = 5
2

(
�d

1 +�d
3

)− 5
2�

s
1 + 3

4

(
�d

6 −�d
5

)+ 2
(
�d

1 −�d
3

)
. (D26)

In order to have a region of parameter where both �FTI � 2 and �s
1 � 2, we find, using the relation above, that

2
3 + (

�d
1 −�d

3

)− 1
6

(
�d

5 −�d
6

)
� 0, (D27)

which corresponds to strong interactions and interleg tunneling. In this region the analysis in the main text does not apply.

APPENDIX E: ORDER PARAMETERS

The order parameters Oμ,σ,x = ∑
β,β ′ (c†β

x,σ (τμ)ββ ′cβ
′

x,σ ), defined in Eq. (84) become after bosonization

Oμ,σ (x) = O0
μ,σ (x) +

∑
α

(
ei�kαxOα

μ,σ (x) + H.c.
)
, (E1)

where α ≡ b, b′, η, η′ in the differences �kα = kηF,b − kη
′

F,b′ and Oα
μ,σ (x) are slowly varying operators. Focusing on the the

oscillating parts that couple different chiral components as these act as local order parameters to distinguish the different phases
of the system, we have

O0σ (x) → Oσ,CDW+ (x) = e−i �3a x
(
eiπNL

σ,1 ei
√
π (ϒc

σ+�σ ) + eiπNL
σ,2 ei

√
π (ϒc

σ−�σ )
)+ H.c., (E2)

O3σ (x) → Oσ,RDW(x) = e−i �3a x
(
eiπNL

σ,1 ei
√
π (ϒc

σ+�σ ) − eiπNL
σ,2 ei

√
π (ϒc

σ−�σ )
)+ H.c., (E3)

O1σ (x) → Oσ,BDW(x) = ei �3a x
(
e−i

√
π (ϒc

σ+ϒσ )ei �a x + eiπ (NL
σ,2+NL

σ,1 )e−i
√
π (ϒc

σ−ϒσ )e−i �a x
)
eiπNR

σ,1 + H.c., (E4)

O2σ (x) → Oσ,OAF(x) = iei �3a x
(
e−i

√
π (ϒc

σ+ϒσ )ei �a x − eiπ (NL
σ,2+NL

σ,1 )e−i
√
π (ϒc

σ−ϒσ )e−i �a x
)
eiπNR

σ,1 + H.c., (E5)

with ϒc
σ and �σ defined in Eq. (D2). For �σ = √

πn, the only order parameter with QLRO is O0σ (x) if NL
σ,1 = NL

σ,2. In the

Luttinger liquid phase with c = 4, all correlators decay with power law and different nonuniversal exponents. The smallest
exponents in this phase corresponds to the BDW and OAF order parameters.

The orbital singlet and triplet superconducting order parameters are

S0σ (x) → Ssinglet
σ,leg (x) = −ieiπNR

σ,1
(
ei

√
π (�c

σ+�σ ) + eiπ (NL
σ,2+NL

σ,1 )ei
√
π (�c

σ−�σ )
)
, (E6)

S3σ (x) → Striplet
σ ;z,leg(x) = −eiπNR

σ,1
(
ei

√
π (�c

σ+�σ ) − eiπ (NL
σ,2+NL

σ,1 )ei
√
π (�c

σ−�σ )
)
, (E7)

S2σ (x) → Striplet
σ ;y,leg(x) = eiπN1L ei

√
π (�c

σ+ϒσ )ei �a x + eiπN2L ei
√
π (�c

σ−ϒσ )e−i �a x, (E8)

S1σ (x) → Striplet
σ ;x,leg(x) = eiπN1L ei

√
π (�c

σ+ϒσ )ei �a x − eiπN2L ei
√
π (�c

σ−ϒσ )e−i �a x. (E9)

In the FTI precursor phase, the natural basis for the fields are given by (107), which relate to the fields above as

⎛
⎜⎝
ϒc
σ

�c
σ

ϒσ

�σ

⎞
⎟⎠ ≡

⎛
⎜⎜⎝

0 1
3

1
3

1
3−1 0 1 −1

0 1 −1 −1
1
3 0 1

3 − 1
3

⎞
⎟⎟⎠
⎛
⎜⎜⎝
ϕgσ

θgσ

φ̃Lσ

φ̃Rσ

⎞
⎟⎟⎠. (E10)

The pinning of the θgσ field in the FTI phase makes the local order parameters O1σ (BDW) and O2σ (OAF) develop QLRO.
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APPENDIX F: SCALING DIMENSIONS

In this Appendix, we derive Eq. (41) by which the matrix
� is defined. This matrix controls the scaling dimensions of
the theory. Starting with the quadratic theory

Squad =
∫

dtdx(∂tφ
TK∂xφ − ∂xφ

TM∂xφ), (F1)

we are interested in the scaling dimension �η of the operator
Oη = eiηT ·φ. In a renormalization a la Wilson, where a high
momentum shell λ′ < k < λ is integrated out, the scaling
dimension of the operator is found by [104]

〈Oη〉[λ′,λ] = 〈eiηT ·φ〉[λ′,λ] = e− 1
2

∑
jl η j〈φ jφl 〉[λ′ ,λ]ηl =

(
λ′

λ

)�η

,

(F2)

where the expectation value 〈·〉[λ′,λ] is taken over the high
momentum shell λ′ < ‖q‖ < λ, with q = (k, ω/v). We are
then interested in the correlation function 〈φ j (r)φl (r)〉[λ′,λ],
which can be computed directly from the quadratic action
(F1) by going to momentum and frequency representation
(in imaginary time) and obtaining the Green’s function. In
particular,

〈φ j (r)φl (r)〉[λ′,λ] = 1

2

∫
[λ′,λ]

dωdk

(2π )2
[(ikωK + k2M)−1] jl .

(F3)

Using that the forward scattering matrix M is positive defi-
nite, the matrix ikωK + k2M can be cast in the form

ikωK + k2M = M 1
2
(
ikωM− 1

2 KM− 1
2 + k2

)
M 1

2 . (F4)

The matrix M− 1
2 KM− 1

2 is real symmetric, so it can be
diagonalized by an orthogonal transformation O. Defining
OM− 1

2 KM− 1
2 OT ≡ V−1, with V = diag(vi ) a diagonal ma-

trix, we have (using OOT = OT O = 1)

ikωK + k2M = M 1
2 OT (ikωV−1 + k2)OM 1

2 , (F5)

which implies

[(ikωK + k2M)−1] jl

=
∑

m

[
M− 1

2 OT
]

jm

(
1

ikω/vm + k2

)[
OM− 1

2
]

ml , (F6)

This representation allows us to perform the integral (F3),
which becomes

〈φ j (r)φl (r)〉[λ′,λ] =
∑

m

[
M− 1

2 OT
]

jm

|vm|
4π

∫ λ

λ′

dq

q

[
OM− 1

2
]

ml

(F7)
note that the factor |vm| appears as the Jacobian of the
transformation to polar coordinates. Rearranging and using
diag(vm) = OM 1

2 K−1M 1
2 OT we have

〈φ j (r)φl (r)〉[λ′,λ]

= 1

4π
ln

(
λ

λ′

)[
M− 1

2
∣∣M 1

2 K−1M 1
2
∣∣M− 1

2
]

jl
. (F8)

Finally, comparing (F8) and (F2), we conclude that �η =
1

8π ηTM− 1
2 |M 1

2 K−1M 1
2 |M− 1

2 η ≡ ηT�η, as expected.

FIG. 18. Flux �BC threading the ladder along a ring. The change
in the ground state energy with respect to this flux determines

(through ∂2EGS
∂�2

BC
) the charge stiffness. The flux� though the plaquettes

of the ladder is responsible for the FTI precursor; however it is
inoperative in the t⊥ → 0 limit considered in this Appendix.

APPENDIX G: LUTTINGER PARAMETERS FOR
STRONGLY INTERACTING LADDERS WITH WEAK

INTERLEG TUNNELING

In this Appendix, we consider fermion ladders dominated
by strongly repulsive leg-SU(2) invariant interactions. We fo-
cus on vanishing interleg tunneling and interspin interactions,
t⊥,V d

‖,m,V
d
⊥,m → 0. Our goal is to support our discussion

in Sec. IV A 2 by showing that the system forms a c = 4
Luttinger liquid with Kρ and Kβ in the region where only OFTI

is relevant. In particular, we show that the charge Luttinger
parameter reaches Kρ � 0.25 while the leg analog of the spin
Luttinger parameter satisfies Kβ → 1.

We calculate Kρ following the methods of Ref. [109]; we
compute the ground state energy EGS, the inverse compress-
ibility L−1 ∂2EGS

∂ρ2 and the phase stiffness L ∂2EGS
∂�BC

|
�BC=0

for a
ladder along a ring of circumference L threaded by a flux�BC

(Fig. 18) and with one-dimensional fermion density ρ. Kρ is
calculated using the relation [104]

Kρ = π

2

√√√√ L ∂2EGS
∂�BC

L−1 ∂2EGS
∂ρ2

. (G1)

The effect of �BC is equivalent to twisting the boundary
conditions: the vector potential associated to �BC can be
eliminated in favor of imposing the boundary condition
ψ (L) = ei�BCψ (0) on the fermions in the system. Here, we
choose to work with periodic boundary conditions and im-
plement �BC through a translation-invariant vector potential
along the links, i.e., by adding a phase a�BC/L to each link of
a leg [104] (a is the lattice spacing along the legs).

The interactions, Eq. (8) in the main text, are parametrized
by V s

‖,m,V
s
⊥,m which describe the interaction between fermions

m sites apart of the same spin projections in the same (‖) and
different (⊥) legs of the ladder. In the following discussion,
we take

V s
⊥,0 = U and V s

⊥,m = V s
‖,m =

{
V for 1 � m � �0,

0 for m > �0.

(G2)
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FIG. 19. Occupation of the two-leg ladder as a function of parti-
cle number. Particles are represented by black circles. Blue crosses
represent forbidden sites due to the infinite strong repulsion of range
�0. Ln is the available space to place the nth particle. In this diagram,
�0 = 2.

For �0 = 0, this model reduces to the Hubbard model, while
for �0 = 1 to the extended Hubbard (or U -V ) model [104].
Interactions dominate when V,U � t . For infinite U and V ,
the repulsion becomes a constraint: particles separated by no
more than �0 sites pay an infinite amount of energy while
particles separated by more than �0 sites experience no inter-
actions. This allows one to map the system onto a fictitious
one with density-dependent length, where the constraint is
taken into account by the Pauli principle leaving one with a
simple free-fermion problem.

Focusing on a single spin species, we consider a system
with N particles. The infinite interactions translate to each of
the particles effectively blocking out �0 rungs, for definiteness
to their left, in addition to the rung they sit on (Fig. 19). Thus
the number of rungs available for the N particles is L/a − �0N
translating into an effective length

L′ = L − Na�0 = L(1 − ρa�0), (G3)

where ρ = N/L is the 1D density of the spin species. Note
that ρ < 1

a(�0+1) otherwise there are not enough rungs to
place the particles without violating the constraint. In this
reduced system, the particles behave as free fermions, with the
Hamiltonian given by Eq. (2) in the main text. The momenta
are quantized as km = 2πm

L′ (with m integer). In the regime
where we are interested, these fermions occupy two pockets in
the lower band, in a dispersion relation analogous to Fig. 4.
(The upper and lower bands, however, now touch due to
t⊥ → 0.) The ground-state energy is

EGS (�BC) = −2t
mmax∑

m=mmin

cos

(
kma + a�BC

L
− �

2

)
. (G4)

Here, mmin and mmax are the minimum and maximum mo-
mentum label in the right pocket. We used that, for �BC = 0,
the system is reflection symmetric to sum over just posi-
tive momenta, that for t⊥ → 0 and �BC = 0 the lower-band
single-particle energies for positive momenta follow the co-
sine dispersion −t cos(ka −�/2), and that for �BC �= 0 but
�BC/L � 2π/L′ the presence of �BC does not change the
set of occupied momentum labels {m}. Using now (mmax −
mmin)/L = ρ/2 and summing the geometric series, we find

EGS (�BC) = −2tL

aπ
(1 − ρa�0) cos

[
πρa

2(1 − ρa�0)
+ kmina

− �

2
+ a�BC

L

]
sin

[
πρa

2(1 − ρa�0)

]
. (G5)

To be able to compute the inverse compressibility, we have to
determine the dependence of kmin = 2πmmin/L′ on the density
of the system. Using that the number of occupied states to the
left of the minimum �/2 of the cosine dispersion is ρL/4, we

find kmina = �/2 − πρa
2(1−ρa�0 ) , which leads to

EGS (ρ,�BS)

= −2tL

aπ
(1 − ρa�0) cos

[
a�BC

L

]
sin

[
πaρ

2(1 − ρa�0)

]
.

(G6)

The gapless nature of the effective free-fermion problem
indicates that the charge sector of the original system forms
a Luttinger liquid. Using Eq. (G1), we find that the charge
Luttinger parameter is

Kρ −−−−→
U,V →∞

1
2 (1 − ρa�0)2. (G7)

A useful check of Eq. (G7) is the Hubbard model (�0 = 0):
here it is known [104] that at infinite repulsion the Luttinger
parameter reaches Kρ = 1

2 which is precisely what we find.
For the U -V model (�0 = 1), Eq. (G7) shows that the charge
Luttinger parameter reaches Kρ = 0.125 at the limiting den-
sity ρ = 1

a(�0+1) . For the FTI physics, we are interested in, we
need two partially filled pockets as in Fig. 4. This places a
stronger constraint on the density ρa = ν �

π
; taking this also

into account we find that the Luttinger parameter can still
reach Kρ ≈ 0.15.

For large, but not infinite, interactions, the corrections to
Kρ are of order t/U or t/V , corresponding to small correc-
tions to the infinite interaction result in the limit U,V � t .
In the same regime, the interleg degrees of freedom also
form a Luttinger liquid in a significant portion of the U -V
parameter space, including for U -V interaction ratios where
the inteleg gap is absent for weak interactions at the same
ratios [97–102]. Owing to SU(2) invariance in leg space, this
implies Kβ → 1 at low energies [104] for this interleg Lut-
tinger liquid. We therefore find that in the strongly repulsive
leg-SU(2) invariant regime, the t⊥ → 0 system forms a c = 4
Luttinger liquid with Kρ,β such that only OFTI is relevant. This
is the key requirement for an FTI precursor to emerge upon
turning on weak t⊥, as discussed in Sec. IV A 2.

APPENDIX H: RENORMALIZATION GROUP EQUATIONS

In this Appendix, we derive the RG equations for small
interleg tunneling (t⊥/t � 1) and zero interspin interaction.
In the basis (D2), the action reads

S = 1

2

∫
dxdt

(
∂t�

c
σ ∂xϒ

c
σ + ∂t�σ∂xϒσ

)
− 1

4

∫
dxdt

([
vρKρ

(
∂x�

c
σ

)2 + vρ

Kρ

(
∂xϒ

c
σ

)2
]

+
[
vβKβ

(
∂xϒσ

)2 + vβ

Kβ

(
∂x�σ

)2
])

− 1

2

∫
dxdt

(
g�∂x�

c
σ ∂x�σ

+ gϒ∂xϒ
c
σ ∂xϒσ + gs

1σ

(πa)2
cos(

√
4π�σ )

)
. (H1)
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In terms the forward scattering parameters fmn, gmn, hmn, and
h̃mn, the parameters above are

vρK−1
ρ = vF + f11 + f22 + (g11 + g22) + 2( f12 + g12)

8π
,

vρKρ = vF + f11 + f22 − (g11 + g22) − 2( f12 − g12)

8π
,

vβK−1
β = vF + f11 + f22 − (g11 + g22) + 2( f12 − g12)

8π
,

vβKβ = vF + f11 + f22 + (g11 + g22) − 2( f12 + g12)

8π
,

g� = f11 − f22 − g11 + g22

2π
,

gϒ = f11 − f22 + g11 − g22

2π
. (H2)

Integrating out the fields �c
σ and ϒσ in the path integral,

we are left with the action

S = 1

4

∫
dxdt

(
1

K̃ρ

[(
∂tϒ

c
σ

)2

ṽρ
− ṽρ

(
∂xϒ

c
σ

)2

]

+ 1

K̃β

[
(∂t�σ )2

ṽβ
− ṽβ (∂x�σ )2

])

−
∫

dxdt
gs

1σ

2(πa)2
cos(

√
4π�σ )

− 1

2
g
∫

dxdt
(
∂t�σ∂xϒ

c
σ

)
, (H3)

where we have defined ṽρK̃ρ = vρKρ , ṽρ

K̃ρ
= vρ

Kρ
− g2

ϒ

vβKβ
,

ṽβK̃β = vβKβ , ṽβ

K̃β
= vβ

Kβ
− g2

�

vρKρ
, and g = ( g�

vρKρ
+ gϒ

vβKβ
).Using

the action above, we find the RG equations

dgs
1σ

d�
= (2 − 2K̃β )gs

1σ ,

d

d�

(
1

K̃β

)
=
(

gs
1σ

4πvF

)2

− g2

2π
K̃ρ,

d

d�

(
ṽβ

ṽρKρ

)
= − K̃βg2

2π
. (H4)

The operator product expansion of the cosine term
cos(

√
4π�σ ) with ∂xϒ

c
σ ∂t�σ generates the operator

sin(
√

4π�σ )∂xϒ
c
σ , initially not present in the Hamiltonian.

We call the coupling constant of this new field gnew.
Discarding terms that are either quartic in tunneling t4

⊥ or
cubic in interactions V 3, the RG equations are

d

d�

(
2 f12 − g11 − g22

4πvF

)
=
(

gs
1σ

4πvF

)2

,

dgs
1σ

d�
=
(

2 f12 − g11 − g22

4πvF

)
gs

1σ ,

dgnew

d�
= (1 − 2Kβ )gnew − 2

g√
π

gs
1σ

4πvF
(H5)

where gnew(� = 0) = 0. Defining 2 f12−g11−g22

4πvF
= −y‖, gs

1σ
4πvF

=
y, and gnew = 2g√

π
ynew, these equations can be casted in the

form

dy‖
d�

= −y2,
dy

d�
= −y‖y, and

dynew

d�
= −(y‖ + 1)ynew − y. (H6)

The last equation can be solved easily. It gives ynew = (e−� −
1)y(�). Although this indicates that ynew flows to strong cou-
pling as y does, the coupling gnew = 2g√

π
ynew stays small (as

g � 1 does not flow at this order of approximation). The
physics is then dominated by the RG flow of y and y‖. The
first two equations are the standard Kosterlitz-Thouless [126]
renormalization group equations. The separatrix that divides
the regions where the cosine operator becomes relevant or
irrelevant corresponds to |y| = y‖. In terms of the f , g pa-
rameters is given by g11 + g22 − 2 f12 = gs

1σ . This equation
dictates the separatrix between the Luttinger liquid phase and
the phase with dominant RDW QLRO, in the top panel of
Fig. 6.

APPENDIX I: INTERACTION MATRICES
FOR STRONG-COUPLING ANALYSIS

In this Appendix, we write the the interaction matrices of
the different sectors needed for the strong-coupling phase. The
quadratic Hamiltonian is given by Eq. (105) for decoupled
spins and Eq. (117) for the full coupled case, where the
forward interaction matrices are given by

M̃ =
[

M(2)
hh M(2)

hs(
M(2)

hs

)T M(2)
ss

]
and M =

[
M(4)

hh M(4)
hs(

M(4)
hs

)T M(4)
ss

]
,

(I1)

respectively, where M(m)
ab is a m × m matrix. The different

blocks are given explicitly in terms of the microscopic param-
eters. For the decoupled spin sector, they are

M(2)
hh =

[
γ3 − η3

γ3 + η3

]
= v

[
Keff

K−1
eff

]
,

M(2)
hs = −

[
γ2 − η2 η2 − γ2

γ2 + η2 γ2 + η2

]
, and M(2)

ss =
[
γ1 η1

η1 γ1

]
with

γ1 = 1

9

[
10vF + 1

2π
( f11 + 4( f22 − f12))

]
,

η1 = 1

18π
[g11 + 4(g22 − g12)],

γ2 = 1

18

[
8vF + 1

2π
(2( f22 + f11) − 5 f12)

]
,

η2 = 1

36π
[2(g22 + g11) − 5g12],

γ3 = 1

18

[
10vF + 1

2π
( f22 + 4( f11 − f12))

]
,

η3 = 1

36π
[g22 + 4(g11 − g12)].

Including interspin interactions, the matrices are given
by M(4)

ab = 12 ⊗ M(2)
ab + σ1 ⊗ M̄(2)

ab , where M̄(2)
ab is obtained
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from M(2)
ab by replacing the parameters γi, ηi by the parame-

ters γ̄i, η̄i, given by

γ̄1 = 1

18π
[h11 + 4(h22 − h12)],

η̄1 = 1

18π
[h̃11 + 4(h̃22 − h̃12)], (I2)

γ̄2 = 1

36π
[2(h22 + h11) − 5h12)],

η̄2 = 1

36π
[2(h̃22 + h̃11) − 5h̃12], (I3)

γ̄3 = 1

36π
[h22 + 4(h11 − h12)],

η̄3 = 1

36π
[4h̃12 − h̃22 − 4h̃11]. (I4)

APPENDIX J: REGION OF MICROSCOPIC PARAMETERS
WHERE THE FTI OPERATOR CAN APPEAR, FOR

NONVANISHING SO COUPLING αso

Considering the single-particle band structure, the FTI
operator that drives the precursor of the topological phase
can exist only in the presence of four Fermi points. The FTI
operator will conserve momentum if the Fermi points satisfy
2(kL

F,2 − kR
F,1) + kR

F,2 − kL
F,1 = 0. For some values of the pa-

rameters of the single-particle band spectrum it is impossible
to fix the Fermi energy to have four Fermi points. In this Ap-
pendix, we explore the region of parameters where four Fermi
points are possible. A subset of this region corresponds to
the parameters where the Fermi points satisfy the momentum
conservation condition.

The single-particle band structure is given by the relation
p±(k̃) = 0, where p±(k̃) is

p±(k̃) =
(

E + t cos

(
k̃ − �

2

)
± α

)

×
(

E + t cos

(
k̃ + �

2

)
∓ α

)
− t2

⊥, (J1)

with t, t⊥ the intra and inter leg tunneling amplitudes, � the
SO generated flux and αso the SO coupling parameter that
breaks spin Sz conservation. We can think of p±(k̃) as a
complex polynomial in the complex plane as a function of
the variable z = eik̃ . Given than p−(k̃) can be obtained from
p+(k̃) by changing the sign of α, we consider just

q(z) = 4z2

t2
p+(k̃(z)) = z4 + Az3 + Bz2 + Āz + 1, (J2)

where A = 4
t (E cos (�2 ) − iα sin (�2 )) and B = 4

t (E2 − α2
so −

t2
⊥) + 2

t cos�, Ā is the complex conjugate of A. The complex

polynomial q(z) satisfies q(z) = z4q(z̄−1) so if z0 is a root of
q(z) then 1/z0 is also a root. The existence of four Fermi
points corresponds to q(z) having all its roots in the unit
circle. We denote this region of parameters as W . Clearly,
the point A = B = 0 corresponds to four different roots in
the unit circle, so the region W contains this point. Changing
the parameters A and B the roots change, but the number of
different roots can only change when different roots become
equal as the parameters vary. Thus, the vanishing of the
polynomial’s q(z) discriminant D(q) defines the boundary of
the region W . Factorizing the polynomial q(z) in its roots
q(z) = (z − z1)(z − z2)(z − z3)(z − z4), and assuming that all

-4 -3 -2 -1 0 1 2 3 4
-2

-1

0

1

2

3

4

5

6

FIG. 20. (Left) Simplexlike volume in the parameter space where four Fermi points exist. (Right) For αso = 0, The colored region
represents the values of parameters where four Fermi points exist. The curve inside the shaded region corresponds to the parameters where the
four Fermi points satisfy the momentum conservation relation of the FTI operator.
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FIG. 21. For αso �= 0, there is a surface of parameters where the
FTI operator satisfies momentum conservation. Here we plot that
surface, given parametrically by (J6)–(J8) with θ1 = −2θ2 + ε with
ε = [−0.05, 0.05] and θ2 = [0, 2π ].

the roots live in the unit circle, implies

z1z2z3z4 = 1, (J3)

z1 + z2 + z3 + z4 = A = A1 + iA2, (J4)

z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 = B. (J5)

To gain some insight about the shape of the region W ,
let us consider the cases, (1) All the roots are equal
q(z) = (z − z1)4. By condition (J3), z1 = e

iπn
2 , n = 0, . . . , 3.

In terms of the parameters v = (A1,A2,B), each value
of n correspond to a vertex of W : v0 = (−4, 0, 6), v1 =
(0,−4,−6), v2 = (4, 0, 6), and v3 = (0, 4,−6). (2) Three
equal roots q(z) = (z − z1)(z − z2)3. Using the condi-
tions (J3)–(J5), we find that this situation is satisfied in
the curve defined parametrically by v(θ ) = (− cos(3θ ) −
3 cos(θ ), sin(3θ ) − 3 sin(θ ), 6 cos(2θ )). Note that v( πn

2 ) =
vn. (3) Two pairs of equal roots q(z) = (z − z1)2(z − z2)2.
We find the curve B = 1

4 A2
1 + 2 connecting v0 with v2 and

B = − 1
4 A2

2 − 2 connecting v1 with v3. (4) Two equal roots
and two different roots q(z) = (z − z1)(z − z2)(z − z3)2.

The first case defines the vertices of W , which corresponds
to a simplexlike region shown in Fig. 20. The edges of W
corresponds to the second and third cases. The faces of W
correspond to the fourth case. The isometry group of W is a
subgroup of the isometry group of the 4-simplex [127].

The condition of momentum conservation of the FTI op-
erator translates in this language as z2 = z2

1z3
3. The surface

defined parametrically by

A1 = − cos(θ1) − cos(θ2) − cos(2θ1 + 3θ2)

− cos(3θ1 + 4θ2), (J6)

A2 =2 sin

(
θ1 + θ2

2

)(
cos

(
5θ1 + 7θ2

2

)
− cos

(
θ1 − θ2

2

))
,

(J7)

B = 4 cos(θ1 + θ2) cos(2(θ1 + θ2)) + 2 cos(2(θ1 + 2θ2)),

(J8)

with θi ∈ [0, 2π ) and strictly inside the simplex region W ,
determines the values where the FTI operator can exist and
conserves momentum. The simplexlike region W , together
with a cut for vanishing and small SO coupling αso are given
in Figs. 20 and 21.
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