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Capturing the dynamics of Wigner crystals within the phase-field crystal method
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An electronic phase-field crystal model is proposed where the thermodynamics of electrons are considered in
a free-energy-functional formulation. The free-electron-gas system is considered initially as the noninteracting
limit of the model. The excess free-energy contribution to the functional is incorporated by including Coulombic
repulsions among electrons and exchange-correlation interactions. The evolution of an electron mean field is
considered in the low-temperature limit using diffusive dynamics. Three-dimensional Wigner crystallization can
be achieved from the model when the density of the system is lowered sufficiently. Through this approach, we
are able to provide insight into topological defect formation and evolution during Wigner crystallization.
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I. INTRODUCTION

The study of Wigner crystals has been of interest to the
research community ever since it was first proposed many
decades ago [1]. Many analytical and numerical studies have
been performed to elucidate the conditions that can stabi-
lize an electron lattice and further our understanding of its
properties [2]. Experimentally, the existence of Wigner crys-
tals has been reported in quantum dots, MOSFET devices,
dusty plasmas, and even colloids [3–12]. Due to the experi-
mental difficulty associated with generating, controlling, and
studying Wigner crystals, a lot of theoretical effort has been
dedicated toward understanding their stability and dynamics.
Arguably, theoretical Monte Carlo studies have provided the
most important insight to date regarding the density range
over which Wigner crystals can exist, as well as their dynamic
behavior and the existence of other electronic phases [2,13].
Although highly successful, Monte Carlo techniques are com-
putationally limited in the timescales they can analyze. Thus,
the study of defect dynamics via Monte Carlo methods is
rendered extremely difficult. In this paper, we propose an
electronic phase-field crystal (EPFC) formulation for theoreti-
cally exploring Wigner crystallization and topological defects
across extended timescales.

The analysis of topological defects in these crystals
has then been studied through “macroscopic” and “clas-
sical” Wigner crystals [11,14,15]. Many of their observa-
tions indicate direct similarities with defects observed in
crystalline lattices. The first theoretical work on the exis-
tence of topological defects in Wigner crystals was devel-
oped some decades ago [16]. Electron crystallization has
also been explored through density-functional theory (DFT),
though primarily from an energetic stability perspective [17].
This approach was preceded by pioneering classical density-
functional theory (CDFT) models for studying the solidifica-
tion of crystals [18]. Eventually, CDFT was combined with
ideas from Ginzburg-Landau theories to develop phase-field
crystal (PFC) modeling, which we utilize as the basis for

modeling electron crystallization in this paper. As a promising
mean-field theory, the PFC methodology has been utilized to
study phase transitions [19–21]. It has also been successfully
used in the past to describe solidification, dislocation and
grain-boundary energetics, vapor-liquid phase transitions and
certain features of electromigration [20,22,23]. Importantly,
the PFC approach allows one to theoretically examine the
evolution of topological defects over diffusive timescales.

Herein, we derive a PFC model following the aforemen-
tioned electron crystallization DFT approach, where an elec-
tron density is employed to construct a free-energy functional
and describe the crystallization of an electron fluid [17,18,24].
We view this work as an initial step toward connecting PFC
theory with orbital-free density-functional theory (OF-DFT)
[25]. For this reason, we focus on developing a 3D electronic
structure model. Our development and application of EPFC
modeling is detailed in the remainder of this paper. First,
we proceed to provide a physical framework for constructing
the free energy for a system of electrons (this is provided
in Sec. II). From this starting point, a PFC model is then
developed in Sec. III. In Sec. IV, the results of topological
defect formation and evolution are presented and explained.
Next, in Sec. V, we discuss the scope of our approach with
respect to OF-DFT and quantum hydrodynamics (QHD).
Finally, in Sec. VI, we present our conclusions regarding the
EPFC methodology.

II. DENSITY-FUNCTIONAL THEORY
APPROACH FOR ELECTRONS

In this paper, we explore a methodology where the free
energy (F ) of a 3D electron gas may be expressed within the
spirit of CDFT as a functional of the electron density (ρe).
Within CDFT the kinetic-entropic and potential contributions
of a system of interacting particles are separated into ideal and
excess free-energy terms.

Here, we express the ideal part of the electronic free
energy through a Thomas-Fermi kinetic functional that

2469-9950/2019/100(23)/235116(9) 235116-1 ©2019 American Physical Society

https://orcid.org/0000-0002-5295-2818
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.235116&domain=pdf&date_stamp=2019-12-10
https://doi.org/10.1103/PhysRevB.100.235116


SALVADOR VALTIERRA RODRIGUEZ et al. PHYSICAL REVIEW B 100, 235116 (2019)

energetically describes the noninteracting limit in terms of
the electron density. Our excess free-energy contribution is
described through a Coulombic potential (Hartree term) and
an exchange-correlation kernel to account for any other inter-
actions.

This model explores a 3D quantum electron gas sys-
tem with a positive charge-compensating background jellium
where the electron free energy of the system can be well ap-
proximated in this manner [26,27]. Through this approach, we
define an ideal free energy (Fid) associated to a noninteracting
system of electrons and an excess free energy (Fex) that deals
with the interactions between electrons [28]:

F [ρe] = Fid[ρe] + Fex[ρe]. (1)

The energy that describes this system is composed of the
kinetic contributions from electrons and the repulsive interac-
tion potential between electrons—while ignoring the energy
contribution of the background jellium as a fixed constant and
exchange interactions between electrons. A spatially varying
formulation of the ideal free energy can be stated as

Fid[ρe] =
∫ [

3

5
αρe(�r)5/3 − π2

4αβ2
ρe(�r)1/3

]
d�r, (2)

where α = (3π2)2/3h̄2/2m, β = 1/kBT , and �r is our spatial
coordinate; T is the temperature, m is the electron mass, h̄
is Planck’s constant, and kB is Boltzmann’s constant. A full
discussion regarding the derivation of the entropy term can be
found in Refs. [24,26].

Interactions can be captured by introducing an appropriate
excess free energy (Fex). It is assumed that direct correlation
functions (DCF) can be added to this free energy in the form
of an excess free energy to account for the interactions that
were ignored earlier in the formulation [17,18,27,29]. These
excess free-energy contributions can be obtained in terms of
an expansion around some reference state of relevance ρe
[18,30,31]. It is well established that particle interactions can
be accounted for by introducing these DCFs [29,30], leading
to the following excess free-energy contribution:

Fex[ρe] � Fex[ρe] +
∫

δFex

δρe(�r)

∣∣∣∣
ρe

δρe(�r)d�r

+ 1

2

∫
d�r

∫
δρe(�r)

δ2Fex

δρe(�r)δρe(�r′)

∣∣∣∣
ρe

δρe(�r′)d �r′. (3)

This formulation for an electron fluid can be understood
if the properties of the initial state are known, the Wigner
crystal can be described as a highly nonhomogeneous pertur-
bation of the chosen reference state [1,2,17,18,27,32]. Putting
together the excess free-energy approximation and the ideal
free energy of the electrons yields the Helmholtz free energy
of the system. Moreover, the two-point correlation function
can be further written in terms of a Coulombic potential and
an exchange-correlation kernel Kxc(�r, �r′) [17,29,33,34],

δ2Fex

δρe(�r)δρe(�r′)
= −K (�r, �r′) = v(�r, �r′) − Kxc(�r, �r′), (4)

where the exchange-correlation kernel can be evaluated in
the jellium limit as a convolution of the Coulombic potential

coupling v(�r, �r′) with the exchange-correlation function
gxc(�r, �r′) [28].

III. ELECTRONIC PHASE-FIELD CRYSTAL MODEL
FORMULATION

Following the PFC methodology [19–21], let us reformu-
late our 3D free energy in terms of the rescaled smooth density
ne(�r) = [ρe(�r) − ρe]/ρe and then expand the ideal part of the
free energy up to fourth order.

This rescaling (along with another approximation later) is
essential given that the original density generates sharp peaks
that would require a very fine mesh to simulate. To simplify
this task, the ideal free energy will be recast first and the
excess free energy later. Considering the electronic ideal free
energy, we obtain

Fid[ne] ≈
∫ {

αρ5/3
e

[
3

5
+ ne(�r) + ne(�r)2

3
− ne(�r)3

33

+ ne(�r)4

34

]}
d�r −

∫ {
π2ρ1/3

e

12αβ2

[
3 + ne(�r) + ne(�r)2

3

− 5ne(�r)3

33
+ 10ne(�r)4

34

]}
d�r. (5)

Here we have expanded the ideal part of the free energy up
to fourth order as is typical in the PFC literature [19–21].
For simplicity, let us ignore the temperature-dependent terms
in Eq. (5), since the T = 0 formulation of the electron gas
is generally regarded as reasonably accurate even at room
temperature [35]. Higher temperature studies can be found in
Refs.[36,37].

Therefore, in this paper, we only endeavor to model Wigner
crystal dynamics well below the Fermi temperature. The
excess free-energy term μe represents the chemical potential
of the electron system evaluated at the reference state.

This terms couples linearly to the free energy and given
that it is the chemical potential of a homogeneous reference
state it can be neglected. One may also identify a couple of
terms with the structure of the ideal free energy evaluated at
the reference state (Fid [ρe]). These terms combined with the
excess free energy of the reference state yield the total free
energy of the reference state.

We need not in particular specify this free energy and
we can merely subtract it from the total free energy, leaving
behind a much more compact equation that retains the most
essential physics. We then obtain the following total free
energy:

F[ne] =
∫

αρ5/3
e

[
ne(�r)2

3
− ne(�r)3

33
+ ne(�r)4

34

]
d�r

+ 1

2
ρ2

e

∫
d�r

∫
e2

4πε0

{
ne(�r)ne(�r′)[1 − gxc(�r, �r′)]

|�r − �r′|

}
d �r′,

(6)

where F[ne] = F [ne] − F [ρe] is a simplified term for the free
energy and e and ε0 are the elementary charge and vacuum
permittivity, respectively. This equation highly resembles the
one used in DFT, with the central difference arising from the
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ideal free-energy term which is a Taylor expansion of the
Thomas-Fermi kinetic energy term [24,38].

This expression reflects the linear response of an interact-
ing electron liquid. Linear response functions describe the re-
sponse of the electronic density due to a perturbation from an
external field which can be generalized as the self-consistent
response of the electron density to internal fields created by
electrons within the same system [33]. Rescaling �r = rs �̃r and
�r′ = rs

�̃r′ to express the model in dimensionless units,

F[ne] = μF

∫ [
ne(�̃r)2

3
− ne(�̃r)3

33
+ ne(�̃r)4

34

]
d �̃r

+
(

e2

4πε0rs

)(
3

8π

) ∫
d �̃r

×
∫ {

ne(�̃r)ne( �̃r′)[1 − gxc(�̃r, �̃r′)]

|�̃r − �̃r′|

}
d �̃r′, (7)

where μF is the Fermi energy and rs is the radius of elec-
tron sphere—which is inversely proportional to the density
4πr3

s /3 = 1/ρe. From this equation, we can observe a few
things. First, the dimensional analysis shows that we have
obtained an expression where all the units can be specified
through the constant parameters ahead of the integrals.

The scaling of the “density” parameter rs can also be
verified, since μF scales as 1/r2

s and the electron interaction
terms scale as 1/rs, we have obtained the correct scaling
reported in literature [24,39]. This is a critical feature, since
the crystallization of the Wigner crystal depends on rs.

To proceed, we must express the Fermi energy in terms
of rs which permits us to directly observe the scalings with
respect to rs and to further simplify the free energy such that

F = h̄2

2mr2
s

(
9π

4

)2/3 ∫ [
ne(�̃r)2

3
− ne(�̃r)3

33
+ ne(�̃r)4

34

]
d �̃r

+ e2

4πε0rs

(
3

8π

)∫
d �̃r

∫ {
ne(�̃r)ne( �̃r′)[1− gxc(�̃r, �̃r′)]

|�̃r − �̃r′|

}
d �̃r′.

(8)

If we then multiply both sides of Eq. (8) by h̄2

m ( 4πε0
e2 )2 and

keeping in mind the definition of the Bohr radius ao = 4πε0m
e2 h̄2 ,

we obtain

Fo = a2
o

2r2
s

(
9π

4

)2/3 ∫ [
ne(�̃r)2

3
− ne(�̃r)3

33
+ ne(�̃r)4

34

]
d �̃r

+ ao

rs

(
3

8π

) ∫
d �̃r

∫ {
ne(�̃r)ne( �̃r′)[1 − gxc(�̃r, �̃r′)]

|�̃r − �̃r′|

}
d �̃r′,

(9)

where Fo represents a dimensionless free energy—since our
multiplying factor has units of inverse Joules. We can directly
observe the correct predicted scaling rs for both the kinetic and
potential of interaction terms [24]. This “new” free energy can
be simplified by normalizing by the constant coefficient ahead

of the kinetic term and factorizing, thus obtaining

F̃o =
∫ [

ne(�̃r)2

3
− ne(�̃r)3

33
+ ne(�̃r)4

34

]
d �̃r

+ χ

2

∫
d �̃r

∫ {
ne(�̃r)ne( �̃r′)[1 − gxc(�̃r, �̃r′)]

|�̃r − �̃r′|

}
d �̃r′, (10)

where the dimensionless parameter χ is written as

χ = 2

(
3

8π

)[
1

2

(
9π

4

)2/3]−1 rs

ao
. (11)

This final rescaling illustrates the fact that χ is an effective
interaction parameter displaying the impact of the density on
the system.

In our paper, we utilized the EPFC form provided in
Eq. (10) to evolve the electron density and explore Wigner
crystallization where an electron fluid solidifies due to a de-
crease in density that lowers the kinetic energetic contribution
of the electrons, which leads to electron-electron interactions
being more energetically relevant. We can observe that χ

scales linearly with the “density” parameter rs; this means that
as the density is dropped (rs increases), the electron-electron
interactions become stronger compared to the kinetic energy
term. We can then rewrite the effective interaction parameter
as χ ≈ 0.12963426(rs/ao). In literature, the dimensionless
“density” parameter (also known as the Brueckner parameter)
is used more frequently instead, rd = rs/ao. Thus, the final
definition of the effective interaction parameter would be χ =
0.12963rd .

IV. RESULTS

A. 3D local field factor approximation

Simulation of 3D Wigner crystallization was performed
to test the model. This required the development of an ap-
proximate 3D structure factor, for which the full range of the
Brueckner parameter is not available in the literature (to our
knowledge). The available data that exists provides the 3D
pair distribution function and to some extent, the structure
factor for low values of rd [40,41]. To this end, we proceeded
to utilize the results provided in Ref. [42]. For this, we employ
the Fourier transform of the 3D pair distribution function and
obtain the 3D structure factor for an isotropic, homogeneous
system,

S(k) = 1 + 4πρe

∫ ∞

0
dr r2 sin(kr)

kr
h(r), (12)

which yields the interacting limit of the structure factor for
rd = 100. In this equation, r and k are the radius and wave
number, respectively. To obtain the structure factor, further
data had to be added to the pair correlation. To accomplish
this, a mathematical fitting for the long-range behavior of g(r)
was carried out using Eq. (25) in Ref. [2], which allowed us to
obtain enough data to compute S(k). Both the data and the
model developed so far employ the rescaling �̃r = �r/rs and
k̃ = krs thus, Eq. (12) is also rescaled. For the noninteract-
ing limit, we employed the data derived by Ref. [43]. With
these two known limits, we generated an approximate local
field factor (LFF) such that the essential features of the 3D
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FIG. 1. 3D Structure factor plotted for rd = 100. Inset shows the
pair correlation function in Ref. [42].

structure factor are reproduced (shown in Fig. 1). This was
computed from the 3D pair distribution function and the data
provided in Ref. [43] for the noninteracting limit. From the
literature, it is known that the LFF G(k) provides information
on the exchange-correlation energy functional Exc[ne] and is
a convenient measure of exchange-correlation effects [44,45].
We make use of the Singwi, Tosi, Land and Sjolander (STLS)
equation to compute our LFF and approximately reproduce
the interacting limit [29,46]. In this paper, we limit the scope
to the range of densities near the phase transition only [29]:

G(k) = − 1

ρe

(
1

2π

)3 ∫
d �q

�k · �q
q2

[S(|�k − �q|) − 1]. (13)

The employed version of the former equation was also
rescaled in the same manner as the structure factor. The 3D
LFF is then plotted as shown in Fig. 2. The red line in both
plots is the LFF obtained from the data shown in Fig. 1 while
the blue line shows the approximation used in this model
which will be discussed next. This approach relies heavily on
the use of the structure factor of the interacting electron fluid
to obtain a fit for the second-order derivative of the excess
free energy, something that is also done in PFC, where the
first peak of the structure factor showing ordering is located
at the first reciprocal lattice vector [20,21]. We can approx-
imate the LFF using a structural PFC (XPFC) approach for
fitting the peaks with Gaussian functions [47]. This LFF
treatment has also been employed in quantum hydrodynamics
[48]. This involved approximating the LFF through a sum-
mation of Gaussian functions as shown in Fig. 2. We focus
primarily on fitting the data of the first peak. It should be
straightforward to note that a sum of Gaussians can yield
a fair approximation to the first peaks observed. The use
of Gaussians also grants more freedom in the choosing of
the position and width of the peaks. The use of Gaussian
functions is also a versatile method when dealing with Fourier
transforms and convolutions. A single correlation function
was employed that depended on the density to approximately
fit the LFF, which is explained in more detail in Ref. [29].
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FIG. 2. 3D local field factor (LFF) plotted for rd = 100. The red
curve represents the LFF obtained from the data in Ref. [42] while
the blue curve is the fitting according to Eq. (14). Inset refers to the
LFF for several values of rd .

An inverse Gaussian is used as reference point to denote the
noninteracting limit

G(k) = 1 − e
−k̃2

w2
o + 0.75Ae

−(k̃−k1 )2

w2
1 − 0.4Ae

−(k̃−k2 )2

w2
2 , (14)

where A = (rd/rmax
d )1/2 is the amplitude of the Gaussians as

a function of rd and ki represents the center position of the
Gaussians of which k1 represents the wave number associated
to a given reciprocal lattice point. The value rmax

d denotes the
relevant range limit in the Brueckner parameter. The constants
in the equation are fitted numbers to reproduce the LFF. A
similar Gaussian scheme can be found in Ref. [49].

The degree of accuracy of the model can thus be evaluated
partly from the essential features of the structure factor that
have an impact on crystallization. This approximation is used
in conjunction with the Fourier transform of the Coulombic
potential to obtain the so-called quantum DCF [2,27,29,50].
This can be observed in the Supplemental Material [51].

These approximations are necessary because adding higher
k-modes to the direct correlation function requires a finer
mesh which would severely limit the length and timescales
that can be explored by the PFC [52]. Further fitting at higher
wave numbers in the LFF (and in consequence in the DCF
as well) severely impacts the model efficiency, which poses a
computational limitation on the system sizes and timescales
explored as discussed in Ref. [52]. This is shown in the
Supplemental Material, where we have improved this STLS
scheme by including a quadratic term that controls the long
wave-number behavior [51]. Crystallization is observed as
well, albeit at the cost of reducing the volume explored by
almost two orders of magnitude and the time spacing by
almost an order of magnitude. The DCF of our quadratic
fit is also provided in the Supplemental Material to allow
further comparison with respect to the literature [51,53].
Although these approximations in the main model do not
rigorously reproduce a quadratic behavior in the low wave-
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number regime, a Taylor expansion of the noninteracting term
does demonstrate a leading quadratic term. Nevertheless, we
have found that the STLS scheme LFF given in Fig. 2 can
capture the essential physics of Wigner crystallization as will
be discussed shortly.

Once the LFF has been approximated, we can simulate the
final free energy we obtained using the semi-implicit scheme
normally employed in PFC models for the dynamics. To avoid
the divergence from the long-range Coulomb interaction, a
screened Coulomb potential is employed where the value of
the screening wave number is large enough to avoid the di-
vergence but small enough to leave the structure factor largely
unaffected. This last consideration is adopted for purely nu-
merical purposes and does not impact the central physics.
We employed the diffusive dynamics given by Eq. (15), as
well as the subsequent semi-implicit scheme to overcome the
time-spacing restriction from finite differences.

B. 3D dynamics and simulations

To simulate topological defect formation and evolution
in Wigner crystals, dissipative PFC dynamics are employed
[20,21],

∂ne

∂t
= ∇2

(
δF̃o

δne

)
+ η, (15)

where η represents conserved “noise” in the density field. In
all our simulations, we utilize the form of the free energy
provided in Eq. (10). This equation for the dynamics is solved
in Fourier space using a semi-implicit scheme, leading to the
following equation [21,29]:

∂ n̂e

∂t
= −|�k|2{FT[ f (ne)] + χv(|�k|)[1 − G(|�k|)]n̂e} + η̂, (16)

where FT[ f (ne)] and n̂e represent the Fourier transform of
the ideal free energy and the density field, respectively. White
noise was added to the initial density field to trigger nucle-
ation events as observed in Fig. 3(a). Fluctuations were kept
throughout the rest of the simulation via the phenomenologi-
cal parameter η. The amplitude of the “white” noise employed
was 0.012 and was calculated at every grid point of the
system. These fluctuations were treated in the same fashion as
in standard PFCs [20,21]. This was done with the sole purpose
of allowing the system to evolve more rapidly from metastable
states [54,55]. A more rigorous approach was not undertaken
in the fundamental derivation of these fluctuations, due to
the complexity that accompanies the treatment of fluctuations
in an electron density field [33]—the reason being that one
would need to consider phenomena such as zero-point energy
vacuum fluctuations, the wave-function nature of electrons
and a more rigorous approach to electron energetics—further
information can be found in Ref. [13].

As displayed in Figs. 3(a) and 3(b), the initial state is
dominated by random noise perturbations from the reference
liquid state with an average of no = 0. A smaller grid-spacing
is employed to simulate the system to better observe the
microstructural changes as observed in Fig. 3(a) through 3(h).

The subfigures on the left of Fig. 3 are plotted employing
isosurfaces, while those on the right are plotted using slices of
the density field (illustrating a 2D representation of the field in

FIG. 3. Solidification of a 3D Wigner crystal in several snap-
shots: (a), (b) noise is employed as an initial condition; (c), (d) after
several seeds nucleate and collide with each other a solid is formed
but no distinguishable order can still be observed due to the extensive
strain; (e), (f) after some time has elapsed, a fair degree of order can
be spotted and the lattice can be observed to be BCC; and (g), (h)
once enough time has passed, a considerable amount of strain has
been reduced and a highly ordered crystal can be observed.

any given direction). In Figs. 3(a) and 3(b), these fluctuations
generate nucleation events that originate crystal seeds that
eventually grow and consume the liquid. In Figs. 3(c) and
3(d), these small seeds collide with each other in a disordered
fashion which leads to widespread disorder across the crystal,
making it difficult to distinguish any kind of lattice.
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FIG. 4. A common neighbor analysis reveals that the stabilized
structure time evolved from a random nucleation process is com-
pletely BCC [56,57].

In Figs. 3(e) and 3(f), as the simulation evolves, strain is
minimized and a distinguishable lattice starts forming. There
are, however, some disorder remnants left which are still being
dealt with by the crystal to minimize the strain across the
system. In Fig. 3(g), as more time passes, the crystal further
relaxes and a very high degree of order can be observed. A
very similar situation is found when a stable seed is employed,
it starts to grow at the expense of the liquid and covers the
whole system in an almost pristine way.

The data visualization and analysis software package
OVITO was employed to enable a cleaner display of the
structural features of the lattice [56,57]. For visualization
purposes, local peaks which represent the most probable
particle positions are taken to correspond to particle grid
positions. A common neighbor analysis [57] in Fig. 4 shows
all the particles and their respective structures in the crystal,
demonstrating how the crystal forms a pristine body centered
cubic (BCC) configuration (identified only with the blue color,
lacking any defects or dislocations).

This same structural analysis approach can be utilized
to analyze defect formation and evolution in 3D Wigner
crystals as shown in Fig. 5. To more clearly appreciate the
evolution of topological defects, crystal seeds were used at
the density condition of crystallization. A low-angle grain
boundary (LAGB), consisting of an array of edge dislocations,
can be generated by setting two seeds right next to each other,
slightly rotated in opposite angles as presented in Figs. 5(a)
through 5(e). Following our random nucleation study, seed
nucleation of the PFC density field is as presented using an
isosurface [Figs. 5(a) and 5(c)] and slices of the density field
[Figs. 5(b) and 5(d)]. The LAGB is perfectly visualized in
both representations by the presence of a Burgers vector and
circuit.

It is also possible to structurally discriminate between the
ordered (belonging to a BCC lattice) and disordered particles
utilizing the common neighbor analysis and the dislocation
extraction algorithms [56–58]. Furthermore, we may also

FIG. 5. (a), (b) Two seeds are set in the lower part of a slab
system (one of the three dimensions being smaller than the other
two, this permits a clearer visualization of defects and the density
field). (c), (d) The collision of these two seeds generates a low-angle
grain boundary (a linear array of edge dislocations) on both sides
(due to the periodicity of the system), however, the ones in the middle
being our main focus. (e) Clearer visualization that particularly filters
particles with a BCC coordination, leaving only those with irregular
coordination (golden color) associated to disorder in the crystal. Also
shown are dislocation lines (blue color) which perfectly go through
the disordered particles, the Burgers vectors (green color) associated
with said dislocations is also displayed.

identify and analyze dislocations in the slab system, ascertain
their nature (edge, screw, and/or mixed) and type as illustrated
Fig. 5(e). Burgers vectors (green color) and circuits can also
be computed for each dislocation and it participating atomic
sites (yellow) shown in Fig. 5(e)—yellow atoms participate
in a disordered dislocation structure distinct from the perfect
BCC phase that would be represented by blue atomic sites as
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FIG. 6. Upper panels: (a), (d) Several dislocations form from
crystal collision. Two neighboring, opposing dislocations (pink box)
on the left side of the slab in (b) attract each other and combine into a
single dislocation in (c). The Burgers vector (green color) of the new
dislocation in (c) is the sum of the vectors of the original dislocations.
Lower panels: (d)–(f) are an upper-frontal angle visualization of the
dislocations, their direction lines are displayed (blue color), Burgers
vectors (green), and their associated, uncoordinated particles (golden
particles) as they undergo merging.

in Fig. 4. It is straightforward to observe the Burgers vector
is in accordance with the observed array of dislocations from
the LAGB density field in Figs. 5(c) and 5(d). The nature of
all dislocations is also displayed in the slab system [dark blue
atoms in Fig. 5(e)] and identified to be an edge nature. This is
in accordance with the type of dislocation that is generated by
a LAGB.

Fisher et al. first explored the possibility of topological
defects in Wigner crystals decades ago [16]. More recent
work on mesoscopic and macroscopic “Wigner crystals” has
also yielded interesting information about possible defects
[11,14,15]. Special attention was given by them as well as
more modern research regarding the evolution of grain bound-
aries and dislocations [14].

Finally, we explore how dislocations can combine within
Wigner crystals across extended timescales. For this simula-
tion, a third seed was added to the previous simulation in the
center of the slab with the purpose of generating a collision
with the other seeds and producing scattered dislocations
across the domain. The system is allowed to relax for a
certain period of time until a few dislocations remain. This
permits a suitable situation for the proper visualization of the
dislocation motion and interaction.

In Fig. 6(a), several dislocations are displayed, some of
these undergo merging and a simpler configuration of three
neighboring dislocations is obtained in Fig. 6(b). Two dis-
locations [bounded by pink boxes in Fig. 6(e)] attract each
other due to their opposing Burgers vectors (any two dis-
locations will experience an attractive force if their unitary
vectors are opposite). Their respective Burgers vector and
orientation are also displayed utilizing the approach discussed
above [56–58]. The upper and lower subfigures in Fig. 6
present the time-evolved snapshots of the PFC density field
and particle structural visualization, respectively. The two
relevant dislocations attract each other and leave behind a

perfect dislocation after merging as displayed in Figs. 6(c)
and 6(f)—whose Burgers vector (green) is the total sum of the
Burgers vectors of the initial dislocations. The larger insets in
the lower panels represent zoomed versions of the identified
dislocations. This demonstrates that dislocation interactions
follow conservation of the Burgers vector in Wigner crystals.
The vectors identified for the two relevant dislocations are
1/2[1̄1̄1̄] and 1/2[1̄11] and the resultant observed in the new
dislocation is [1̄00]. This behavior has been observed for
“classical Wigner crystals” in charged particles in colloids
experiments [11]. In said experiments, other defects such as
grain boundaries were also reported.

V. RELATIONSHIP WITH OTHER METHODS

This model can directly draw analogies to OF-DFT
schemes that deal with an approximate kinetic energy
functional—avoiding the direct use of wave functions. In
OF-DFT, functional approximations are also assumed for the
exchange-correlation energy terms [25]. The minimization
of an energy functional in OF-DFT, while preserving the
number of electrons in a fixed volume, also draws an analogy
to our work. Here we also minimize an energy functional
while using a Laplacian to run diffusive electron dynamics,
as well as preserving the number of electrons and volume.
A self-consistent converging OF-DFT algorithm seeking the
ground state has an analogous role to the one in our dynamics,
in which we can observe the initial (out-of-equilibrium) state
trying to reach the equilibrium state. Indeed, we view our
work as an initial step toward connecting OF-DFT and PFC
methods.

Another comparison to our work can be drawn with QHD.
For example, in Ref. [48], a functional of the electron den-
sity is also minimized and it is proposed that the effects of
exchange and correlation be accounted for by using a LFF
[48,59]. The dynamics employed evolve not only the electron
density field, but also a velocity field as is typical in hydro-
dynamic techniques. In terms of energetics, our approach and
QHD can be very similar due to the Thomas-Fermi approach
QHD can adopt—if one ignores terms coupling the velocity
and density fields in QHD. Similarities between QHD and
our EPFC model also include the use of Gaussians as well to
parametrize and describe the LFF (see Ref. [48]). Thus, from
a purely energetics perspective, QHD and the work presented
herein are close.

That being said, EPFC dynamics and the results obtained
from QHD would still differ. The dynamics employed in
QHD, while very similar for the mass conservation equation,
can be distinguished by the presence of the coupling to
the velocity field. This coupling is difficult to accommodate
in the EPFC model, since the dynamics allow the density
field to oscillate at the interparticle level while the velocity
field normally deals with a smooth field. In addition, density
oscillations at the interparticle level would lead to strong gra-
dients that could produce unphysical flows. Meaning, velocity
variations at the interparticle level are not a straightforward
matter [59]. Thus, PFC dynamics are not identical to quantum
hydrodynamics.
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VI. CONCLUSIONS AND DISCUSSION

An EPFC formulation for the modeling electron thermo-
dynamics in 3D Wigner crystals was developed starting from
a CDFT-type separation of the electron free energy into ideal
and excess free-energy functional terms. This CDFT approach
to treating the electrons was developed and well explained in
the work of Senatore et al. and Louis et al. who provide an
energy functional for the interacting electron system [28,29].

Subsequently, the functional was cast in a PFC-type form
and correlations were introduced in an XPFC-like approach.
Several approximations were employed in the development
of this model, such as the expansion of the kinetic functional
(ideal free energy term); the use of rescaled, smooth electron
density, and the mean-field treatment of the derivatives of
the excess free energy, as well as the Gaussian fit employed
to treat the local-field correction factor. Despite these ap-
proximations, the model recovers the correct scalings with
respect to critical parameters. This includes the dimensionless
“density” parameter rd , which in conjunction with a constant
coefficient, becomes the effective interaction parameter χ .
The effective interaction parameter compares the strength of
the potential energy of interaction to that of the kinetic energy
of the electrons.

A value of rd = 162 was found for the 3D simulations
within the STLS approximations applied, outside the expected
value of 100 ± 20 reported in QMC literature for 3D Wigner
crystals. This might be due to the Taylor expansion of the
kinetic term, the approximate treatment of the LFF, and/or
inherent limitations of the approach we here employ. How-
ever, a k2 asymptotic correction of the LFF yields a significant
improvement of this value to rd = 140.

Crucially, the formation of a Wigner crystal in our EPFC
model is obtained through the use of a Coulombic poten-
tial and XPFC-like phenomenological fit of the exchange-
correlation kernel (through the LFF) in Fourier space. This
approach permits one to retain the most essential physics of
crystallization and defect dynamics, while keeping a connec-
tion with quantum-mechanical formulations. We emphasize
that these approximations were done to arrive at tractable
topological simulations in the time and length scales of in-
terest (nucleation through to full crystallization), resulting in
a model that is tractable in terms of computational resources.
This was observed as the more accurate k2 asymptotic cor-
rection scheme requires smaller grid and time spacing. An
interesting observation is that the features and curvature of the
LFF between the first peak and the k2 asymptotic transition
modestly influences the crystallization value. A minor inno-
vation is the inclusion of a negative Gaussian after the first

peak in the LFF, something that hadn’t been done previously
in XPFC schemes. The formation of defects is expected, as it
is well known that whenever a free-energy functional is min-
imized by a periodic structure, this will naturally introduce
elasticity to the model, which in turn will permit the existence
of defects [19–21].

This behavior has also been reported for macroscopic and
classical Wigner crystals, which offer a close comparison to
our work regarding the dynamics of observed defects [14,15].
We demonstrate the presence and dynamics of dislocations
and grain boundaries whose behavior is consistent with theo-
retical and/or experimental research. Overall, the results pro-
vided by our EPFC model match well with both experimental
and theoretical literature. In conclusion, this paper establishes
a promising path connecting 3D electron thermodynamics
and PFC modeling through Wigner crystallization. We have
shown how the latter may be studied, starting from a CDFT-
type formalism, separating out ideal and excess free-energy
terms, followed by an extension to a mean-field PFC-like
approach. Through an XPFC-type correlation approximation,
we were able to obtain a computationally tractable model.
This model provides a promising tool for studying topological
defect formation and evolution in Wigner crystals over diffu-
sive timescales. Future work could focus on more deeply ex-
ploring the phase diagram of Wigner crystals, via EPFC-type
methods. Spin polarization can also be studied as magnetism
has been studied in PFC models as well [60]. More concrete
quantum derivations regarding the phenomenological fluctua-
tion terms utilized could also be provided. We further envision
the next step in the development of this model would be to
establish a direct dynamical connection between OF-DFT and
PFC modeling, permitting direct comparison.
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