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We study the dynamics of charge-transfer insulators after a photoexcitation using the three-band Emery
model which is relevant for the description of cuprate superconductors. We provide a detailed derivation of
the nonequilibrium extension of the multiband GW +EDMFT formalism and the corresponding downfolding
procedure. The Peierls construction of the electron-light coupling is generalized to the multiband case resulting
in a gauge invariant combination of the Peierls intraband acceleration and dipolar interband transitions. We
use the formalism to study momentum-dependent (inverse) photoemission spectra and optical conductivities.
The time-resolved spectral function shows a strong renormalization of the charge-transfer gap and a substantial
broadening of some of the bands. While the upper Hubbard band exhibits a momentum-dependent broadening,
an almost rigid band shift is observed for the ligand bands. The inverse photoemission spectrum reveals that the
inclusion of nonlocal and interband charge fluctuations results in a very fast relaxation of the holes to the top
of the Zhang-Rice singlet band. Consistent with the changes in the spectral function, the optical conductivity
shows a renormalization of the charge-transfer gap, which is proportional to the photodoping. The details of the
photoinduced changes strongly depend on the dipolar matrix elements, which calls for an ab initio determination
of these parameters.
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I. INTRODUCTION

Mott insulators are materials which according to band the-
ory should be metals, but where the motion of the electrons is
blocked by the large Coulomb repulsion in relatively localized
d or f orbitals. Photoexcitation of charge carriers across the
Mott gap, or the dielectric breakdown induced by a strong
quasi-static field, results in a nonthermal conducting state.
Both types of nonequilibrium phase transitions have been
extensively studied experimentally [1–5] and using analytical
[6,7] or computational tools [8,9]. While the theoretical works
have focused so far mainly on the simple case of a single-band
Hubbard model, the experiments are typically performed on
materials which would be classified as charge-transfer insu-
lators [3,10–12]. In these systems, ligand bands are located
in between the upper and lower Hubbard bands, or in the
energy range of the lower Hubbard band, and the applied
fields may induce holes in the ligand bands, rather than in
the lower Hubbard band [13]. For a better understanding of
photoinduced nonthermal metallic states in Mott systems and
a closer connection between theory and experiment, it is thus
essential to extend the previous theoretical studies to charge
transfer systems.

Here, we focus on the dynamics in the d-p model for
cuprates after field-pulse excitations, which is a set-up rele-
vant for numerous experimental studies [3,10,11]. Extending
the results reported in a recent short study [14], we will
address several relevant issues which have not been con-
sidered in previous single-band model calculations: (i) what
is the effect of the pulse energy on the photodoped metal
state? Does it make a difference if holes are created in the

p bands or in the lower Hubbard band? (ii) How do pho-
toinduced changes depend on the excitation protocols, which
may include intraband (Peierls) acceleration and interband
dipolar transitions? (iii) To what extent are the band gaps and
band dispersions renormalized in the photodoped state? (iv)
How are the photoinduced changes in the electronic structure
reflected in the optical conductivity?

In terms of the formalism and numerical effort, the study
of the d-p model is considerably more involved than a
simulation of a single-band Hubbard model with s or d
orbitals. In the d-p model, we need to treat different bands
with different correlation strengths, as well as the dipolar
terms appearing in the light-matter coupling. In this work,
we will consider a combination of the extended dynamical
mean-field theory (EDMFT) [15] and the GW method [16]
(GW +EDMFT) [17–20]. EDMFT is suitable for describing
Mott insulators and allows us to capture strong correlation
effects in the d orbitals, while the GW method is appropriate
for the description of the more weakly correlated p orbitals,
as well as the nonlocal charge fluctuations in the system.
In order to assess the relevance of dynamical fluctuations
for the description of equilibrium and nonequilibrium states,
we furthermore compare the GW +EDMFT results to sim-
pler Hartree-Fock+EDMFT (HF+EDMFT) calculations, in
which the p-orbital interactions are treated at the Hartree-Fock
level [21].

Apart from its immediate relevance for the theoretical
study of photoexcited cuprates, the implementation of a
nonequilibrium GW +EDMFT scheme for the d-p model rep-
resents an important step towards the development of ab initio
simulation approaches for nonequilibrium strongly correlated
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systems. The formalism captures time-dependent changes
in the polarization function and allows to self-consistently
compute dynamically screened, effective interaction param-
eters [22]. This is particularly relevant for the description
of excited states of solids, where, for example, the injection
of charge carriers into a Mott insulator completely changes
the screening properties [23]. Since GW +EDMFT is rooted
in the diagrammatic GW formalism, it can furthermore be
coupled to GW ab initio simulation codes in a way analogous
to what has been demonstrated for equilibrium systems in
Refs. [18,24].

Selected results from our GW +DMFT investigation of the
d-p model have been reported in Ref. [14]. The purpose of the
present work is to provide a detailed description of the formal-
ism, and to present and analyze polarization- and momentum-
dependent data. The paper is organized as follows. In Sec. II,
we derive the general formalism which combines an EDMFT
and GW description of different orbital subspaces, as well as
the corresponding downfolding procedure. We then define the
d-p model and apply the formalism to this specific model.
The coupling of electrons to light for the present multiband
problem is derived in Sec. III. The equilibrium results are
presented in Sec. IV, and the dynamics after photoexcitation
in Sec. V. We finish with the conclusions in Sec. VI.

II. MODEL AND METHOD

A. Multitier GW+EDMFT

The multitier approach [24] is motivated by a general
property of solid-state systems, where a small subset of or-
bitals close to the Fermi level are strongly correlated, while
higher lying bands are weakly correlated. For example, in the
cuprate-inspired models studied in this work, the p orbitals are
weakly correlated and can be treated by perturbation theory,
while the low-lying d orbitals with strong correlations require
a more sophisticated treatment, such as EDMFT. Therefore
we separate the full orbital space into strongly and weakly
correlated subspaces. To keep the procedure general, we will
denote the degrees of freedom in the full space by capital
letters, e.g. A, those in the correlated subspace by lower case
letters, e.g., a, and those in higher lying orbitals by lower
case letters with an overline, e.g., ā. The presented formalism
is therefore applicable to the general multiorbital case in both
subspaces. Only in Sec. II C, will we restrict the discussion to
the specific example of cuprates.

The formalism applies to a general Hamiltonian of the form

H = Hkin + Hint,

Hkin =
∑
i jσ

∑
AB

tAB
i j c†

i,Aσ c j,Bσ − μ
∑

iA

nA
i , (1)

Hint =
∑
i,A

V AA
ii nA

i↑nA
i↓ +

∑
i �= j or A�=B

V AB
i j nA

i nB
j ,

where i and j denote the spatial index of the unit cell and
μ is the chemical potential. We have restricted ourselves
to density-density interactions and explicitly separated the
local interband interaction term. Here, we have introduced
the spin dependent density operators nA

iσ = c†
i,Aσ ci,Aσ and the

total density operators nA
i = ∑

σ nA
iσ . The on-site energies are

fixed by the local-diagonal part of the single-particle term
tAA
ii , and the remaining matrix elements tAB

i j define the hopping
amplitudes.

The many-body complexity of the system is captured
by the Almbladh functional �[G,W ] which contains all
possible single-particle irreducible diagrams built with the
single-particle propagator G and the screened interaction W
[25].

In general, we aim to construct a conserving approximation
for the total system starting from two approximate functionals,
one for the correlated subsystem �strong[G,W ] and one for the
higher lying orbitals �weak[G,W ] as

�[G,W ] = �strong[Gi j,ab,Wi j,ab] + �weak[Gi j,AB,Wi j,AB]

− �weak[Gi j,ab,Wi j,ab], (2)

where the last term removes the double counting. In the
GW +EDMFT approximation, strong correlations are treated
within a local EDMFT approximation �EDMFT[Gii,ab,Wii,ab].
The higher-lying orbitals and nonlocal fluctuations are treated
within the GW approximation, i.e., the lowest order diagram
in the weak-coupling expansion of �GW [G,W ]. The corre-
sponding Almbladh functional is given by [17,19]

�GW +EDMFT[G,W ]

= �EDMFT[Gii,ab,Wii,ab] + �GW [Gi j,AB,Wi j,AB]

− �GW [Gii,ab,Wii,ab]. (3)

From the stationarity condition, we obtain the expression for
the self-energy � and the polarization � as

� = δ�GW +EDMFT

δG
, � = −δ�GW +EDMFT

δW
. (4)

Within EDMFT, the local propagators Gii,ab and Wii,ab in
the correlated subspace are obtained from the solution of an
effective quantum impurity model with action [15,19,23]

Se
imp[c∗

a,σ , cb,σ ]

=
∫
C

dtdt ′

⎧⎨
⎩

∑
σ,ab

c∗
a,σ (t )[((i∂t + μ)δab − δμab)δC (t, t ′)

−�ab,σ (t, t ′)]cb,σ (t ′) − 1

2

∑
ab

na(t )Uab(t, t ′)nb(t ′)

⎫⎬
⎭,

(5)

where the retarded interaction U is coupled to the density
operator na. Here we have separated the self-consistent hy-
bridization function into a time-local part δμ, and a contri-
bution � which has no instantaneous term. The origin of
the additional shift δμ is that the lattice Hartree-Fock term
includes nonlocal contributions, which are not present at the
impurity level. The hybridisation function �(t, t ′) is deter-
mined from the self-consistency condition Gii,ab = Gimp,ab,
and the effective impurity interaction U (t, t ′) is implicitly
defined by the condition Wii,ab = Wimp,ab. From now on, we
will assume a translationally invariant system, although the
formalism is easily extended to the spatially inhomogeneous
case, and introduce momentum k as a good quantum number.
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G and W in the full orbital space are given by the fermionic
and bosonic Dyson equations[

G−1
k

]
AB(t, t ′) = [(i∂t + μ)δAB − εk,AB]δ(t, t ′) − �k,AB(t, t ′),

(6)[
W −1

k

]
AB

(t, t ′) = [
V −1

k

]
AB

δ(t, t ′) − �k,AB(t, t ′), (7)

where the dispersion εk,AB is the Fourier transform of the
hopping amplitudes tAB

i j . These relations conclude the formal
derivation of the theory.

The restriction to density-density interactions considered
in this work can be overcome. Here, one should distinguish
two cases: (i) additional local interaction terms in the cor-
related subspace, such as a Kanamori interaction, can be
trivially incorporated in a multiorbital extension of the present
formalism, as presented in the next section. (ii) A treatment
beyond density-density interactions outside the local corre-
lated subspace would require a proper EDMFT decoupling
and an introduction of new auxiliary fields and two-particle
selfconsistency loops. While this is in principle feasible and
an important task for the realistic description of correlated
materials, it goes beyond the scope of this paper.

B. Downfolding

While the perturbative GW self-energies and polarizations
are explicit functions of G and W , �EDMFT and �EDMFT are
only implicitly defined through the impurity model. In order
to determine the auxiliary quantities � and U , we downfold
the electronic and bosonic Dyson equations, Eqs. (6) and
(7), to the correlated subspace, as described in the following
paragraph.

1. Fermionic self-consistency loop

We first discuss the downfolding for the electronic Green’s
function. We can rewrite the fermionic Dyson equation (6) by
separating the local and nonlocal self-energies[

G−1
k

]
AB(t, t ′) = [

(i∂t + μ)δAB − (
εk + �HF

k

)
AB

]
δC (t, t ′)

− δAaδBb
[
�EDMFT

ab (t, t ′) − �GW
loc,ab(t, t ′)

]
− �GW

k,AB(t, t ′). (8)

Here, �HF is the lattice Hartree-Fock contribution evaluated
in the full space. The local self-energy of the correlated

subspace is described within EDMFT by �EDMFT
ab , and the

nonlocal correlations in the entire space are described at the
GW level by �GW

k,AB [16]. Since instantaneous contributions
can be treated at the level of the effective Hamiltonian, we
explicitly separate the Hartree-Fock contribution �HF

k from
the higher order EDMFT (GW ) self-energy contributions
�EDMFT (�GW ). The term �GW

loc,ab = 1
Nk

∑
k �GW

k,ab is the local
component of the GW self-energy in the correlated subspace,
which is subtracted to avoid a double counting of local
self-energy contributions in this subspace. Here and in the
following we use a short notation for the sum over repeated
indices, δAaXabδbB ≡ ∑

ab δAaXabδbB. In the following, we will
separate all diagonal and local contributions to the self-energy
from the rest. This step is a convenient choice for calculations
based on strong coupling impurity solvers, where we want to
avoid the explicit use of the self-energy in the self-consistency
loop, see below for a detailed discussion. We rewrite the lattice
Dyson equation as[

G−1
k

]
AB = [

(i∂t + μ)δAB − sAB − �EDMFT
ab δAaδBb

] − [ηk]AB.

(9)

Here, we have separated the local part of the mean-field dis-
persion, which is now a block-diagonal matrix with strongly
and weakly correlated subspaces

sAB =
(

1
Nk

∑
k

(
εk,ab + �HF

k,ab

)
0

0 1
Nk

∑
k

(
εk,āb̄ + �HF

k,āb̄

)
)

.

(10)

This separation shifts all the block off-diagonal and block
diagonal nonlocal contributions into

[ηk]AB = [
εk + �HF

k

]
AB − sAB + (

�GW
k,AB − δBbδAa�

GW
loc,ab

)
.

(11)

We note that the local components vanish in the correlated
subspace by construction, 1

Nk

∑
k[ηk]ab = 0.

Once we have solved the lattice Dyson equation, we have
to define the auxiliary impurity model (hybridization function
� and retarded interaction U ) for the correlated subspace. The
main identity to downfold the Dyson equation from the full
space to the correlated subspace is the equation for the inverse
of a block matrix

(
M11 M12

M21 M22

)−1

=
( [

M11 − M12M−1
22 M21

]−1 −[
M11 − M12M−1

22 M21
]−1

M12M−1
22

−[
M22 − M21M−1

11 M12
]−1

M21M−1
11

[
M22 − M21M−1

11 M12
]−1

)
. (12)

In order to apply it to the lattice Dyson equation (9), we define
an auxiliary propagator for the correlated subspace gk ,[

g−1
k

]
ab(t, t ′) = ([i∂t + μ]δab − sab)δ(t, t ′)

− �EDMFT
ab (t, t ′) − ηk,ab(t, t ′), (13)

and similarly for the high-lying orbitals

ḡ−1
k,āb̄

(t, t ′) = ([i∂t + μ]δāb̄ − sāb̄)δ(t, t ′) − ηk,āb̄(t, t ′). (14)

Using Eqs. (11) and (12), the lattice Dyson equation for the
correlated subspace may now be rewritten as

G−1
k,ab(t, t ′) = ([i∂t + μ]δab − sab)δ(t, t ′)

− �EDMFT
ab (t, t ′) − η̃k,ab(t, t ′), (15)

where η̃k,ab(t, t ′) = ηk,ab(t, t ′) + �̃k,ab(t, t ′), and the auxil-
iary self-energy is

�̃k,ab = ηk,ab̄ ∗ gk,b̄c̄ ∗ ηk,c̄b. (16)
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Here, ∗ denotes a matrix multiplication in the orbital sector
and a convolution of times. (For HF+DMFT, ηk is instanta-
neous and the convolutions reduce to multiplications.)

We determine �EDMFT(t, t ′) by solving the auxiliary impu-
rity problem and imposing the self-consistency in the corre-
lated subspace,

1

Nk

∑
k

[Gk]ab = Gimp,ab. (17)

The auxiliary impurity problem fulfills the Dyson equation,
which is understood as a matrix equation in the correlated
subspace,

G−1
imp,ab(t, t ′)

= (
[i∂t + μ]δab − �H

imp,ab(t ) − δμab − εloc,ab
)
δC (t, t ′)

− �ab(t, t ′) − �EDMFT
ab (t, t ′), (18)

where the impurity Hartree term is given by �H
imp,ab(t ) =

δab
∫

dt̄Uac(t, t̄ )〈nc(t̄ )〉 and the local energy level by εloc =
1

Nk

∑
k εk . The additional chemical potential shift δμ corre-

sponds to the difference between the Hartree-Fock contribu-
tion on the lattice and on the impurity level,

δμab(t ) = �HF
loc,ab[Glatt,V ] − �H

imp,ab[Gimp,U ]

= sab(t ) − εloc,ab(t ) − �H
imp,ab(t ). (19)

2. Self-consistency without self-energy

Most impurity solvers provide a way to compute the
Green’s function rather than the self-energy. In particular, this
is the case for the strong-coupling expansion (NCA) which
will be used in this work [26,27] but also DMRG [28,29]
and QMC [30–32]. In this case, the determination of the
time-dependent self-energy from an inversion of the impurity
Dyson equation can be a numerically ill-conditioned problem
[33], and it is preferable to close the self-consistency cycle
without explicitly evaluating the self-energy. The main idea is
to rewrite the lattice Dyson equation with the auxiliary func-
tion Z , which is purely local block-diagonal and shift the rest
into ηk . Here, we rely on the simple relation that the inverse
of a block diagonal matrix is a block diagonal matrix, which
decouples the evaluation of the auxiliary quantity Z for each
subsector. We should stress that any other choice would lead
to a coupling between different orbitals and would require
an evaluation of the impurity self-energy. To be explicit, we
rewrite the lattice Dyson equation as[

G−1
k

]
AB = [

(i∂t + μ)δAB − sAB − �EDMFT
ab δaAδAB

] − ηk,AB

= [Z−1 − ηk]AB. (20)

The inverse of the local propagator Z explicitly reads

Z−1
AB = δAaδBb

[
(i∂t + μ)δab − sab − �EDMFT

ab

]
+ δAāδBb̄[(i∂t + μ)δāb̄ − sāb̄]. (21)

The elements Zab are obtained from the impurity Dyson
equation Gimp = Z + Z ∗ � ∗ Gimp, while the rest are free
propagators. The solution of the lattice Dyson equation is then
obtained from

Gk = Z + Z ∗ ηk ∗ Gk, (22)

which is a matrix equation in the full orbital space. This is
the stable form of the Dyson equation, which is used in our
numerical implementation. ηk is obtained from Eq. (11) and
in the case of GW +EDMFT has an instantaneous and a re-
tarded part. Then, by imposing the self-consistency condition
Gloc,ab = Gimp,ab we obtain the equation for the hybridization
function � from Eqs. (15) and (18). In terms of Z , these
equations read

G−1
k = Z−1 − η̃k,

G−1
imp = Z−1 − � + [

s − δμ − εloc − �H
imp

]
. (23)

The term in the square bracket is eliminated by the choice
of δμ in Eq. (19). Then the hybridization function � is
determined from Eqs. (23), in a way analogous to the single-
band case [8,33]:

Gk = Z + Z ∗ η̃k ∗ Gk,

G1 = 1

Nk

∑
k

η̃k ∗ Gk = � ∗ Gloc,

G2 = 1

Nk

∑
k

[η̃k + η̃k ∗ Gk ∗ η̃k] = � + � ∗ Gloc ∗ �, (24)

so that � can be calculated by solving

[1 + G1] ∗ � = G2. (25)

All relations from Eq. (22) to Eq. (25) should be understood
as block-diagonal matrix equations with blocks corresponding
to the strongly correlated and weakly correlated subspaces.
The last expression shows that the hybridization function
� includes information about direct hopping events to the
neighboring sites via ηk , as well as the hybridization between
the two subspaces via �̃k,aa. Note that G2,aa does not have
an instantaneous part, because

∑
k η̃k = ∑

k �̃k has no in-
stantaneous part and in the correlated subspace

∑
k ηk = 0

by construction. Our numerical implementation is based on
the stable version of the Dyson equation [Eq. (25)] and η̃k

is evaluated using the auxiliary self-energy �̃k defined in
Eq. (16).

3. Bosonic self-consistency loop

We next discuss the downfolding for the screened interac-
tion. The bosonic lattice Dyson equation is[

W −1
k

]
AB

= [
V −1

k

]
AB

− [�EDMFT]abδAaδBb

− (
�GW

k,AB − �GW
loc,abδAaδBb

)
, (26)

while the impurity Dyson equation reads

W −1
imp = U−1 − �imp. (27)

We will use these equations and the possibility to calculate the
charge susceptibility χimp of the impurity model. The charge
susceptibility acts like a T matrix for the bosonic impurity
Green’s function and allows us to calculate the impurity
polarization �imp as follows: Wimp = U + Wimp ∗ �imp ∗ U =
U − U ∗ χimp ∗ U , or

(1 − χimp ∗ U ) ∗ �imp = −χimp. (28)

In the lattice Dyson equation, we set the elements of the
lattice polarization �EDMFT to �imp within the correlated
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subspace. The rest of the lattice polarization is filled with the
GW polarization, where local components in the correlated
subspace have been subtracted due to the double counting. It
thus becomes[

1−Vk
(
�EDMFT

ab δAaδBb + �GW
k,AB − �GW

loc,abδAaδBb
)] ∗ Wk = Vk,

(29)

and from Wk we can calculate the local screened lattice inter-
action Wloc. This is once again a stable form of the bosonic
Dyson equation, which is employed in our implementation.
The new approximation for the impurity effective interaction
U is obtained by identifying the local screened lattice inter-
action in the correlated subspace with the screened impurity
interaction, Wloc = Wimp:[

1 + Wimp ∗ �EDMFT
] ∗ U = Wimp, (30)

which is understood as a matrix equation in the correlated
subspace.

4. Summary of the self-consistency loop

The full self-consistency loop involves the following steps.
(1) Start with an initial guess for � and U and sab = εloc,ab +
�HF

loc,ab. (2) Solve for Gimp and χimp in the subspace with the
impurity Hartree term �H

imp and δμ = �HF
loc − �H

imp. (3) Invert
Z + Z ∗ � ∗ Gimp = Gimp to get Z in the correlated subspace,
while the Zāb̄ are obtained from the free solution Zāb̄ = (i∂t +
μ − sāb̄)−1. The total Z is constructed as in Eq. (21). (4) Get
the local polarization in the correlated subspace by solving
Eq. (28). (5) Compute the lattice propagator Gk (Wk) in the full
orbital space for all momenta k using the fermionic (bosonic)
lattice Dyson equation, see Eq. (22) [Eq. (29)]. These are both
stable versions of the Dyson equation. (6) (Optional) Evaluate
the nonlocal GW self-energy �GW

k,AB and polarization �GW
k,AB. (7)

Compute the ḡk in the weakly correlated subspace by solving
ḡk = ḡk,0 − ḡk,0 ∗ ηk ∗ ḡk for ḡk , where ḡ−1

k,0 = i∂t + μ − sab.
As the self-energy in the weakly correlated subspace is explic-
itly known, this is just an ordinary Dyson equation. Compute
the auxiliary self-energy �̃k = η̃

†
k ḡk η̃k for the downfolding.

(8) Solve Eqs. (24) and (25) to obtain the new approximation

for � and calculate the updated δμ. (9) Obtain the new
approximation for the effective impurity interaction U by
solving Eq. (30).

C. d-p model

We will now apply the formalism introduced in the previ-
ous section to the two-dimensional Emery model for cuprates
[34], which includes the correlated Cu dx2−y2 and higher lying
O px and py orbitals. The position of the px (py) orbital is
shifted with respect to the d orbital by half a unit vector in
the x (y) direction. Since the local interactions in the d orbital
are stronger than in the p orbitals, we restrict the correlated
subspace (EDMFT treatment) to the d orbital, while the p
orbitals are treated at the Hartree-Fock or GW level.

The system Hamiltonian is parametrized by Eq. (1). The
on-site energies are given by the local-diagonal component
of the single-particle term tAA

ii = {εd , εd + �pd , εd + �pd}.
Here, the band separation �pd determines the difference be-
tween the on-site energy for the d orbital, εd , and the on-site
energy for the p orbitals, εd + �pd . We denote the nearest
neighbor hopping between the d and px and py orbitals by

t
d py

ii = t
d py

ii ≡ t d p and the hopping amplitude between the px

and py orbitals by t
px py

ii ≡ t pp. The density-density interaction

vertex is given by V dd
ii = Udd and V d px

ii = V
d py

ii = 1
2Ud p for

nearest-neighbor d and p orbitals.
It is useful to introduce a spinor for the unit cell i,

ψi,σ ≡

⎛
⎜⎝

ci,dσ

ci,pxσ

ci,pyσ

⎞
⎟⎠, (31)

and its Fourier transform

ψk,σ = 1√
Nk

∑
i

e−ikRi

⎛
⎜⎝

ci,dσ

ci,pxσ

ci,pyσ

⎞
⎟⎠, (32)

which allows to write the single particle part of the Hamilto-
nian in the momentum representation as

Hkin = 1

Nk

∑
k

ψ
†
k,σ

h(k)ψk,σ ,

h(k) =

⎛
⎜⎝

2tdd (cos(kx ) + cos(ky)) + εd 2itpd eikx/2 sin(kx/2) −2itpd eiky/2 sin(ky/2)

H.c. �pd + εd 2tpp cos((kx + ky)/2)[ei(kx+ky )/2 − ei(kx−ky )/2]

H.c. H.c. �pd + εd

⎞
⎟⎠. (33)

Here, “H.c.” stands for the Hermitian conjugate part of the matrix. We note that in some previous studies a Fourier transform
with a shifted position of the p orbitals has been used [35,36].

By performing the same Fourier transform as for the single particle part of the Hamiltonian we arrive at the following
momentum representation of the interaction

V AB
k =

⎛
⎜⎝

Udd/2 Ud pe−ikx/2 cos(kx/2) Ud pe−iky/2 cos(ky/2)

Ud peikx/2 cos(kx/2) Upp/2 0

Ud peikx/2 cos(ky/2) 0 Upp/2

⎞
⎟⎠, (34)

where special care needs to be taken for local and orbital diagonal components to fulfill the Pauli exclusion principle,
see Sec. II D. We solve this lattice problem using the GW +EDMFT method [17,19,20,22] introduced above, which
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is based on EDMFT [15,19,20,23]. The downfolding is thus
performed from the three-orbital space of the full model to the
d orbital correlated subspace both for the electronic Green’s
function and the (bosonic) screened interaction.

A nontrivial problem in practice is the convergence. Be-
cause the Hartree and Fock terms are quite large, the solution
can jump from fully occupied to fully unoccupied d orbitals
during the self-consistency cycle. This is why we fix the
total occupation to n and the relative occupation between the
orbitals r = np/nd , which determines the local-diagonal part
of the density matrix and the local Hartree and Fock shifts.
r is determined by minimizing the difference between the
fixed and calculated local density matrix at a given chemical
potential. Once a sufficiently good approximate solution is
obtained, we release the constraint on the local diagonal
matrix.

The electronic propagator is defined as

Gk,σ (t, t ′) = − i〈TCψkσ (t )ψ†
kσ

(t ′)〉

=
⎛
⎝Gk,dd,σ Gk,d px,σ Gk,d py,σ

Gk,pxd,σ Gk,px px,σ Gk,px py,σ

Gk,pyd,σ Gk,py px,σ Gk,py py,σ ,

⎞
⎠, (35)

with 〈. . .〉 = 1
Z Tr[TCeiSlatt . . .] and Slatt the lattice action, Z the

partition function of the initial equilibrium state with inverse
temperature β, and TC the time ordering operator on the
Kadanoff-Baym contour which runs from time 0 to time t
along the real time axis, back to time zero and then to −iβ
along the imaginary-time axis [33]. The free propagator is
similarly obtained from the single-particle Hamiltonian, or
the corresponding lattice action. For the matrix elements of
the tight-binding approximation, see Ref. [36]. Since there
is hopping between all orbitals in the unit cell, the free
propagator is a full matrix.

The bosonic propagator is defined as

Wk,σ (t, t ′) = − i〈TCφkσ (t )φ†
kσ

(t ′)〉

=
⎛
⎝Wk,dd,σ Wk,d px,σ Wk,d py,σ

Wk,pxd,σ Wk,px px,σ Wk,px py,σ

Wk,pyd,σ Wk,py px,σ Wk,py py,σ

⎞
⎠, (36)

where the spinor φkσ = {φk,dσ , φk,pxσ , φk,pyσ } originates from
a Hubbard-Stratonovich decoupling of all the interaction
terms in Hint.

D. Self-energy and polarization diagrams

In a conserving approximation, the self-energy and po-
larization are given by the derivative of the Luttinger-Ward
functional with respect to the Green function and screened
interaction, respectively. We will provide here the expressions
for the mean-field (nonretarded Hartree+Fock) and the re-
tarded GW approximations.

1. Hartree

The Hartree expression for the Emery model is given by

�H
αα (t, t ′) = δ(t, t ′)

∑
β �=α

ρββV αβ

k=0, (37)

where we have introduced the single-particle density matrix
ρk,αβ = 〈c†

β,kcα,k〉, its local value ραβ = 1
Nk

∑
k ρk,αβ , and the

combined index α = (A, σ ), where A is the band and σ the
spin index. As marked in the sum we need to fulfill the Pauli
exclusion principle and therefore we only sum over distinct
indices β �= α. For the d orbital, the expression is given by

�H
dd,σ (t, t ′) = [

V dd
loc ρdd,σ̄ + V dd,nl

k=0 ρdd

+ V d p
k=0ρpx px + V d p

k=0ρpy py

]
δ(t, t ′), (38)

where V dd,nl marks a possible nonlocal d-d interaction. We
have assumed spin symmetry and used the notation ρAB =∑

σ ρAB,σ .
Now, we can calculate the time-dependent shift of the

chemical potential for the impurity problem [see Eq. (19)],
where the mean-field contributions are given by

�HF
loc,dd,σ = V dd

loc ρdd,σ̄ (t ) + V dd,nl
q=0 ρdd (t )

+ 4V d px
q=0ρpx px (t ) + 4V

d py

q=0ρpy py (t ), (39)

�H
imp,dd,σ = Uddρdd,σ̄ (t ) + ∫

dtD(t, t )ρdd (t̄ ). (40)

Here we have introduced the retarded part of the effective
impurity interaction as D = U − V dd

loc . We can get rid of the
term

∫
dtD(t, t )ρdd (t ) by performing an expansion in the

density fluctuations n̄ = n − 〈n〉 instead of n, see discussion
in Ref. [23].

2. Fock

In order to fulfill the Pauli exclusion principle we should
remove the local diagonal part of the Fock diagram,

�F
k,αβ (t, t ) = − 1

Nk

[∑
q

ρk−q,βα (t )V αβ
q − δαβρloc,αα (t )V αα

loc

]
,

(41)

where V αα
loc is the local intraorbital interaction and repeated

indices are understood as a piecewise product. To give a
concrete example, for the diagonal d component this becomes

�F
k,dd,σ (t ) = − 1

Nk

∑
q

V dd,nl
q (t )ρk−q,dd,σ (t, t+), (42)

where we included the possibility of a nonlocal d-d in-
teraction. The off-diagonal parts of the self-energy are not
modified, e.g.,

�F
k,d px,σ

(t ) = − 1

Nk

∑
q

V d p
q (t )ρk−q,d px,σ (t ). (43)

3. GW

The GW self-energy is given by

�GW
k,αβ (t, t ′) = 1

Nk

∑
q

iGk−q,βα (t, t ′)Wq,αβ (t, t ′), (44)

from which we have to subtract the local term already present
in the impurity self-energy. The explicit expression for the
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diagonal d contribution is

�GW
k,dd,σ (t, t ′) = i

Nk

∑
q

Gk−q,dd,σ (t, t ′)Wq,dd (t, t ′), (45)

while the off-diagonal contributions are given by

[�GW ]q,d px,σ (t, t ′) = i

Nk

∑
q

Gk−q,d px,σ (t, t ′)W q,d px (t, t ′).

(46)

The polarization is calculated in an analogous fashion,

�GW
k,αβ (t, t ′) = −i

Nk

∑
qσ

Gk−q,αβ (t, t ′)Gq,βα (t ′, t ). (47)

where the sum is done only through spin indices σ for
combined indices α and β. The d-d and d-p components thus
are

�GW
k,dd (t, t ′) = −2i

Nk

∑
qσ

Gk−q,dd,σ (t, t ′)Gq,dd,σ (t ′, t ) (48)

and

�GW
k,d px

(t, t ′) = −2i

Nk

∑
qσ

Gk−q,d px,σ (t, t ′)Gq,pxd,σ (t ′, t ), (49)

and analogous for all the other terms. From this it follows that
the polarization matrix is a full matrix.

III. COUPLING WITH LIGHT

In order to simulate the photoexcitation, we need to un-
derstand how light couples to matter in the multiband case.
In principle, one can obtain a light-matter Hamiltonian by
projecting the continuum theory onto a given set of bands.
There is however a well-known gauge ambiguity [37]: While
the full theory can be described equivalently in different
gauges for the electromagnetic fields, the description resulting
from a projection to a given set of bands or Wannier orbitals
can depend on the gauge in which the projection is performed.
In particular, different descriptions are obtained by projecting
the continuum Hamiltonian in the Coulomb gauge, which
corresponds to the replacement �p → �p − e �A, or in the dipolar
gauge, where the coupling is between a polarization density
and the electric field. This ambiguity is actively discussed
for atomic Hamiltonians in the context of cavity quantum
electrodynamics [38,39].

In the present case, we are interested in the semiclassical
description (the fields are treated classically). Nevertheless,
the question of the optimal light-matter Hamiltonian becomes
relevant for strongly driven systems, beyond linear response.
A common strategy is to request the multiband light-matter
Hamiltonian to have a gauge structure even after projection
to a given manifold of bands [40]. This leads to a Hamil-
tonian which in general includes both multipolar magnetic
and electric matrix elements, and Peierls phases depending
on the vector potential. Here we give a compact summary of
the corresponding construction, which from the outset takes
into account the main simplifications which are appropriate
for the description of optically driven solids: in particular,

all fields are assumed to be spatially homogeneous through-
out the solid (q = 0 approximation). This is suitable in the
long-wavelength limit; it effectively neglects magnetic dipolar
matrix elements, which are relatively small even for electric
fields of the order of MV/m.

Before presenting this construction, we remark that the
q = 0 approximation can be dropped relatively easily, and
one can instead obtain the same light matter Hamiltonian
by only neglecting the variation of the fields on the atomic
scale, derive a Hamiltonian with spatially varying fields, and
restrict the fields to q = 0 in the end. Moreover, by making
the semiclassical approximation from the outset one does not
capture induced long-range dipolar interactions and Lamb-
shifts. However, in the present case, all interactions (including
the long-range Coulomb interaction) are approximated by an
effective short-range interaction, whose ab initio determi-
nation is challenging even in the case without light-matter
coupling. An alternative but more lengthy derivation of the
Hamiltonian, which leads to the same Hamiltonian as below,
without making the q = 0 and semiclassical approximation
from the outset, can be found in Ref. [41].

For the construction of the light-matter Hamiltonian, we
start with the semiclassical coupling (which is obtained from
the minimal coupling Hamiltonian using a Power-Zienau-
Wolley (PZW) transformation, see Ref. [37])

HED = e
∑

j

�r j · �E = �E · �P, (50)

where we have introduced the dipolar moment �P = e
∑

j �r j ,
�E is the (classical) and spatially homogeneous transversal
component of the electric field, �r j is the position of the jth
electron and e the electric charge. We then make the follow-
ing approximations. (1) Project the continuum Hamiltonian
to a set of localized Wannier basis functions and explicitly
separate intra- and inter-unit-cell contributions. (2) As the
inter-unit-cell terms break the translational invariance, we
apply a unitary transformation which restores the translational
symmetry at the expense of time-dependent phase factors.
This step is a generalization of the Peierls substitution. The
transformation of the interunit cell terms will reintroduce the
vector potential �A into the description. The mixed represen-
tation with the electric field �E and the vector potential �A
is the main result of this section. It allows the modeling of
translationally invariant systems with intraband acceleration
and interorbital dipolar excitations.

In more detail, the projection of (50) to a set of Wannier
orbitals is obtained as follows. The unit cell may contain
several atoms described by Wannier functions, which we
denote by 〈�r|k, n〉 = φn(�r − �Rk ) for the kth unit cell and nth
orbital in the unit cell. We thus obtain the matrix elements of
the position operator as

〈in|�r|km〉 = 〈in|�r − �Rk|km〉 + 〈in| �Rk|km〉
= �Dnm

ik /e + 〈in| �Rk|km〉
= �Dnm

ik /e + �Rkδk,iδn,m, (51)

where the vector �Rk represents the center of mass in the unit
cell k. We have introduced the dipolar matrix element as
�Dnm

ik = e〈in|�r − �Rk|km〉.
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The tight-binding Hamiltonian on the lattice can now be
written as

HED =
∑

i j
nm

tnm
i j c†

inc jm + e �E
∑

i

ni �Ri + �E
∑

i j
nm

�Dnm
i j c†

inc jm.

(52)

The inter-unit-cell contributions to the Hamiltonian
e �E ∑

i ni �Ri break the translational invariance. In order to
restore the translational symmetry, we perform the unitary
transformation U = eie

∑
jm χ j nm

j . This transformation removes
the e �E ∑

m j nm
j
�Rj term and introduces time-dependent phase

factors as in the Peierls substitution:

H̃ED = U †HEDU − iU †U̇ =
∑

i j

t nm
i j e−ie(χi−χ j )c†

inc jm

+ e �E
∑

i

ni �Ri+ e
∑

i

χ̇ini

+ �E
∑

i j

�Dnm
i j e−ie(χi−χ j )c†

inc jm, (53)

from where we get the condition χ̇ = − �E (t ) · �Ri → �A(t ) =
− ∫ t �E (s)ds in order to cancel the spatially inhomogeneous
electric field contributions. The Peierls phases are thus given

by χi j = χi − χ j = ∫ �Ri

�Rj
�A(x)d�x = ( �Ri − �Rj ) �A. At this point,

the integral is independent of the path, as the vector potential
is homogeneous and can be written as a gradient field. The
final Hamiltonian is now given by

H̃ED =
∑

i j

t nm
i j e−ieχi j c†

inc jm + �E
∑

i j

�Dnm
i j e−ieχi j c†

inc jm. (54)

The Peierls transformation yields time-dependent hoppings,
but also the nonlocal dipolar matrix elements have a time-
dependent phase. Up to this point, the derivation was rather
general (up to neglecting quantum effects and making the q =
0 approximation). This Hamiltonian can now be restricted to a
given subset of bands. The important point is that the Hamil-
tonian still has an exact gauge structure, i.e., the description is
invariant under the transformation �A → �A + �∇�(�r, t ), c j →
c jei�( �Rj ,t ), φ(�r) → φ(�r) − ∂t�(�r, t ) when a scalar potential
term Hφ = e

∑
j,n φ( �Rj )c

†
jnc jn is added, which is the require-

ment stated in Ref. [40]. The real-world application however
deserves several comments. (1) Some ambiguity in this trun-
cation comes from the definition of the dipolar moment, which
depends on the choice of the origin �Rk in Eq. (51). This issue
will be important for an ab initio determination of the dipolar
matrix elements, see the discussion below, which goes beyond
the scope of the current paper. (2) In the current work, we will
truncate the range of the dipolar matrix element to the nearest
neighbor. However, this approximation is not crucial and can
be relaxed. (3) It is a nontrivial question whether the dipolar
light-matter Hamiltonian is optimal for a quantitative descrip-
tion of strongly driven phenomena beyond linear response, or
whether, e.g., working with a projected continuum Hamilto-
nian in a fixed gauge can give quantitatively better results for
a given number of bands. A general answer to this question
is beyond the scope of this paper. An explicit comparison
for subcycle driven dynamics in a single band shows that the

dipolar Hamiltonian is not only favorable because of its gauge
structure, but it also converges more rapidly with the number
of bands taken into account [41]. A future combination with
ab initio input and its comparison with experimental data
could serve as a-posteriori justification.

As this is the first work which addresses the nonlin-
ear response in correlated systems with both intraband and
interband terms, we will focus on their qualitative contribu-
tions to physical observables.

Given H̃ED, the corresponding currents can be obtained

as �j = ∂t
�̃P (t ) = −i[ �̃P, H̃ED] = −i[ �̃P, Ht + HD], where we

have separated the pure Peierls term Ht and the dipolar

term HD. The polarization is given by �̃P = �Pdia + �Poff =
e
∑

i
�Rini + ∑

i jnm
�Dnm

i j c†
inc jme−eiχi j . The commutator of the

diagonal term �Pdia with the kinetic part of the interaction gives
the usual contribution from the electron hopping

�jK = −i[ �Pdia, Ht ]

= −ie

Nk

∑
i jl

nmp

tnm
i j e−eiχi j �Rl [c

†
l pcl p, c†

inc jm] + H.c.

= ie
∑

i j
nm

( �Ri − �Rj )t
nm
i j e−eiχi j c†

inc jm + H.c., (55)

or in momentum space

ie
∑

i j
nm

tnm
i j e−ieχi j ( �Ri − �Rj )c

†
inc jm + H.c.

= e

Nk

∑
k

nm

∂

∂�k
εnm

�k−e �Ac†
knckm. (56)

The commutator of the diagonal term �Pdia with the dipolar
part of the Hamiltonian evalutes to

�jD1 = −i[ �Pdia, HD]

= −ie

Nk

∑
i jk

nmp

( �E · �D)nm
i j e−ieχi j �Rkp[c†

kpckp, c†
inc jm] + H.c.

= ie
∑

i j
nm

( �E · �D)nm
i j e−ieχi j ( �Rin − �Rjm)c†

inc jm + H.c. (57)

and expresses the change in the polarization due to the dipolar
transition. In momentum space, this expression becomes

−ie
∑

i j
nm

( �E �D)nm
i j e−ieχi j ( �Ri − �Rj )c

†
inc jm + H.c.

= − ie

Nk

∑
k

∂

∂�k

[∑
nm

( �E · �D)nm
i j e−ie(�k−e �A)( �Ri− �Rj )

]
c†

knckm.

(58)
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The commutator of the off-diagonal polarization �Poff with
the kinetic term Ht reduces to

�jD2 = i[ �Poff, Ht ] = −ie
∑
i jk

nmp

�Dpn
ki t nm

i j e−ie(χi j+χki )c†
kpc jm + H.c.

(59)

If the dipolar matrix element is local in space this expression
reduces to

�jD2 = −ie
∑

i j
nmp

�Dpn
ii t nm

i j e−ieχi j c†
ipc jm + H.c. (60)

or in momentum space

�jD2 = −ie
∑
knmp

⎡
⎣∑

i j

�Dpn
ii t nm

i j ei(�k−e �A)( �Ri− �Rj )

⎤
⎦c†

kpckm + H.c.

(61)

The Peierls �jK and the dipolar �jD2 contributions to the
current are independent of the electric field which makes them
dominant at the linear-response level. The dipolar contribution
to the current �jD1 contains a factor of �E and therefore it
will only contribute at the nonlinear level. In the practical
calculation, we evaluate the Peierls contribution to the current
�jK by Eq. (56) and the total contribution to the dipolar current
by a numerical derivative of the interband polarization �jD1 +
�jD2 = ∂ �Poff/∂t .

The dipolor matrix element is a material-specific quantity.
In the case of the d-p model, we will treat only the nearest-
neighbor d to p dipolar matrix elements and neglect the rest:

D ≡ �Dpxd
ii = − �Dpyd

ii

= e
∫

d�rφpx (�r − R∗)�rφd (�r − R∗), (62)

where R∗ is the center of mass in the unit cell. For the
dipolar matrix element between the d and px orbital the time-
dependent phase is e−ieAxax/2, since the distance between the d
and px orbital is a/2. The same expression holds for the d-py

element, but due to the phase dependence of the orbital it has
the opposite sign.

To the best of our knowledge, the dipolar matrix element
between the d and p orbital has not been reported in the liter-
ature. For the purpose of this work, we have performed the in-
tegral numerically using a cluster of dx2−y2 and px, py orbitals,
whose spatial profile is given by a Gaussian function with a
variable width σ . The evaluation of the dipolar matrix element
for a Gaussian with width σ = 0.01a, where a is the lattice
constant, yields a dipolar matrix element |D| ≈ 0.3 ea, with
e the electronic charge. The matrix element strongly depends
on the spatial width of the orbital and in the following we will
use two characteristic values, namely |D| = 0.1, 0.3 ea. For
a quantitative description of the photoexcitation in multiband
materials, it will be crucial to determine these parameters from
ab initio calculations, taking into account material-specific
properties.

FIG. 1. Orbital-resolved spectral function obtained in the
GW +EDMFT (black) and HF+EDMFT (red) approximation. The
full (dashed) lines represent the d (px and py) orbitals.

IV. EQUILIBRIUM

In the following we will focus on the parameter regime
relevant for La2CuO4, as obtained from LDA calculations and
the constrained RPA downfolding to the low-energy space
composed of the d and p orbitals, with parameters Udd =
5.0 eV, Ud p = 2.0 eV, td p = 0.5 eV, tdd = −0.1 eV, tpp =
0.15 eV, and �pd = −3.5 eV, see Refs. [36,42] for ab initio
estimates. In all calculations, we set the inverse temperature
to β = 5.0 eV−1 ≈ 1/2000 K−1, which is above the Néel
temperature. We have employed this high temperature due
to the limitations of the NCA approximation, which prevent
us from stabilizing calculations at lower temperatures. As
the studied system has a 2 eV gap, the thermal fluctuations
across the gap even at this elevated temperature can be
neglected and we do not expect qualitative changes for lower
temperatures until the Néel temperature is reached. We will
compare results for two different approximations, namely,
GW +EDMFT and Hartree-Fock+EDMFT (HF+EDMFT).
As only GW +EDMFT includes nonlocal dynamical charge
fluctuations, the comparison between the two methods will
illustrate the role of nonlocal screening.

In Fig. 1, we present the orbital-resolved local spectral
function AA(ω) = − 1

π
Im[Gloc,AA(ω)], for A = d, px, py ob-

tained with the two schemes. The lower Hubbard band and
the p orbital lie in the same energy range and are strongly
hybridized due to the direct hopping td p. The spectral function
below the Fermi level is split into three distinct peaks, see
discussion in Ref. [43]: (a) a peak at ω = −3.5 eV of predom-
inantly p orbital character corresponding to the nonbonding
orbital combination, (b) the antibonding band corresponding
to the Zhang-Rice singlet around ω = −1.5 eV, and (c) the
bonding band pushed to lower energy, with a center at ω =
−5 eV. The Zhang-Rice band has been originally identified
as an antibonding singlet state in a typical cuprate setup
[43]. While our numerical approach properly captures the
orbital nature of this state, the two-particle spin fluctuations
would have to be included to capture the singlet nature of the
wave function. A detailed analysis using a cluster extension
of DMFT showed that the feedback of the spin fluctuations
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FIG. 2. Momentum-resolved spectral function Ak (ω). The color
coding indicates the orbital contribution to the spectral weight (red
for d- and blue for p-orbital character). The black lines correspond
to the noninteracting spectrum.

onto the single-particle spectrum leads to a narrowing of the
Zhang-Rice band due to the polaronic effect [44].

The presence of a large gap suppresses the screening in
equilibrium, which explains the very similar GW +EDMFT
and HF+EDMFT results. (We have explicitly checked that
this is not anymore the case in doped systems.) The weak
screening effect is also evident in a small reduction of the
effective impurity interaction U (ω = 0) − U dd ≈ −0.05 eV,
so that the static approximation is justified.

The momentum- and orbital-resolved equilibrium spectral
function Ak (ω), shown in Fig. 2, reveals that the band of
predominantly p character is split into two distinct bands
around the X point. This splitting is present already in the
noninteracting spectrum (black lines) and originates primarily
from the direct px-py hopping, although also the hopping
between the d and p orbitals leads to a slight splitting. The
hybridization between the d and p band (see admixture of blue
and red color in Fig. 2) is strongest between the X and M point
and between the bonding band and the p bands.

V. PHOTOEXCITATION

A. Orbital occupation

Now we turn to the relaxation dynamics after photoexcita-
tion. We excite the system with a short pulse

E (t ) = E0e−4.6(t−t0 )2/t2
0 sin (�(t − t0)) (63)

with frequency � and amplitude E0, polarized along the
(11) direction. The width of the pulse t0 = 2πn/� is chosen
such that the envelope accommodates n = 2 cycles, unless
otherwise stated.

The electric field pulse creates charge-transfer excitations
and results in an increase of the double occupancy docc =
〈nd

↑nd
↓〉 of the d orbitals, as evidenced in the time evolution

illustrated in Figs. 3(a) and 3(c). In the following, we will
adjust the strength of the pulse (E0) to fix the photodoping
at time t = 12 fs to be �docc = 1%, 2.5%, and 5%. The
magnitude of the dipolar matrix element determines the ratio

(a) (b)

(d)(c)

FIG. 3. Time evolution of the change in the double occupancy
docc (first columnn) and the orbital occupation of the d (full line) and
px (py ) (dashed line) orbitals (second column). The data in the first
(second) row have been obtained using the dipolar matrix element
|D| = 0.3 ea (0.1 ea), while the photon frequency is � = 6.0 eV.

between direct interband excitations and Landau-Zener-like
tunneling due to the intraband acceleration. The latter can
be seen from the comparison of the contributions from the
Peierls term in Eq. (55) and the dipolar term in Eq. (57) to
the photoinduced current. Because the dipolar and the Peierls
contribution have different interorbital matrix elements, it is
expected that if one or the other of the two processes domi-
nantes, the orbital population (density of holes in the d and
p bands) or the photoinduced current (optical conductivity)
may be different after the photoexcitation. We investigate the
effect of the dipolar matrix element by comparing two values,
namely, |D| = 0.3 ea and |D| = 0.1 ea, at fixed photodoping.
In order to reach the same photodoping concentration, a much
larger field strength E0 is needed in the case of the smaller
dipolar matrix element. Surprisingly, the final occupation of
the orbitals for fixed photodoping, see Figs. 3(b) and 3(d),
is almost independent of the dipolar matrix element. This
illustrates that the state reached after the photodoping excita-
tion is essentially determined by docc and does not depend on
the details of the excitation process or the value of the dipolar
matrix element.

To further confirm this finding, we investigate the effect
of different pulse frequencies. In particular, we will focus on
excitations from the ZRS to the UHB (� = 4.0), from the
band with predominant p character to the UHB (� = 6.0) and
the bonding band to the UHB (� = 7.5). A similar analysis
has already been presented in Ref. [14], with the conclusion
that an orbital selective excitation of charge carriers is not
possible. Here we make this test stronger by using pulses
with a larger number of cycles, np = 4, corresponding to a
narrower energy distribution of the pump pulse. The results
are presented in Fig. 4, where we also provide a direct
comparison to the HF+EDMFT results. As the absorption
is reduced in HF+EDMFT, a stronger pulse strength has to
be applied to reach a fixed number of doublons after the
pulse. The excitation from the ZRS to the UHB produces
pronounced oscillations in both approximations, see Figs. 4(a)
and 4(b). For higher frequencies the inclusion of the nonlocal
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FIG. 4. Test of the orbital-selective excitation in the GW +EDMFT (first row) and HF+EDMFT (second row) description for transitions
from the ZRS to the UHB (� = 4.0 eV), the p band to the UHB (� = 6.0 eV) and the bonding band to the UHB (� = 7.5 eV). The first
column presents the time evolution of the change in the double occupancy docc. The second column shows the change in the orbital occupation
of the d orbital, �nd . The change in the p-orbital occupation is given by �np = −0.5�nd . The last two columns show the density of holes in
the lower Hubbard band and the p bands. The dipolar matrix element is fixed to |D| = 0.3 ea.

fluctuations strongly damps the long-lived oscillations in com-
parison to HF+EDMFT. Within GW +EDMFT the long-time
orbital occupation of the d orbital is almost independent of
the pump pulse frequency, which further confirms the state-
ments in Ref. [14]. In contrast, in HF+EDMFT, the d-orbital
occupation exhibits a more pronounced pulse-frequency de-
pendence.

The change in the d occupancy, �nd , is related to the
change in the p occupancy, �np, by �nd = −2�np. The
change in the double occupancy �docc corresponds to the total
amount of charge transferred across the gap, and hence the
change in the number of empty d-sites can be extracted as
�hd = �docc + 2�np. Since the p orbitals are initially fully
filled, the hole density on the p orbitals (corresponding to
singly occupied sites) can be estimated as �hp = 0.5�nd , see
Fig. 4 for the dynamics of both types of holes. Similarly to the
dynamics of the occupation, the dynamics of the density of
holes in the lower Hubbard band shows a strongly oscillatory
behavior in both approximations only for the lowest frequency
� = 4.0. For high-frequency excitations, see Figs. 4(c) and
4(g), the density of d holes in the lower Hubbard band
is small and the long-time dynamics is essentially constant
within HF+EDMFT. In contrast, the GW +EDMFT result
demonstrates a clear relaxation toward an enhanced orbital
occupancy of the d orbital. Due to the strong oscillations in
the number of d and p holes in HF+EDMFT, it is hard to
discuss the orbital selectivity of holes. However, it is clear that
the deviation between different excitations is much larger than
in GW +EDMFT. Within the latter approximation, the system
relaxes to a state with practically identical occupations of
the orbitals and similar hole concentrations for all excitation
frequencies. The explicit relaxation dynamics of the holes
can be monitored by the greater component, which will be
discussed in the following section.

B. Spectral function and occupation

Now we turn to the dynamics of the spectrum and the
population dynamics. The time-dependent spectral function is
defined as a partial Fourier transform over the difference in
time A(ω, t ) = − 1

π
Im

∫ t+tcut

t dt ′eiω(t ′−t )GR(t ′, t ), with a cutoff
tcut = 8 fs. This allows us to compute the spectrum with
a time-independent resolution up to relatively long times.
We have checked that the precise choice of the cutoff does
not qualitatively affect the dynamics of the spectral features
discussed below.

In the following, we will compare the photoinduced
changes of the spectrum for GW +EDMFT [Fig. 5(a)]
and HF+EDMFT [Fig. 6(a)]. The band-gap renormaliza-
tion is present in both cases, however it is much larger in
GW +EDMFT. Moreover, the GW +EDMFT result exhibits
strong broadening of all spectral features. We can distin-
guish two processes leading to the band gap renormalization:
(a) the static Hartree-shift due to the Coulomb interaction
Ud p between holes in the p orbitals and doublons in the
d orbital, ��H

dd = (Udd − 2Ud p)�nd [11,12,45], where the
factor of 2 originates from the number of nearest-neighbor p
orbitals and we have used the conservation of the total charge
�nd = −(�npx + �npy ), (b) the photoinduced enhancement
of screening, which reduces the effective interaction. To
demonstrate that the main contribution to the band-gap renor-
malization originates from the dynamical screening, we mark
the static Hartree shift ��H by a vertical red line in Figs. 5(a)
and 6(a). Within HF+EDMFT, the Hartree shift perfectly
describes the photoinduced changes, while for GW +EDMFT
it only accounts for a small part of the observed band renor-
malization, see also the discussion in Ref. [14].

Within GW +EDMFT, the local spectrum is also strongly
broadened, see Fig. 5(a). The broadening can originate from
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FIG. 5. (a) Time evolution of the orbital-resolved spectral function A(ω, t ) for equilibrium (black) and fixed delay times of 4, 6, and 8 fs.
The p (d) orbitals correspond to the dashed (full) lines. (b) The analogous plot for the greater component at negative frequencies G>(ω < 0, t )
and lesser component for positive frequencies G<(ω > 0, t ), with the black line representing the equilibrium spectral function A(ω). Both
panels show GW +EDMFT results. The pump pulse amplitude is chosen such that approximately 5% photodoping is created at the frequency
� = 7.5 eV, while the dipolar moment is fixed to |D| = 0.3 ea.

two distinct mechanisms: (a) a change in the lifetime due
to increased scattering and (b) photoinduced changes in the
band dispersion (velocities). To distinguish these two ef-
fects, we analyze the change in the momentum- and orbital-
resolved spectral function with respect to its equilibrium value
�Ak (ω, t ) = Ak (ω, t ) − Aeq

k (ω), see Fig. 7. The momentum-
dependent information shows that the change in the region of
the UHB depends on momentum: the spectral weight close to
the � point is shifting towards the chemical potential, while
spectral weight near the Z point is shifting away from the
chemical potential [green arrows in the d-orbital panel of
Fig. 7(a)]. A detailed comparison of the momentum cut at
the � point in Fig. 7(c) reveals asymmetric changes and a net
shift of spectral weight towards the chemical potential at the
lower edge of the UHB, see the green lines for the difference
of the spectra in Fig. 7(c). The opposite trend is seen at the
Z point. The latter difference could originate either from the
photoinduced changes in the Fock contribution, which affects
the bandwidth of the Hubbard band [46], or the GW contri-
bution originating from the momentum-dependent scattering
with the plasmonic excitations. We have checked that the
change in the bandwidth due to the Fock term after the ex-
citation is at least an order of magnitude smaller than the shift
in the momentum-dependent spectrum. For the UHB, the
latter is presented in Fig. 7(b) as a photoinduced change in
the maximum of the spectrum. Besides the change in the

dispersion, the total change in the spectrum is accompanied
by a broadening, which is roughly momentum independent.
This leads to the conclusion that the photoinduced changes
in the UHB and gap originate from the combination of both,
namely a broadening of the spectrum, and changes in the
dispersion.

In contrast, the Zhang-Rice singlet exhibits only a slight
broadening, without any clear changes in the dispersion.
Moreover, the main part of the p band shows an almost
perfectly rigid band shift with minor lifetime effects, in
agreement with the change in the local spectrum, see black
arrows in Fig. 7(a). Because the shift is rigid, the effect is
also seen in the local (k-integrated) spectra, see Fig. 5(a). This
is confirmed by the behavior of the photoinduced difference
at ω = −5.0 in Fig. 7(c), which shows a symmetric oscilla-
tionlike shape. An interesting observation is that the bonding
band shows a dichotomy between the d and p contribution,
where the latter exhibits a momentum dependent broadening,
while the broadening of the former is almost momentum
independent, compare the d and p spectra in Fig. 7(a). The
comparison of the differences in the corresponding spectral
peaks at the � and Z points, see Fig. 7(c), confirms that these
quasi-particles are only broadened without a clear shift.

To investigate the population dynamics we compute the
time- and orbital-resolved lesser component G<(ω, t ), which
measures the occupation dynamics as a function of the probe

FIG. 6. Analogous plot to Fig. 5 for the time-dependence in the HF+EDMFT approximation.
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FIG. 7. (a) Photoinduced difference in the momentum- and orbital-resolved spectral function �Ak (ω, t ) = Ak (ω, t ) − Aeq
k (ω) traced over

all bands (Tot) and projected onto the d and p orbitals. The black (green) arrows in (a) indicate the corresponding momentum-dependent
changes of the p band (UHB). (b) The maximum of the spectral function in the UHB before (black) and after photoexcitation (red). (c) Slices
of the momentum-dependent spectrum at the � and Z point in equilibrium (black), after the pulse (red), and their difference (green). The first
(second) column shows a zoom of the spectrum below (above) the chemical potential. The pump pulse intensity is E0 = 0.31, the frequency
� = 6 eV, and the dipolar moment is fixed to |D| = 0.3 ea, which corresponds to 5% photodoping. All panels show GW +EDMFT results.

time t and the energy ω

G<(ω, t ) = 1

π
Im

∫ t+tcut

t
dt ′eiω(t ′−t )G<(t ′, t ). (64)

This expression is similar to the formula for the photoemission
spectrum [47], but does not contain the pulse envelope func-
tions. This simple forward integration allows us to analyze
longer times.

We choose to excite the system with a pulse which is
resonant to the transition between the bonding band and the
UHB (� = 7.5 eV) to clearly resolve the hole dynamics.
We have checked that the dynamics of holes is qualitatively
similar for the resonant excitation between the predominantly
p band and the UHB. In Figs. 5(b) and 6(b), we compare
the evolution of holes in the GW +EDMFT and HF+EMDFT
approximation. The lesser (greater) component is plotted for
ω > 0 (ω < 0).

After the pump pulse the occupation dynamics shows a
relaxation of the doublons to the lower edge of the UHB
within GW +EDMFT, see G< curves in Fig. 5(b). In contrast,
the doublon distribution does not relax within HF+EDMFT,
see Fig. 6(b). Interestingly, a small number of p electrons
is also present in the UHB due to the direct hybridization

between the doublons on the d orbital and the electrons on
the p orbitals.

In order to follow the dynamics of the holes, we
will now analyze the greater component G>(ω, t ) =
1
π

Im
∫ t+tcut

t dt ′eiω(t ′−t )G>(t ′, t ). In both approximations, the
photoexcitation creates a substantial density of holes on the
p orbitals. Within GW +EDMFT, see Fig. 5(b), these p holes
quickly relax to the upper band edge. The weight of the d
holes increases, which is the result of relaxation processes
including interband scattering and impact ionization [48].
These two processes are responsible for a substantial increase
in the density of d holes in the LHB, compare Figs. 5(a) and 3.
In contrast, the holes are almost trapped within HF+DMFT,
see Fig. 6(b), as the interband relaxation is highly suppressed
without charge fluctuations. Assuming that the pulse creates
holes at similar energies in both approximations, the compar-
ison furthermore shows that due to the nonlocal and interband
charge fluctuations a significant fraction of holes already
relaxes during the pulse.

The experimental renormalization of the nonbonding oxy-
gen p band has been recently reported in a time-resolved
ARPES study of optimally doped Y-Bi2212 single crystals,
see Ref. [11]. As we are comparing a doped system in the
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FIG. 8. Orbital-resolved and total optical conductivity in equilibrium (black) and after the pump pulse (red) for the dipolar matrix elements
(a) |D| = 0.3 and (b) 0.0 ea. (c) Gap size renormalization at the position of the half-maximum in the optical conductivity (full lines) as a function
of the density of photoexcited doublons and comparison with the renormalization expected from the static Hartree shift ��H

dd (dashed) for two
values of the dipolar matrix element |D| = 0.0, 0.3 ea. The frequency of the excitation is � = 6 eV. All panels show GW +EDMFT results.

experiment with a half-filled system in theory, a comparison
close to the chemical potential is not possible. Therefore we
will focus on the dynamics of the nonbonding oxygen p band
close to the antinodal point. In the experiment, the dynamics
of the oxygen band is characterized by a long-lived spectral
weight variation and the comparison with Fig. 5(a) for the
p band close to the X point reveals a qualitatively similar
behavior. While experimentally, the renormalization of the
nonbonding p band is only reported close to the X point, our
modeling predicts an almost momentum-independent renor-
malization. A more detailed comparison between theory and
experiment would be desirable to understand the momentum-
dependent renormalization in the whole BZ.

C. Optical conductivity

Optical spectroscopy has been extensively used to study
the photoinduced dynamics in charge-transfer insulators [49].
The pioneering experiments on cuprates have shown a clear
band gap renormalization, which at the time was attributed
to photoinduced in-gap states [50]. Subsequent experiments
confirmed the effect and pointed toward a multiband origin
of the gap renormalization [10,51,52]. Here we analyze the
optical absorption by explicit simulations of the pump and
probe pulse and extract the photoinduced current as the dif-
ference of the current with and without a probe pulse, jprobe =
jpump+probe − jpump. For a weak probe pulse, we evaluate the
optical conductivity as the ratio

σ (ω, tp) = jprobe(ω, tp)/E (ω, tp), (65)

where X (ω, tp) = ∫ tcut

0 dsX (tp + s)e−iωs−ηs is the Fourier
transform of X = jprobe or E , and tp is the start of the probe
pulse. Due to the long-lived oscillations in the photoinduced
current, a rather large broadening η = 0.2 is used to avoid
artifacts from the finite time-window Fourier transform. This
procedure avoids the calculation of the current-current corre-
lation function including vertex corrections.

In order to address the role of the dipolar matrix element
D on the dynamics of the optical conductivity we compare
results for |D| = 0.0 ea and 0.3 ea. In the following, we
apply both the pump and probe pulses in the (11) direction.

Different dipolar matrix elements D modify the equilibrium
optical conductivity, compare Figs. 8(a) and 8(b). In both
cases, the optical signal is composed of two characteristic
features corresponding to either the transitions between the
Zhang-Rice singlet and the UHB (smaller peak at ω ≈ 4 eV)
or from the band with predominant p character to the UHB.
The position of the latter shows a substantial shift to lower
energies as the dipolar matrix element increases. This suggest
that the main contribution of the dipolar current comes from
slightly lower energies than the Peierls contribution, which we
have confirmed by analyzing both the intraband and interband
contributions to the current (not shown). Moreover, the height
of the peaks is strongly increased for |D| = 0.3 ea compared
to |D| = 0. This is easily understood as the bigger dipolar ma-
trix element leads to a higher transition probability between
bands with different orbital character. We have checked that
the heights of the peaks do not simply scale with the size
of the dipolar term. The orbital-resolved optical conductivity
shows that the photoinduced current through the p and d
orbitals is almost the same. This is a consequence of a small
direct hopping between the px and py orbitals, namely, tpp =
0.15 eV. Hence, the current is mainly originating from the
hopping between p and d orbitals.

After the photoexcitation, the edges of these peaks are
shifted to lower energies and furthermore, the peaks get broad-
ened in analogy to the single-particle spectra. Both effects are
clearly seen for the main peak for both values of the dipolar
matrix element. While the height of the main peak is reduced
in both cases, the effect is strongly enhanced for |D| = 0.3 ea.
This can be intuitively understood as a population effect since
after the photoexcitation the presence of doublons in the
UHB partially prevents a direct dipolar excitation. The peak
at ω = 3.5 eV, which corresponds to transitions between the
Zhang-Rice singlet and the UHB, is strongly smeared out
and can only be recognized as a shoulderlike structure. The
latter could be an effect of a rather large broadening η = 0.2
and therefore we cannot resolve small photoinduced features
associated with transitions between the Zhang-Rice singlet
and the UHB after the photoexcitation. The orbital-resolved
optical conductivity shows that the changes in the spectrum
are comparable for all orbitals.
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We extracted the photoinduced shifts for different
photodopings from the change in the half-width at half-
maximum for fixed dipolar matrix elements, see Fig. 8(c).
The latter is compared to the static shift determined from the
expression for the Hartree shift ��H

dd = (Udd − 2Ud p)�nd ,
which only depends on the number of the photoinduced
doublons. We conclude that the static shifts are generally
much smaller and their increase slightly depends on the
dipolar matrix element, see Fig. 8. In contrast, the total shift
has a stronger dependence on the dipolar moment. Without
dipolar moment (D = 0.0), the bandgap shift with respect to
the photodoping density exhibits almost a linear dependence,
while for finite dipolar moment the dependence becomes
strongly nonlinear. Since the photoinduced changes for the
different dipolar matrix elements |D| = 0.0 and 0.3 ea show a
qualitatively and quantitatively different dynamics [compare
Figs. 8(a) and 8(b)], it will be crucial to determine the dipolar
matrix elements from ab initio calculations for comparison
with experiments.

VI. CONCLUSIONS

We have discussed and demonstrated the nonequilibrium
generalization of the multiband GW +EDMFT formalism by
considering the Emery model relevant for La2CuO4. This
approach is based on a multiscale modeling, where the low-
energy correlated d orbitals are treated within GW +EDMFT,
while the higher-lying p orbitals are described with GW
(in GW +EDMFT) or Hartree-Fock (in HF+EDMFT). We
provided a detailed description of the downfolding formalism
and the mapping to the effective impurity problem, which we
solved within the noncrossing approximation (NCA).

We discussed the coupling of the electrons with classical
light in the case of multiband systems. Starting from the
continuum description and the minimal coupling, and after
performing the Power-Zienau-Wolley transformation [37], we
projected the Hamiltonian to the Wannier orbitals. A Peierls-
like transformation then led to the gauge-invariant formulation
of the intraband acceleration described by a complex hopping
parameter and additional interband dipolar transitions.

In the detailed analysis of the photodoped system, we
addressed the three questions raised in the introduction. (i) We
showed that the frequency of the pulse can lead to long-lived
oscillations if the photoexcitation connects the Zhang-Rice
singlet and the upper Hubbard band. For higher-frequency ex-
citations, the systems’ properties depend only on the strength
of the excitations and even if predominantly p-like charge
carriers are excited, they quickly relax toward the band edge
(Zhang-Rice singlet state). However, the latter process is only
described within GW +EDMFT, while within HF+EDMFT
the charge carriers are almost frozen within the band. This
analysis implies that the dynamical charge fluctuations speed
up not only the intraband relaxation but also the interband

relaxation. (ii) The size of the dipolar matrix element deter-
mines the amount of energy absorbed from the high-frequency
excitations on the fs timescale. However, if we fix the amount
of photodoping by adjusting the pulse strength, the long-time
relaxation dynamics and photoinduced changes are agnostic
to the excitation protocol. (iii) The photoexcitation leads to
modifications of the bands and the charge-transfer gap. In
the local spectral function, the band-gap renormalization and
lifetime effects can be clearly distinguished. Moreover, the
momentum- and orbital-resolved spectral function reveals that
the main origin of these features is a nontrivial interplay
between a photoinduced change of the effective velocity, k-
dependent broadening of the UHB and a rigid shift of the
p band. (iv) The charge-transfer gap renormalization is also
evident in the optical conductivity. First, the size of the band
shift depends on the dipolar matrix element. Moreover, the
width of the main peak and the visibility of the Zhang-Rice
like structure after the pulse qualitatively depends on the size
of the dipolar moment.

An alternative approach to the formalism presented in
this work is a recent hybrid implementation of the time-
dependent density-functional theory (TDDFT+U), which has
been applied to photoexcited NiO [53]. Similar band shifts
and effectively reduced interactions have been observed, but
a direct comparison is difficult due to the lack of spectral in-
formation in TDDFT+U. As the authors in Ref. [53] showed
an interesting spectrum of high harmonics, such an analysis
would provide a useful test for the proposed formalism. The
photoinduced changes in the screening spectrum [22,23] can
lead to an enhanced recombination of charge carriers and
consequently a larger high-harmonic response [54].

Apart from these insights into the nonequilibrium prop-
erties of charge-transfer insulators, our work represents an
important step in the development of ab initio simulation
approaches for strongly correlated systems in nonequilib-
rium states. The GW +EDMFT method implemented here
features a fully consistent treatment of correlation and screen-
ing effects, and can be combined with material-specific in-
put obtained within a multitier approach analogous to the
scheme recently demonstrated in equilibrium systems in
Refs. [18,24,42].
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